| author | Christian Urban <urbanc@in.tum.de> | 
| Tue, 19 Oct 2010 15:13:35 +0100 | |
| changeset 40034 | 767a28027b68 | 
| parent 35762 | af3ff2ba4c54 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 35762 | 1 | (* Title: ZF/QPair.thy | 
| 1478 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 3 | Copyright 1993 University of Cambridge | 
| 4 | ||
| 13285 | 5 | Many proofs are borrowed from pair.thy and sum.thy | 
| 6 | ||
| 7 | Do we EVER have rank(a) < rank(<a;b>) ? Perhaps if the latter rank | |
| 35762 | 8 | is not a limit ordinal? | 
| 0 | 9 | *) | 
| 10 | ||
| 13356 | 11 | header{*Quine-Inspired Ordered Pairs and Disjoint Sums*}
 | 
| 12 | ||
| 16417 | 13 | theory QPair imports Sum func begin | 
| 13285 | 14 | |
| 13356 | 15 | text{*For non-well-founded data
 | 
| 16 | structures in ZF. Does not precisely follow Quine's construction. Thanks | |
| 17 | to Thomas Forster for suggesting this approach! | |
| 18 | ||
| 19 | W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers, | |
| 20 | 1966. | |
| 21 | *} | |
| 22 | ||
| 24893 | 23 | definition | 
| 24 |   QPair     :: "[i, i] => i"                      ("<(_;/ _)>")  where
 | |
| 13285 | 25 | "<a;b> == a+b" | 
| 3923 | 26 | |
| 24893 | 27 | definition | 
| 28 | qfst :: "i => i" where | |
| 13285 | 29 | "qfst(p) == THE a. EX b. p=<a;b>" | 
| 30 | ||
| 24893 | 31 | definition | 
| 32 | qsnd :: "i => i" where | |
| 13285 | 33 | "qsnd(p) == THE b. EX a. p=<a;b>" | 
| 34 | ||
| 24893 | 35 | definition | 
| 36 |   qsplit    :: "[[i, i] => 'a, i] => 'a::{}"  (*for pattern-matching*)  where
 | |
| 13285 | 37 | "qsplit(c,p) == c(qfst(p), qsnd(p))" | 
| 0 | 38 | |
| 24893 | 39 | definition | 
| 40 | qconverse :: "i => i" where | |
| 13285 | 41 |     "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
 | 
| 42 | ||
| 24893 | 43 | definition | 
| 44 | QSigma :: "[i, i => i] => i" where | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13544diff
changeset | 45 |     "QSigma(A,B)  ==  \<Union>x\<in>A. \<Union>y\<in>B(x). {<x;y>}"
 | 
| 0 | 46 | |
| 929 
137035296ad6
Moved declarations of @QSUM and <*> to a syntax section.
 lcp parents: 
753diff
changeset | 47 | syntax | 
| 22808 | 48 |   "_QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
 | 
| 0 | 49 | translations | 
| 24893 | 50 | "QSUM x:A. B" => "CONST QSigma(A, %x. B)" | 
| 22808 | 51 | |
| 52 | abbreviation | |
| 53 | qprod (infixr "<*>" 80) where | |
| 54 | "A <*> B == QSigma(A, %_. B)" | |
| 0 | 55 | |
| 24893 | 56 | definition | 
| 57 | qsum :: "[i,i]=>i" (infixr "<+>" 65) where | |
| 13285 | 58 |     "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
 | 
| 3923 | 59 | |
| 24893 | 60 | definition | 
| 61 | QInl :: "i=>i" where | |
| 13285 | 62 | "QInl(a) == <0;a>" | 
| 63 | ||
| 24893 | 64 | definition | 
| 65 | QInr :: "i=>i" where | |
| 13285 | 66 | "QInr(b) == <1;b>" | 
| 67 | ||
| 24893 | 68 | definition | 
| 69 | qcase :: "[i=>i, i=>i, i]=>i" where | |
| 13285 | 70 | "qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))" | 
| 71 | ||
| 72 | ||
| 13356 | 73 | subsection{*Quine ordered pairing*}
 | 
| 13285 | 74 | |
| 75 | (** Lemmas for showing that <a;b> uniquely determines a and b **) | |
| 76 | ||
| 77 | lemma QPair_empty [simp]: "<0;0> = 0" | |
| 78 | by (simp add: QPair_def) | |
| 79 | ||
| 80 | lemma QPair_iff [simp]: "<a;b> = <c;d> <-> a=c & b=d" | |
| 81 | apply (simp add: QPair_def) | |
| 82 | apply (rule sum_equal_iff) | |
| 83 | done | |
| 84 | ||
| 85 | lemmas QPair_inject = QPair_iff [THEN iffD1, THEN conjE, standard, elim!] | |
| 86 | ||
| 87 | lemma QPair_inject1: "<a;b> = <c;d> ==> a=c" | |
| 88 | by blast | |
| 89 | ||
| 90 | lemma QPair_inject2: "<a;b> = <c;d> ==> b=d" | |
| 91 | by blast | |
| 92 | ||
| 93 | ||
| 13356 | 94 | subsubsection{*QSigma: Disjoint union of a family of sets
 | 
| 95 | Generalizes Cartesian product*} | |
| 13285 | 96 | |
| 97 | lemma QSigmaI [intro!]: "[| a:A; b:B(a) |] ==> <a;b> : QSigma(A,B)" | |
| 98 | by (simp add: QSigma_def) | |
| 99 | ||
| 100 | ||
| 101 | (** Elimination rules for <a;b>:A*B -- introducing no eigenvariables **) | |
| 102 | ||
| 103 | lemma QSigmaE [elim!]: | |
| 104 | "[| c: QSigma(A,B); | |
| 105 | !!x y.[| x:A; y:B(x); c=<x;y> |] ==> P | |
| 106 | |] ==> P" | |
| 13356 | 107 | by (simp add: QSigma_def, blast) | 
| 13285 | 108 | |
| 109 | lemma QSigmaE2 [elim!]: | |
| 110 | "[| <a;b>: QSigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P" | |
| 111 | by (simp add: QSigma_def) | |
| 112 | ||
| 113 | lemma QSigmaD1: "<a;b> : QSigma(A,B) ==> a : A" | |
| 114 | by blast | |
| 115 | ||
| 116 | lemma QSigmaD2: "<a;b> : QSigma(A,B) ==> b : B(a)" | |
| 117 | by blast | |
| 118 | ||
| 119 | lemma QSigma_cong: | |
| 120 | "[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> | |
| 121 | QSigma(A,B) = QSigma(A',B')" | |
| 122 | by (simp add: QSigma_def) | |
| 123 | ||
| 124 | lemma QSigma_empty1 [simp]: "QSigma(0,B) = 0" | |
| 125 | by blast | |
| 126 | ||
| 127 | lemma QSigma_empty2 [simp]: "A <*> 0 = 0" | |
| 128 | by blast | |
| 129 | ||
| 130 | ||
| 13356 | 131 | subsubsection{*Projections: qfst, qsnd*}
 | 
| 13285 | 132 | |
| 133 | lemma qfst_conv [simp]: "qfst(<a;b>) = a" | |
| 13544 | 134 | by (simp add: qfst_def) | 
| 13285 | 135 | |
| 136 | lemma qsnd_conv [simp]: "qsnd(<a;b>) = b" | |
| 13544 | 137 | by (simp add: qsnd_def) | 
| 13285 | 138 | |
| 139 | lemma qfst_type [TC]: "p:QSigma(A,B) ==> qfst(p) : A" | |
| 140 | by auto | |
| 141 | ||
| 142 | lemma qsnd_type [TC]: "p:QSigma(A,B) ==> qsnd(p) : B(qfst(p))" | |
| 143 | by auto | |
| 144 | ||
| 145 | lemma QPair_qfst_qsnd_eq: "a: QSigma(A,B) ==> <qfst(a); qsnd(a)> = a" | |
| 146 | by auto | |
| 147 | ||
| 148 | ||
| 13356 | 149 | subsubsection{*Eliminator: qsplit*}
 | 
| 13285 | 150 | |
| 151 | (*A META-equality, so that it applies to higher types as well...*) | |
| 152 | lemma qsplit [simp]: "qsplit(%x y. c(x,y), <a;b>) == c(a,b)" | |
| 153 | by (simp add: qsplit_def) | |
| 154 | ||
| 155 | ||
| 156 | lemma qsplit_type [elim!]: | |
| 157 | "[| p:QSigma(A,B); | |
| 158 | !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x;y>) | |
| 159 | |] ==> qsplit(%x y. c(x,y), p) : C(p)" | |
| 160 | by auto | |
| 161 | ||
| 162 | lemma expand_qsplit: | |
| 163 | "u: A<*>B ==> R(qsplit(c,u)) <-> (ALL x:A. ALL y:B. u = <x;y> --> R(c(x,y)))" | |
| 164 | apply (simp add: qsplit_def, auto) | |
| 165 | done | |
| 166 | ||
| 167 | ||
| 13356 | 168 | subsubsection{*qsplit for predicates: result type o*}
 | 
| 13285 | 169 | |
| 170 | lemma qsplitI: "R(a,b) ==> qsplit(R, <a;b>)" | |
| 171 | by (simp add: qsplit_def) | |
| 172 | ||
| 173 | ||
| 174 | lemma qsplitE: | |
| 175 | "[| qsplit(R,z); z:QSigma(A,B); | |
| 176 | !!x y. [| z = <x;y>; R(x,y) |] ==> P | |
| 177 | |] ==> P" | |
| 13356 | 178 | by (simp add: qsplit_def, auto) | 
| 13285 | 179 | |
| 180 | lemma qsplitD: "qsplit(R,<a;b>) ==> R(a,b)" | |
| 181 | by (simp add: qsplit_def) | |
| 182 | ||
| 183 | ||
| 13356 | 184 | subsubsection{*qconverse*}
 | 
| 13285 | 185 | |
| 186 | lemma qconverseI [intro!]: "<a;b>:r ==> <b;a>:qconverse(r)" | |
| 187 | by (simp add: qconverse_def, blast) | |
| 188 | ||
| 189 | lemma qconverseD [elim!]: "<a;b> : qconverse(r) ==> <b;a> : r" | |
| 190 | by (simp add: qconverse_def, blast) | |
| 191 | ||
| 192 | lemma qconverseE [elim!]: | |
| 193 | "[| yx : qconverse(r); | |
| 194 | !!x y. [| yx=<y;x>; <x;y>:r |] ==> P | |
| 195 | |] ==> P" | |
| 13356 | 196 | by (simp add: qconverse_def, blast) | 
| 13285 | 197 | |
| 198 | lemma qconverse_qconverse: "r<=QSigma(A,B) ==> qconverse(qconverse(r)) = r" | |
| 199 | by blast | |
| 200 | ||
| 201 | lemma qconverse_type: "r <= A <*> B ==> qconverse(r) <= B <*> A" | |
| 202 | by blast | |
| 203 | ||
| 204 | lemma qconverse_prod: "qconverse(A <*> B) = B <*> A" | |
| 205 | by blast | |
| 206 | ||
| 207 | lemma qconverse_empty: "qconverse(0) = 0" | |
| 208 | by blast | |
| 209 | ||
| 210 | ||
| 13356 | 211 | subsection{*The Quine-inspired notion of disjoint sum*}
 | 
| 13285 | 212 | |
| 213 | lemmas qsum_defs = qsum_def QInl_def QInr_def qcase_def | |
| 214 | ||
| 215 | (** Introduction rules for the injections **) | |
| 216 | ||
| 217 | lemma QInlI [intro!]: "a : A ==> QInl(a) : A <+> B" | |
| 218 | by (simp add: qsum_defs, blast) | |
| 1097 
01379c46ad2d
Changed definitions so that qsplit is now defined in terms of
 lcp parents: 
929diff
changeset | 219 | |
| 13285 | 220 | lemma QInrI [intro!]: "b : B ==> QInr(b) : A <+> B" | 
| 221 | by (simp add: qsum_defs, blast) | |
| 222 | ||
| 223 | (** Elimination rules **) | |
| 224 | ||
| 225 | lemma qsumE [elim!]: | |
| 226 | "[| u: A <+> B; | |
| 227 | !!x. [| x:A; u=QInl(x) |] ==> P; | |
| 228 | !!y. [| y:B; u=QInr(y) |] ==> P | |
| 229 | |] ==> P" | |
| 13356 | 230 | by (simp add: qsum_defs, blast) | 
| 13285 | 231 | |
| 232 | ||
| 233 | (** Injection and freeness equivalences, for rewriting **) | |
| 234 | ||
| 235 | lemma QInl_iff [iff]: "QInl(a)=QInl(b) <-> a=b" | |
| 236 | by (simp add: qsum_defs ) | |
| 237 | ||
| 238 | lemma QInr_iff [iff]: "QInr(a)=QInr(b) <-> a=b" | |
| 239 | by (simp add: qsum_defs ) | |
| 240 | ||
| 13823 | 241 | lemma QInl_QInr_iff [simp]: "QInl(a)=QInr(b) <-> False" | 
| 13285 | 242 | by (simp add: qsum_defs ) | 
| 243 | ||
| 13823 | 244 | lemma QInr_QInl_iff [simp]: "QInr(b)=QInl(a) <-> False" | 
| 13285 | 245 | by (simp add: qsum_defs ) | 
| 246 | ||
| 247 | lemma qsum_empty [simp]: "0<+>0 = 0" | |
| 248 | by (simp add: qsum_defs ) | |
| 249 | ||
| 250 | (*Injection and freeness rules*) | |
| 251 | ||
| 252 | lemmas QInl_inject = QInl_iff [THEN iffD1, standard] | |
| 253 | lemmas QInr_inject = QInr_iff [THEN iffD1, standard] | |
| 13823 | 254 | lemmas QInl_neq_QInr = QInl_QInr_iff [THEN iffD1, THEN FalseE, elim!] | 
| 255 | lemmas QInr_neq_QInl = QInr_QInl_iff [THEN iffD1, THEN FalseE, elim!] | |
| 13285 | 256 | |
| 257 | lemma QInlD: "QInl(a): A<+>B ==> a: A" | |
| 258 | by blast | |
| 259 | ||
| 260 | lemma QInrD: "QInr(b): A<+>B ==> b: B" | |
| 261 | by blast | |
| 262 | ||
| 263 | (** <+> is itself injective... who cares?? **) | |
| 264 | ||
| 265 | lemma qsum_iff: | |
| 266 | "u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))" | |
| 13356 | 267 | by blast | 
| 13285 | 268 | |
| 269 | lemma qsum_subset_iff: "A <+> B <= C <+> D <-> A<=C & B<=D" | |
| 270 | by blast | |
| 271 | ||
| 272 | lemma qsum_equal_iff: "A <+> B = C <+> D <-> A=C & B=D" | |
| 273 | apply (simp (no_asm) add: extension qsum_subset_iff) | |
| 274 | apply blast | |
| 275 | done | |
| 276 | ||
| 13356 | 277 | subsubsection{*Eliminator -- qcase*}
 | 
| 13285 | 278 | |
| 279 | lemma qcase_QInl [simp]: "qcase(c, d, QInl(a)) = c(a)" | |
| 280 | by (simp add: qsum_defs ) | |
| 281 | ||
| 282 | ||
| 283 | lemma qcase_QInr [simp]: "qcase(c, d, QInr(b)) = d(b)" | |
| 284 | by (simp add: qsum_defs ) | |
| 285 | ||
| 286 | lemma qcase_type: | |
| 287 | "[| u: A <+> B; | |
| 288 | !!x. x: A ==> c(x): C(QInl(x)); | |
| 289 | !!y. y: B ==> d(y): C(QInr(y)) | |
| 290 | |] ==> qcase(c,d,u) : C(u)" | |
| 13784 | 291 | by (simp add: qsum_defs, auto) | 
| 13285 | 292 | |
| 293 | (** Rules for the Part primitive **) | |
| 294 | ||
| 295 | lemma Part_QInl: "Part(A <+> B,QInl) = {QInl(x). x: A}"
 | |
| 296 | by blast | |
| 297 | ||
| 298 | lemma Part_QInr: "Part(A <+> B,QInr) = {QInr(y). y: B}"
 | |
| 299 | by blast | |
| 300 | ||
| 301 | lemma Part_QInr2: "Part(A <+> B, %x. QInr(h(x))) = {QInr(y). y: Part(B,h)}"
 | |
| 302 | by blast | |
| 0 | 303 | |
| 13285 | 304 | lemma Part_qsum_equality: "C <= A <+> B ==> Part(C,QInl) Un Part(C,QInr) = C" | 
| 305 | by blast | |
| 306 | ||
| 307 | ||
| 13356 | 308 | subsubsection{*Monotonicity*}
 | 
| 13285 | 309 | |
| 310 | lemma QPair_mono: "[| a<=c; b<=d |] ==> <a;b> <= <c;d>" | |
| 311 | by (simp add: QPair_def sum_mono) | |
| 312 | ||
| 313 | lemma QSigma_mono [rule_format]: | |
| 314 | "[| A<=C; ALL x:A. B(x) <= D(x) |] ==> QSigma(A,B) <= QSigma(C,D)" | |
| 315 | by blast | |
| 316 | ||
| 317 | lemma QInl_mono: "a<=b ==> QInl(a) <= QInl(b)" | |
| 318 | by (simp add: QInl_def subset_refl [THEN QPair_mono]) | |
| 319 | ||
| 320 | lemma QInr_mono: "a<=b ==> QInr(a) <= QInr(b)" | |
| 321 | by (simp add: QInr_def subset_refl [THEN QPair_mono]) | |
| 322 | ||
| 323 | lemma qsum_mono: "[| A<=C; B<=D |] ==> A <+> B <= C <+> D" | |
| 324 | by blast | |
| 325 | ||
| 0 | 326 | end |