| author | Christian Urban <urbanc@in.tum.de> | 
| Tue, 19 Oct 2010 15:13:35 +0100 | |
| changeset 40034 | 767a28027b68 | 
| parent 39159 | 0dec18004e75 | 
| child 44928 | 7ef6505bde7f | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | header {* \section{Generation of Verification Conditions} *}
 | 
| 2 | ||
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 3 | theory OG_Tactics | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 4 | imports OG_Hoare | 
| 15425 | 5 | begin | 
| 13020 | 6 | |
| 7 | lemmas ann_hoare_intros=AnnBasic AnnSeq AnnCond1 AnnCond2 AnnWhile AnnAwait AnnConseq | |
| 8 | lemmas oghoare_intros=Parallel Basic Seq Cond While Conseq | |
| 9 | ||
| 10 | lemma ParallelConseqRule: | |
| 11 |  "\<lbrakk> p \<subseteq> (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i))));  
 | |
| 12 |   \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i)))) 
 | |
| 13 | (Parallel Ts) | |
| 14 |      (\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i));  
 | |
| 15 |   (\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i)) \<subseteq> q \<rbrakk>  
 | |
| 16 | \<Longrightarrow> \<parallel>- p (Parallel Ts) q" | |
| 17 | apply (rule Conseq) | |
| 18 | prefer 2 | |
| 19 | apply fast | |
| 20 | apply assumption+ | |
| 21 | done | |
| 22 | ||
| 23 | lemma SkipRule: "p \<subseteq> q \<Longrightarrow> \<parallel>- p (Basic id) q" | |
| 24 | apply(rule oghoare_intros) | |
| 25 | prefer 2 apply(rule Basic) | |
| 26 | prefer 2 apply(rule subset_refl) | |
| 27 | apply(simp add:Id_def) | |
| 28 | done | |
| 29 | ||
| 30 | lemma BasicRule: "p \<subseteq> {s. (f s)\<in>q} \<Longrightarrow> \<parallel>- p (Basic f) q"
 | |
| 31 | apply(rule oghoare_intros) | |
| 32 | prefer 2 apply(rule oghoare_intros) | |
| 33 | prefer 2 apply(rule subset_refl) | |
| 34 | apply assumption | |
| 35 | done | |
| 36 | ||
| 37 | lemma SeqRule: "\<lbrakk> \<parallel>- p c1 r; \<parallel>- r c2 q \<rbrakk> \<Longrightarrow> \<parallel>- p (Seq c1 c2) q" | |
| 38 | apply(rule Seq) | |
| 39 | apply fast+ | |
| 40 | done | |
| 41 | ||
| 42 | lemma CondRule: | |
| 43 |  "\<lbrakk> p \<subseteq> {s. (s\<in>b \<longrightarrow> s\<in>w) \<and> (s\<notin>b \<longrightarrow> s\<in>w')}; \<parallel>- w c1 q; \<parallel>- w' c2 q \<rbrakk> 
 | |
| 44 | \<Longrightarrow> \<parallel>- p (Cond b c1 c2) q" | |
| 45 | apply(rule Cond) | |
| 46 | apply(rule Conseq) | |
| 47 | prefer 4 apply(rule Conseq) | |
| 48 | apply simp_all | |
| 49 | apply force+ | |
| 50 | done | |
| 51 | ||
| 52 | lemma WhileRule: "\<lbrakk> p \<subseteq> i; \<parallel>- (i \<inter> b) c i ; (i \<inter> (-b)) \<subseteq> q \<rbrakk> | |
| 53 | \<Longrightarrow> \<parallel>- p (While b i c) q" | |
| 54 | apply(rule Conseq) | |
| 55 | prefer 2 apply(rule While) | |
| 56 | apply assumption+ | |
| 57 | done | |
| 58 | ||
| 59 | text {* Three new proof rules for special instances of the @{text
 | |
| 60 | AnnBasic} and the @{text AnnAwait} commands when the transformation
 | |
| 61 | performed on the state is the identity, and for an @{text AnnAwait}
 | |
| 62 | command where the boolean condition is @{text "{s. True}"}: *}
 | |
| 63 | ||
| 64 | lemma AnnatomRule: | |
| 65 |   "\<lbrakk> atom_com(c); \<parallel>- r c q \<rbrakk>  \<Longrightarrow> \<turnstile> (AnnAwait r {s. True} c) q"
 | |
| 66 | apply(rule AnnAwait) | |
| 67 | apply simp_all | |
| 68 | done | |
| 69 | ||
| 70 | lemma AnnskipRule: | |
| 71 | "r \<subseteq> q \<Longrightarrow> \<turnstile> (AnnBasic r id) q" | |
| 72 | apply(rule AnnBasic) | |
| 73 | apply simp | |
| 74 | done | |
| 75 | ||
| 76 | lemma AnnwaitRule: | |
| 77 | "\<lbrakk> (r \<inter> b) \<subseteq> q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnAwait r b (Basic id)) q" | |
| 78 | apply(rule AnnAwait) | |
| 79 | apply simp | |
| 80 | apply(rule BasicRule) | |
| 81 | apply simp | |
| 82 | done | |
| 83 | ||
| 84 | text {* Lemmata to avoid using the definition of @{text
 | |
| 85 | map_ann_hoare}, @{text interfree_aux}, @{text interfree_swap} and
 | |
| 86 | @{text interfree} by splitting it into different cases: *}
 | |
| 87 | ||
| 88 | lemma interfree_aux_rule1: "interfree_aux(co, q, None)" | |
| 89 | by(simp add:interfree_aux_def) | |
| 90 | ||
| 91 | lemma interfree_aux_rule2: | |
| 92 | "\<forall>(R,r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<Longrightarrow> interfree_aux(None, q, Some a)" | |
| 93 | apply(simp add:interfree_aux_def) | |
| 94 | apply(force elim:oghoare_sound) | |
| 95 | done | |
| 96 | ||
| 97 | lemma interfree_aux_rule3: | |
| 98 | "(\<forall>(R, r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<and> (\<forall>p\<in>(assertions c). \<parallel>- (p \<inter> R) r p)) | |
| 99 | \<Longrightarrow> interfree_aux(Some c, q, Some a)" | |
| 100 | apply(simp add:interfree_aux_def) | |
| 101 | apply(force elim:oghoare_sound) | |
| 102 | done | |
| 103 | ||
| 104 | lemma AnnBasic_assertions: | |
| 105 | "\<lbrakk>interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk> \<Longrightarrow> | |
| 106 | interfree_aux(Some (AnnBasic r f), q, Some a)" | |
| 107 | apply(simp add: interfree_aux_def) | |
| 108 | by force | |
| 109 | ||
| 110 | lemma AnnSeq_assertions: | |
| 111 | "\<lbrakk> interfree_aux(Some c1, q, Some a); interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 112 | interfree_aux(Some (AnnSeq c1 c2), q, Some a)" | |
| 113 | apply(simp add: interfree_aux_def) | |
| 114 | by force | |
| 115 | ||
| 116 | lemma AnnCond1_assertions: | |
| 117 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c1, q, Some a); | |
| 118 | interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 119 | interfree_aux(Some(AnnCond1 r b c1 c2), q, Some a)" | |
| 120 | apply(simp add: interfree_aux_def) | |
| 121 | by force | |
| 122 | ||
| 123 | lemma AnnCond2_assertions: | |
| 124 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 125 | interfree_aux(Some (AnnCond2 r b c), q, Some a)" | |
| 126 | apply(simp add: interfree_aux_def) | |
| 127 | by force | |
| 128 | ||
| 129 | lemma AnnWhile_assertions: | |
| 130 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, i, Some a); | |
| 131 | interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 132 | interfree_aux(Some (AnnWhile r b i c), q, Some a)" | |
| 133 | apply(simp add: interfree_aux_def) | |
| 134 | by force | |
| 135 | ||
| 136 | lemma AnnAwait_assertions: | |
| 137 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 138 | interfree_aux(Some (AnnAwait r b c), q, Some a)" | |
| 139 | apply(simp add: interfree_aux_def) | |
| 140 | by force | |
| 141 | ||
| 142 | lemma AnnBasic_atomics: | |
| 143 | "\<parallel>- (q \<inter> r) (Basic f) q \<Longrightarrow> interfree_aux(None, q, Some (AnnBasic r f))" | |
| 144 | by(simp add: interfree_aux_def oghoare_sound) | |
| 145 | ||
| 146 | lemma AnnSeq_atomics: | |
| 147 | "\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow> | |
| 148 | interfree_aux(Any, q, Some (AnnSeq a1 a2))" | |
| 149 | apply(simp add: interfree_aux_def) | |
| 150 | by force | |
| 151 | ||
| 152 | lemma AnnCond1_atomics: | |
| 153 | "\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow> | |
| 154 | interfree_aux(Any, q, Some (AnnCond1 r b a1 a2))" | |
| 155 | apply(simp add: interfree_aux_def) | |
| 156 | by force | |
| 157 | ||
| 158 | lemma AnnCond2_atomics: | |
| 159 | "interfree_aux (Any, q, Some a)\<Longrightarrow> interfree_aux(Any, q, Some (AnnCond2 r b a))" | |
| 160 | by(simp add: interfree_aux_def) | |
| 161 | ||
| 162 | lemma AnnWhile_atomics: "interfree_aux (Any, q, Some a) | |
| 163 | \<Longrightarrow> interfree_aux(Any, q, Some (AnnWhile r b i a))" | |
| 164 | by(simp add: interfree_aux_def) | |
| 165 | ||
| 166 | lemma Annatom_atomics: | |
| 167 |   "\<parallel>- (q \<inter> r) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r {x. True} a))"
 | |
| 168 | by(simp add: interfree_aux_def oghoare_sound) | |
| 169 | ||
| 170 | lemma AnnAwait_atomics: | |
| 171 | "\<parallel>- (q \<inter> (r \<inter> b)) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r b a))" | |
| 172 | by(simp add: interfree_aux_def oghoare_sound) | |
| 173 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32621diff
changeset | 174 | definition interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) \<Rightarrow> bool" where
 | 
| 13020 | 175 | "interfree_swap == \<lambda>(x, xs). \<forall>y\<in>set xs. interfree_aux (com x, post x, com y) | 
| 176 | \<and> interfree_aux(com y, post y, com x)" | |
| 177 | ||
| 178 | lemma interfree_swap_Empty: "interfree_swap (x, [])" | |
| 179 | by(simp add:interfree_swap_def) | |
| 180 | ||
| 181 | lemma interfree_swap_List: | |
| 182 | "\<lbrakk> interfree_aux (com x, post x, com y); | |
| 183 | interfree_aux (com y, post y ,com x); interfree_swap (x, xs) \<rbrakk> | |
| 184 | \<Longrightarrow> interfree_swap (x, y#xs)" | |
| 185 | by(simp add:interfree_swap_def) | |
| 186 | ||
| 187 | lemma interfree_swap_Map: "\<forall>k. i\<le>k \<and> k<j \<longrightarrow> interfree_aux (com x, post x, c k) | |
| 188 | \<and> interfree_aux (c k, Q k, com x) | |
| 15425 | 189 | \<Longrightarrow> interfree_swap (x, map (\<lambda>k. (c k, Q k)) [i..<j])" | 
| 13020 | 190 | by(force simp add: interfree_swap_def less_diff_conv) | 
| 191 | ||
| 192 | lemma interfree_Empty: "interfree []" | |
| 193 | by(simp add:interfree_def) | |
| 194 | ||
| 195 | lemma interfree_List: | |
| 196 | "\<lbrakk> interfree_swap(x, xs); interfree xs \<rbrakk> \<Longrightarrow> interfree (x#xs)" | |
| 197 | apply(simp add:interfree_def interfree_swap_def) | |
| 198 | apply clarify | |
| 199 | apply(case_tac i) | |
| 200 | apply(case_tac j) | |
| 201 | apply simp_all | |
| 202 | apply(case_tac j,simp+) | |
| 203 | done | |
| 204 | ||
| 205 | lemma interfree_Map: | |
| 206 | "(\<forall>i j. a\<le>i \<and> i<b \<and> a\<le>j \<and> j<b \<and> i\<noteq>j \<longrightarrow> interfree_aux (c i, Q i, c j)) | |
| 15425 | 207 | \<Longrightarrow> interfree (map (\<lambda>k. (c k, Q k)) [a..<b])" | 
| 13020 | 208 | by(force simp add: interfree_def less_diff_conv) | 
| 209 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32621diff
changeset | 210 | definition map_ann_hoare :: "(('a ann_com_op * 'a assn) list) \<Rightarrow> bool " ("[\<turnstile>] _" [0] 45) where
 | 
| 13020 | 211 | "[\<turnstile>] Ts == (\<forall>i<length Ts. \<exists>c q. Ts!i=(Some c, q) \<and> \<turnstile> c q)" | 
| 212 | ||
| 213 | lemma MapAnnEmpty: "[\<turnstile>] []" | |
| 214 | by(simp add:map_ann_hoare_def) | |
| 215 | ||
| 216 | lemma MapAnnList: "\<lbrakk> \<turnstile> c q ; [\<turnstile>] xs \<rbrakk> \<Longrightarrow> [\<turnstile>] (Some c,q)#xs" | |
| 217 | apply(simp add:map_ann_hoare_def) | |
| 218 | apply clarify | |
| 219 | apply(case_tac i,simp+) | |
| 220 | done | |
| 221 | ||
| 222 | lemma MapAnnMap: | |
| 15425 | 223 | "\<forall>k. i\<le>k \<and> k<j \<longrightarrow> \<turnstile> (c k) (Q k) \<Longrightarrow> [\<turnstile>] map (\<lambda>k. (Some (c k), Q k)) [i..<j]" | 
| 13020 | 224 | apply(simp add: map_ann_hoare_def less_diff_conv) | 
| 225 | done | |
| 226 | ||
| 227 | lemma ParallelRule:"\<lbrakk> [\<turnstile>] Ts ; interfree Ts \<rbrakk> | |
| 228 |   \<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts!i)))) 
 | |
| 229 | Parallel Ts | |
| 230 |         (\<Inter>i\<in>{i. i<length Ts}. post(Ts!i))"
 | |
| 231 | apply(rule Parallel) | |
| 232 | apply(simp add:map_ann_hoare_def) | |
| 233 | apply simp | |
| 234 | done | |
| 235 | (* | |
| 236 | lemma ParamParallelRule: | |
| 237 | "\<lbrakk> \<forall>k<n. \<turnstile> (c k) (Q k); | |
| 238 | \<forall>k l. k<n \<and> l<n \<and> k\<noteq>l \<longrightarrow> interfree_aux (Some(c k), Q k, Some(c l)) \<rbrakk> | |
| 239 |   \<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<n} . pre(c i)) COBEGIN SCHEME [0\<le>i<n] (c i) (Q i) COEND  (\<Inter>i\<in>{i. i<n} . Q i )"
 | |
| 240 | apply(rule ParallelConseqRule) | |
| 241 | apply simp | |
| 242 | apply clarify | |
| 243 | apply force | |
| 244 | apply(rule ParallelRule) | |
| 245 | apply(rule MapAnnMap) | |
| 246 | apply simp | |
| 247 | apply(rule interfree_Map) | |
| 248 | apply simp | |
| 249 | apply simp | |
| 250 | apply clarify | |
| 251 | apply force | |
| 252 | done | |
| 253 | *) | |
| 254 | ||
| 255 | text {* The following are some useful lemmas and simplification
 | |
| 256 | tactics to control which theorems are used to simplify at each moment, | |
| 257 | so that the original input does not suffer any unexpected | |
| 258 | transformation. *} | |
| 259 | ||
| 260 | lemma Compl_Collect: "-(Collect b) = {x. \<not>(b x)}"
 | |
| 261 | by fast | |
| 262 | lemma list_length: "length []=0 \<and> length (x#xs) = Suc(length xs)" | |
| 263 | by simp | |
| 264 | lemma list_lemmas: "length []=0 \<and> length (x#xs) = Suc(length xs) | |
| 265 | \<and> (x#xs) ! 0=x \<and> (x#xs) ! Suc n = xs ! n" | |
| 266 | by simp | |
| 267 | lemma le_Suc_eq_insert: "{i. i <Suc n} = insert n {i. i< n}"
 | |
| 13187 | 268 | by auto | 
| 13020 | 269 | lemmas primrecdef_list = "pre.simps" "assertions.simps" "atomics.simps" "atom_com.simps" | 
| 270 | lemmas my_simp_list = list_lemmas fst_conv snd_conv | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 271 | not_less0 refl le_Suc_eq_insert Suc_not_Zero Zero_not_Suc nat.inject | 
| 13020 | 272 | Collect_mem_eq ball_simps option.simps primrecdef_list | 
| 273 | lemmas ParallelConseq_list = INTER_def Collect_conj_eq length_map length_upt length_append list_length | |
| 274 | ||
| 275 | ML {*
 | |
| 39159 | 276 | val before_interfree_simp_tac = simp_tac (HOL_basic_ss addsimps [@{thm com.simps}, @{thm post.simps}])
 | 
| 13020 | 277 | |
| 39159 | 278 | val  interfree_simp_tac = asm_simp_tac (HOL_ss addsimps [@{thm split}, @{thm ball_Un}, @{thm ball_empty}] @ @{thms my_simp_list})
 | 
| 13020 | 279 | |
| 39159 | 280 | val ParallelConseq = simp_tac (HOL_basic_ss addsimps @{thms ParallelConseq_list} @ @{thms my_simp_list})
 | 
| 13020 | 281 | *} | 
| 282 | ||
| 283 | text {* The following tactic applies @{text tac} to each conjunct in a
 | |
| 284 | subgoal of the form @{text "A \<Longrightarrow> a1 \<and> a2 \<and> .. \<and> an"}  returning
 | |
| 285 | @{text n} subgoals, one for each conjunct: *}
 | |
| 286 | ||
| 287 | ML {*
 | |
| 288 | fun conjI_Tac tac i st = st |> | |
| 289 | ( (EVERY [rtac conjI i, | |
| 290 | conjI_Tac tac (i+1), | |
| 291 | tac i]) ORELSE (tac i) ) | |
| 292 | *} | |
| 293 | ||
| 294 | ||
| 295 | subsubsection {* Tactic for the generation of the verification conditions *} 
 | |
| 296 | ||
| 297 | text {* The tactic basically uses two subtactics:
 | |
| 298 | ||
| 299 | \begin{description}
 | |
| 300 | ||
| 301 | \item[HoareRuleTac] is called at the level of parallel programs, it | |
| 302 | uses the ParallelTac to solve parallel composition of programs. | |
| 303 | This verification has two parts, namely, (1) all component programs are | |
| 304 |  correct and (2) they are interference free.  @{text HoareRuleTac} is
 | |
| 305 |  also called at the level of atomic regions, i.e.  @{text "\<langle> \<rangle>"} and
 | |
| 306 |  @{text "AWAIT b THEN _ END"}, and at each interference freedom test.
 | |
| 307 | ||
| 308 | \item[AnnHoareRuleTac] is for component programs which | |
| 309 | are annotated programs and so, there are not unknown assertions | |
| 310 | (no need to use the parameter precond, see NOTE). | |
| 311 | ||
| 312 |  NOTE: precond(::bool) informs if the subgoal has the form @{text "\<parallel>- ?p c q"},
 | |
| 313 | in this case we have precond=False and the generated verification | |
| 314 |  condition would have the form @{text "?p \<subseteq> \<dots>"} which can be solved by        
 | |
| 315 |  @{text "rtac subset_refl"}, if True we proceed to simplify it using
 | |
| 316 | the simplification tactics above. | |
| 317 | ||
| 318 | \end{description}
 | |
| 319 | *} | |
| 320 | ||
| 321 | ML {*
 | |
| 322 | ||
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 323 |  fun WlpTac i = (rtac (@{thm SeqRule}) i) THEN (HoareRuleTac false (i+1))
 | 
| 13020 | 324 | and HoareRuleTac precond i st = st |> | 
| 325 | ( (WlpTac i THEN HoareRuleTac precond i) | |
| 326 | ORELSE | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 327 |       (FIRST[rtac (@{thm SkipRule}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 328 |              rtac (@{thm BasicRule}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 329 |              EVERY[rtac (@{thm ParallelConseqRule}) i,
 | 
| 13020 | 330 | ParallelConseq (i+2), | 
| 331 | ParallelTac (i+1), | |
| 332 | ParallelConseq i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 333 |              EVERY[rtac (@{thm CondRule}) i,
 | 
| 13020 | 334 | HoareRuleTac false (i+2), | 
| 335 | HoareRuleTac false (i+1)], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 336 |              EVERY[rtac (@{thm WhileRule}) i,
 | 
| 13020 | 337 | HoareRuleTac true (i+1)], | 
| 338 | K all_tac i ] | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 339 |        THEN (if precond then (K all_tac i) else (rtac (@{thm subset_refl}) i))))
 | 
| 13020 | 340 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 341 | and  AnnWlpTac i = (rtac (@{thm AnnSeq}) i) THEN (AnnHoareRuleTac (i+1))
 | 
| 13020 | 342 | and AnnHoareRuleTac i st = st |> | 
| 343 | ( (AnnWlpTac i THEN AnnHoareRuleTac i ) | |
| 344 | ORELSE | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 345 |       (FIRST[(rtac (@{thm AnnskipRule}) i),
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 346 |              EVERY[rtac (@{thm AnnatomRule}) i,
 | 
| 13020 | 347 | HoareRuleTac true (i+1)], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 348 |              (rtac (@{thm AnnwaitRule}) i),
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 349 |              rtac (@{thm AnnBasic}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 350 |              EVERY[rtac (@{thm AnnCond1}) i,
 | 
| 13020 | 351 | AnnHoareRuleTac (i+3), | 
| 352 | AnnHoareRuleTac (i+1)], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 353 |              EVERY[rtac (@{thm AnnCond2}) i,
 | 
| 13020 | 354 | AnnHoareRuleTac (i+1)], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 355 |              EVERY[rtac (@{thm AnnWhile}) i,
 | 
| 13020 | 356 | AnnHoareRuleTac (i+2)], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 357 |              EVERY[rtac (@{thm AnnAwait}) i,
 | 
| 13020 | 358 | HoareRuleTac true (i+1)], | 
| 359 | K all_tac i])) | |
| 360 | ||
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 361 | and ParallelTac i = EVERY[rtac (@{thm ParallelRule}) i,
 | 
| 13020 | 362 | interfree_Tac (i+1), | 
| 363 | MapAnn_Tac i] | |
| 364 | ||
| 365 | and MapAnn_Tac i st = st |> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 366 |     (FIRST[rtac (@{thm MapAnnEmpty}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 367 |            EVERY[rtac (@{thm MapAnnList}) i,
 | 
| 13020 | 368 | MapAnn_Tac (i+1), | 
| 369 | AnnHoareRuleTac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 370 |            EVERY[rtac (@{thm MapAnnMap}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 371 |                  rtac (@{thm allI}) i,rtac (@{thm impI}) i,
 | 
| 13020 | 372 | AnnHoareRuleTac i]]) | 
| 373 | ||
| 374 | and interfree_swap_Tac i st = st |> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 375 |     (FIRST[rtac (@{thm interfree_swap_Empty}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 376 |            EVERY[rtac (@{thm interfree_swap_List}) i,
 | 
| 13020 | 377 | interfree_swap_Tac (i+2), | 
| 378 | interfree_aux_Tac (i+1), | |
| 379 | interfree_aux_Tac i ], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 380 |            EVERY[rtac (@{thm interfree_swap_Map}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 381 |                  rtac (@{thm allI}) i,rtac (@{thm impI}) i,
 | 
| 13020 | 382 | conjI_Tac (interfree_aux_Tac) i]]) | 
| 383 | ||
| 384 | and interfree_Tac i st = st |> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 385 |    (FIRST[rtac (@{thm interfree_Empty}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 386 |           EVERY[rtac (@{thm interfree_List}) i,
 | 
| 13020 | 387 | interfree_Tac (i+1), | 
| 388 | interfree_swap_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 389 |           EVERY[rtac (@{thm interfree_Map}) i,
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 390 |                 rtac (@{thm allI}) i,rtac (@{thm allI}) i,rtac (@{thm impI}) i,
 | 
| 13020 | 391 | interfree_aux_Tac i ]]) | 
| 392 | ||
| 393 | and interfree_aux_Tac i = (before_interfree_simp_tac i ) THEN | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 394 |         (FIRST[rtac (@{thm interfree_aux_rule1}) i,
 | 
| 13020 | 395 | dest_assertions_Tac i]) | 
| 396 | ||
| 397 | and dest_assertions_Tac i st = st |> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 398 |     (FIRST[EVERY[rtac (@{thm AnnBasic_assertions}) i,
 | 
| 13020 | 399 | dest_atomics_Tac (i+1), | 
| 400 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 401 |            EVERY[rtac (@{thm AnnSeq_assertions}) i,
 | 
| 13020 | 402 | dest_assertions_Tac (i+1), | 
| 403 | dest_assertions_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 404 |            EVERY[rtac (@{thm AnnCond1_assertions}) i,
 | 
| 13020 | 405 | dest_assertions_Tac (i+2), | 
| 406 | dest_assertions_Tac (i+1), | |
| 407 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 408 |            EVERY[rtac (@{thm AnnCond2_assertions}) i,
 | 
| 13020 | 409 | dest_assertions_Tac (i+1), | 
| 410 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 411 |            EVERY[rtac (@{thm AnnWhile_assertions}) i,
 | 
| 13020 | 412 | dest_assertions_Tac (i+2), | 
| 413 | dest_atomics_Tac (i+1), | |
| 414 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 415 |            EVERY[rtac (@{thm AnnAwait_assertions}) i,
 | 
| 13020 | 416 | dest_atomics_Tac (i+1), | 
| 417 | dest_atomics_Tac i], | |
| 418 | dest_atomics_Tac i]) | |
| 419 | ||
| 420 | and dest_atomics_Tac i st = st |> | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 421 |     (FIRST[EVERY[rtac (@{thm AnnBasic_atomics}) i,
 | 
| 13020 | 422 | HoareRuleTac true i], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 423 |            EVERY[rtac (@{thm AnnSeq_atomics}) i,
 | 
| 13020 | 424 | dest_atomics_Tac (i+1), | 
| 425 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 426 |            EVERY[rtac (@{thm AnnCond1_atomics}) i,
 | 
| 13020 | 427 | dest_atomics_Tac (i+1), | 
| 428 | dest_atomics_Tac i], | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 429 |            EVERY[rtac (@{thm AnnCond2_atomics}) i,
 | 
| 13020 | 430 | dest_atomics_Tac i], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 431 |            EVERY[rtac (@{thm AnnWhile_atomics}) i,
 | 
| 13020 | 432 | dest_atomics_Tac i], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 433 |            EVERY[rtac (@{thm Annatom_atomics}) i,
 | 
| 13020 | 434 | HoareRuleTac true i], | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 435 |            EVERY[rtac (@{thm AnnAwait_atomics}) i,
 | 
| 13020 | 436 | HoareRuleTac true i], | 
| 437 | K all_tac i]) | |
| 438 | *} | |
| 439 | ||
| 440 | ||
| 441 | text {* The final tactic is given the name @{text oghoare}: *}
 | |
| 442 | ||
| 443 | ML {* 
 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 444 | val oghoare_tac = SUBGOAL (fn (_, i) => | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 445 | (HoareRuleTac true i)) | 
| 13020 | 446 | *} | 
| 447 | ||
| 448 | text {* Notice that the tactic for parallel programs @{text
 | |
| 449 | "oghoare_tac"} is initially invoked with the value @{text true} for
 | |
| 450 | the parameter @{text precond}.
 | |
| 451 | ||
| 452 | Parts of the tactic can be also individually used to generate the | |
| 453 | verification conditions for annotated sequential programs and to | |
| 454 | generate verification conditions out of interference freedom tests: *} | |
| 455 | ||
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 456 | ML {* val annhoare_tac = SUBGOAL (fn (_, i) =>
 | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 457 | (AnnHoareRuleTac i)) | 
| 13020 | 458 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 459 | val interfree_aux_tac = SUBGOAL (fn (_, i) => | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
21588diff
changeset | 460 | (interfree_aux_Tac i)) | 
| 13020 | 461 | *} | 
| 462 | ||
| 463 | text {* The so defined ML tactics are then ``exported'' to be used in
 | |
| 464 | Isabelle proofs. *} | |
| 465 | ||
| 466 | method_setup oghoare = {*
 | |
| 30549 | 467 | Scan.succeed (K (SIMPLE_METHOD' oghoare_tac)) *} | 
| 13020 | 468 | "verification condition generator for the oghoare logic" | 
| 469 | ||
| 470 | method_setup annhoare = {*
 | |
| 30549 | 471 | Scan.succeed (K (SIMPLE_METHOD' annhoare_tac)) *} | 
| 13020 | 472 | "verification condition generator for the ann_hoare logic" | 
| 473 | ||
| 474 | method_setup interfree_aux = {*
 | |
| 30549 | 475 | Scan.succeed (K (SIMPLE_METHOD' interfree_aux_tac)) *} | 
| 13020 | 476 | "verification condition generator for interference freedom tests" | 
| 477 | ||
| 478 | text {* Tactics useful for dealing with the generated verification conditions: *}
 | |
| 479 | ||
| 480 | method_setup conjI_tac = {*
 | |
| 30549 | 481 | Scan.succeed (K (SIMPLE_METHOD' (conjI_Tac (K all_tac)))) *} | 
| 13020 | 482 | "verification condition generator for interference freedom tests" | 
| 483 | ||
| 484 | ML {*
 | |
| 485 | fun disjE_Tac tac i st = st |> | |
| 486 | ( (EVERY [etac disjE i, | |
| 487 | disjE_Tac tac (i+1), | |
| 488 | tac i]) ORELSE (tac i) ) | |
| 489 | *} | |
| 490 | ||
| 491 | method_setup disjE_tac = {*
 | |
| 30549 | 492 | Scan.succeed (K (SIMPLE_METHOD' (disjE_Tac (K all_tac)))) *} | 
| 13020 | 493 | "verification condition generator for interference freedom tests" | 
| 494 | ||
| 13187 | 495 | end |