| author | Lars Hupel <lars.hupel@mytum.de> | 
| Tue, 11 Jul 2017 17:22:33 +0200 | |
| changeset 66270 | 403d84138c5c | 
| parent 65823 | 4f353215888a | 
| child 66447 | a1f5c5c26fa6 | 
| permissions | -rw-r--r-- | 
| 65040 | 1 | section\<open>The Great Picard Theorem and its Applications\<close> | 
| 2 | ||
| 3 | text\<open>Ported from HOL Light (cauchy.ml) by L C Paulson, 2017\<close> | |
| 4 | ||
| 5 | theory Great_Picard | |
| 6 | imports Conformal_Mappings Further_Topology | |
| 7 | ||
| 8 | begin | |
| 9 | ||
| 10 | subsection\<open>Schottky's theorem\<close> | |
| 11 | ||
| 12 | lemma Schottky_lemma0: | |
| 13 | assumes holf: "f holomorphic_on S" and cons: "contractible S" and "a \<in> S" | |
| 14 | and f: "\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 1 \<and> f z \<noteq> -1" | |
| 15 | obtains g where "g holomorphic_on S" | |
| 16 | "norm(g a) \<le> 1 + norm(f a) / 3" | |
| 17 | "\<And>z. z \<in> S \<Longrightarrow> f z = cos(of_real pi * g z)" | |
| 18 | proof - | |
| 19 | obtain g where holg: "g holomorphic_on S" and g: "norm(g a) \<le> pi + norm(f a)" | |
| 20 | and f_eq_cos: "\<And>z. z \<in> S \<Longrightarrow> f z = cos(g z)" | |
| 21 | using contractible_imp_holomorphic_arccos_bounded [OF assms] | |
| 22 | by blast | |
| 23 | show ?thesis | |
| 24 | proof | |
| 25 | show "(\<lambda>z. g z / pi) holomorphic_on S" | |
| 26 | by (auto intro: holomorphic_intros holg) | |
| 27 | have "3 \<le> pi" | |
| 28 | using pi_approx by force | |
| 29 | have "3 * norm(g a) \<le> 3 * (pi + norm(f a))" | |
| 30 | using g by auto | |
| 31 | also have "... \<le> pi * 3 + pi * cmod (f a)" | |
| 32 | using \<open>3 \<le> pi\<close> by (simp add: mult_right_mono algebra_simps) | |
| 33 | finally show "cmod (g a / complex_of_real pi) \<le> 1 + cmod (f a) / 3" | |
| 34 | by (simp add: field_simps norm_divide) | |
| 35 | show "\<And>z. z \<in> S \<Longrightarrow> f z = cos (complex_of_real pi * (g z / complex_of_real pi))" | |
| 36 | by (simp add: f_eq_cos) | |
| 37 | qed | |
| 38 | qed | |
| 39 | ||
| 40 | ||
| 41 | lemma Schottky_lemma1: | |
| 42 | fixes n::nat | |
| 43 | assumes "0 < n" | |
| 44 | shows "0 < n + sqrt(real n ^ 2 - 1)" | |
| 45 | proof - | |
| 46 | have "(n-1)^2 \<le> n^2 - 1" | |
| 47 | using assms by (simp add: algebra_simps power2_eq_square) | |
| 48 | then have "real (n - 1) \<le> sqrt (real (n\<^sup>2 - 1))" | |
| 49 | by (metis Extended_Nonnegative_Real.of_nat_le_iff of_nat_power real_le_rsqrt) | |
| 50 | then have "n-1 \<le> sqrt(real n ^ 2 - 1)" | |
| 51 | by (simp add: Suc_leI assms of_nat_diff) | |
| 52 | then show ?thesis | |
| 53 | using assms by linarith | |
| 54 | qed | |
| 55 | ||
| 56 | ||
| 57 | lemma Schottky_lemma2: | |
| 58 | fixes x::real | |
| 59 | assumes "0 \<le> x" | |
| 60 | obtains n where "0 < n" "\<bar>x - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" | |
| 61 | proof - | |
| 62 | obtain n0::nat where "0 < n0" "ln(n0 + sqrt(real n0 ^ 2 - 1)) / pi \<le> x" | |
| 63 | proof | |
| 64 | show "ln(real 1 + sqrt(real 1 ^ 2 - 1))/pi \<le> x" | |
| 65 | by (auto simp: assms) | |
| 66 | qed auto | |
| 67 | moreover | |
| 68 | obtain M::nat where "\<And>n. \<lbrakk>0 < n; ln(n + sqrt(real n ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> n \<le> M" | |
| 69 | proof | |
| 70 | fix n::nat | |
| 71 | assume "0 < n" "ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \<le> x" | |
| 72 | then have "ln (n + sqrt ((real n)\<^sup>2 - 1)) \<le> x * pi" | |
| 73 | by (simp add: divide_simps) | |
| 74 | then have *: "exp (ln (n + sqrt ((real n)\<^sup>2 - 1))) \<le> exp (x * pi)" | |
| 75 | by blast | |
| 76 | have 0: "0 \<le> sqrt ((real n)\<^sup>2 - 1)" | |
| 77 | using \<open>0 < n\<close> by auto | |
| 78 | have "n + sqrt ((real n)\<^sup>2 - 1) = exp (ln (n + sqrt ((real n)\<^sup>2 - 1)))" | |
| 79 | by (simp add: Suc_leI \<open>0 < n\<close> add_pos_nonneg real_of_nat_ge_one_iff) | |
| 80 | also have "... \<le> exp (x * pi)" | |
| 81 | using "*" by blast | |
| 82 | finally have "real n \<le> exp (x * pi)" | |
| 83 | using 0 by linarith | |
| 84 | then show "n \<le> nat (ceiling (exp(x * pi)))" | |
| 85 | by linarith | |
| 86 | qed | |
| 87 | ultimately obtain n where | |
| 88 | "0 < n" and le_x: "ln(n + sqrt(real n ^ 2 - 1)) / pi \<le> x" | |
| 89 | and le_n: "\<And>k. \<lbrakk>0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> k \<le> n" | |
| 90 | using bounded_Max_nat [of "\<lambda>n. 0<n \<and> ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \<le> x"] by metis | |
| 91 | define a where "a \<equiv> ln(n + sqrt(real n ^ 2 - 1)) / pi" | |
| 92 | define b where "b \<equiv> ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / pi" | |
| 93 | have le_xa: "a \<le> x" | |
| 94 | and le_na: "\<And>k. \<lbrakk>0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> k \<le> n" | |
| 95 | using le_x le_n by (auto simp: a_def) | |
| 96 | moreover have "x < b" | |
| 97 | using le_n [of "Suc n"] by (force simp: b_def) | |
| 98 | moreover have "b - a < 1" | |
| 99 | proof - | |
| 100 | have "ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) - ln (real n + sqrt ((real n)\<^sup>2 - 1)) = | |
| 101 | ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1)))" | |
| 102 | by (simp add: \<open>0 < n\<close> Schottky_lemma1 add_pos_nonneg ln_div [symmetric]) | |
| 103 | also have "... \<le> 3" | |
| 104 | proof (cases "n = 1") | |
| 105 | case True | |
| 106 | have "sqrt 3 \<le> 2" | |
| 107 | by (simp add: real_le_lsqrt) | |
| 108 | then have "(2 + sqrt 3) \<le> 4" | |
| 109 | by simp | |
| 110 | also have "... \<le> exp 3" | |
| 111 | using exp_ge_add_one_self [of "3::real"] by simp | |
| 112 | finally have "ln (2 + sqrt 3) \<le> 3" | |
| 113 | by (metis add_nonneg_nonneg add_pos_nonneg dbl_def dbl_inc_def dbl_inc_simps(3) | |
| 114 | dbl_simps(3) exp_gt_zero ln_exp ln_le_cancel_iff real_sqrt_ge_0_iff zero_le_one zero_less_one) | |
| 115 | then show ?thesis | |
| 116 | by (simp add: True) | |
| 117 | next | |
| 118 | case False with \<open>0 < n\<close> have "1 < n" "2 \<le> n" | |
| 119 | by linarith+ | |
| 120 | then have 1: "1 \<le> real n * real n" | |
| 121 | by (metis less_imp_le_nat one_le_power power2_eq_square real_of_nat_ge_one_iff) | |
| 122 | have *: "4 + (m+2) * 2 \<le> (m+2) * ((m+2) * 3)" for m::nat | |
| 123 | by simp | |
| 124 | have "4 + n * 2 \<le> n * (n * 3)" | |
| 125 | using * [of "n-2"] \<open>2 \<le> n\<close> | |
| 126 | by (metis le_add_diff_inverse2) | |
| 127 | then have **: "4 + real n * 2 \<le> real n * (real n * 3)" | |
| 128 | by (metis (mono_tags, hide_lams) of_nat_le_iff of_nat_add of_nat_mult of_nat_numeral) | |
| 129 | have "sqrt ((1 + real n)\<^sup>2 - 1) \<le> 2 * sqrt ((real n)\<^sup>2 - 1)" | |
| 130 | by (auto simp: real_le_lsqrt power2_eq_square algebra_simps 1 **) | |
| 131 | then | |
| 132 | have "((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \<le> 2" | |
| 133 | using Schottky_lemma1 \<open>0 < n\<close> by (simp add: divide_simps) | |
| 134 | then have "ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \<le> ln 2" | |
| 135 | apply (subst ln_le_cancel_iff) | |
| 136 | using Schottky_lemma1 \<open>0 < n\<close> by auto (force simp: divide_simps) | |
| 137 | also have "... \<le> 3" | |
| 138 | using ln_add_one_self_le_self [of 1] by auto | |
| 139 | finally show ?thesis . | |
| 140 | qed | |
| 141 | also have "... < pi" | |
| 142 | using pi_approx by simp | |
| 143 | finally show ?thesis | |
| 144 | by (simp add: a_def b_def divide_simps) | |
| 145 | qed | |
| 146 | ultimately have "\<bar>x - a\<bar> < 1/2 \<or> \<bar>x - b\<bar> < 1/2" | |
| 147 | by (auto simp: abs_if) | |
| 148 | then show thesis | |
| 149 | proof | |
| 150 | assume "\<bar>x - a\<bar> < 1 / 2" | |
| 151 | then show ?thesis | |
| 152 | by (rule_tac n=n in that) (auto simp: a_def \<open>0 < n\<close>) | |
| 153 | next | |
| 154 | assume "\<bar>x - b\<bar> < 1 / 2" | |
| 155 | then show ?thesis | |
| 156 | by (rule_tac n="Suc n" in that) (auto simp: b_def \<open>0 < n\<close>) | |
| 157 | qed | |
| 158 | qed | |
| 159 | ||
| 160 | ||
| 161 | lemma Schottky_lemma3: | |
| 162 | fixes z::complex | |
| 163 |   assumes "z \<in> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)})
 | |
| 164 |              \<union> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})"
 | |
| 165 | shows "cos(pi * cos(pi * z)) = 1 \<or> cos(pi * cos(pi * z)) = -1" | |
| 166 | proof - | |
| 167 | have sqrt2 [simp]: "complex_of_real (sqrt x) * complex_of_real (sqrt x) = x" if "x \<ge> 0" for x::real | |
| 168 | by (metis abs_of_nonneg of_real_mult real_sqrt_mult_self that) | |
| 169 | have 1: "\<exists>k. exp (\<i> * (of_int m * complex_of_real pi) - | |
| 170 | (ln (real n + sqrt ((real n)\<^sup>2 - 1)))) + | |
| 171 | inverse | |
| 172 | (exp (\<i> * (of_int m * complex_of_real pi) - | |
| 173 | (ln (real n + sqrt ((real n)\<^sup>2 - 1))))) = of_int k * 2" | |
| 174 | if "n > 0" for m n | |
| 175 | proof - | |
| 176 | have eeq: "e \<noteq> 0 \<Longrightarrow> e + inverse e = n*2 \<longleftrightarrow> inverse e^2 - 2 * n*inverse e + 1 = 0" for n e::complex | |
| 177 | by (auto simp: field_simps power2_eq_square) | |
| 178 | have [simp]: "1 \<le> real n * real n" | |
| 179 | by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc one_le_power power2_eq_square that) | |
| 180 | show ?thesis | |
| 181 | apply (simp add: eeq) | |
| 182 | using Schottky_lemma1 [OF that] | |
| 183 | apply (auto simp: eeq exp_diff exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real) | |
| 184 | apply (rule_tac x="int n" in exI) | |
| 185 | apply (auto simp: power2_eq_square algebra_simps) | |
| 186 | apply (rule_tac x="- int n" in exI) | |
| 187 | apply (auto simp: power2_eq_square algebra_simps) | |
| 188 | done | |
| 189 | qed | |
| 190 | have 2: "\<exists>k. exp (\<i> * (of_int m * complex_of_real pi) + | |
| 191 | (ln (real n + sqrt ((real n)\<^sup>2 - 1)))) + | |
| 192 | inverse | |
| 193 | (exp (\<i> * (of_int m * complex_of_real pi) + | |
| 194 | (ln (real n + sqrt ((real n)\<^sup>2 - 1))))) = of_int k * 2" | |
| 195 | if "n > 0" for m n | |
| 196 | proof - | |
| 197 | have eeq: "e \<noteq> 0 \<Longrightarrow> e + inverse e = n*2 \<longleftrightarrow> e^2 - 2 * n*e + 1 = 0" for n e::complex | |
| 198 | by (auto simp: field_simps power2_eq_square) | |
| 199 | have [simp]: "1 \<le> real n * real n" | |
| 200 | by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc one_le_power power2_eq_square that) | |
| 201 | show ?thesis | |
| 202 | apply (simp add: eeq) | |
| 203 | using Schottky_lemma1 [OF that] | |
| 204 | apply (auto simp: exp_add exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real) | |
| 205 | apply (rule_tac x="int n" in exI) | |
| 206 | apply (auto simp: power2_eq_square algebra_simps) | |
| 207 | apply (rule_tac x="- int n" in exI) | |
| 208 | apply (auto simp: power2_eq_square algebra_simps) | |
| 209 | done | |
| 210 | qed | |
| 211 | have "\<exists>x. cos (complex_of_real pi * z) = of_int x" | |
| 212 | using assms | |
| 213 | apply safe | |
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 214 | apply (auto simp: Ints_def cos_exp_eq exp_minus Complex_eq) | 
| 65040 | 215 | apply (auto simp: algebra_simps dest: 1 2) | 
| 216 | done | |
| 217 | then have "sin(pi * cos(pi * z)) ^ 2 = 0" | |
| 218 | by (simp add: Complex_Transcendental.sin_eq_0) | |
| 219 | then have "1 - cos(pi * cos(pi * z)) ^ 2 = 0" | |
| 220 | by (simp add: sin_squared_eq) | |
| 221 | then show ?thesis | |
| 222 | using power2_eq_1_iff by auto | |
| 223 | qed | |
| 224 | ||
| 225 | ||
| 226 | theorem Schottky: | |
| 227 | assumes holf: "f holomorphic_on cball 0 1" | |
| 228 | and nof0: "norm(f 0) \<le> r" | |
| 229 | and not01: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> \<not>(f z = 0 \<or> f z = 1)" | |
| 230 | and "0 < t" "t < 1" "norm z \<le> t" | |
| 231 | shows "norm(f z) \<le> exp(pi * exp(pi * (2 + 2 * r + 12 * t / (1 - t))))" | |
| 232 | proof - | |
| 233 | obtain h where holf: "h holomorphic_on cball 0 1" | |
| 234 | and nh0: "norm (h 0) \<le> 1 + norm(2 * f 0 - 1) / 3" | |
| 235 | and h: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> 2 * f z - 1 = cos(of_real pi * h z)" | |
| 236 | proof (rule Schottky_lemma0 [of "\<lambda>z. 2 * f z - 1" "cball 0 1" 0]) | |
| 237 | show "(\<lambda>z. 2 * f z - 1) holomorphic_on cball 0 1" | |
| 238 | by (intro holomorphic_intros holf) | |
| 239 | show "contractible (cball (0::complex) 1)" | |
| 240 | by (auto simp: convex_imp_contractible) | |
| 241 | show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> 2 * f z - 1 \<noteq> 1 \<and> 2 * f z - 1 \<noteq> - 1" | |
| 242 | using not01 by force | |
| 243 | qed auto | |
| 244 | obtain g where holg: "g holomorphic_on cball 0 1" | |
| 245 | and ng0: "norm(g 0) \<le> 1 + norm(h 0) / 3" | |
| 246 | and g: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> h z = cos(of_real pi * g z)" | |
| 247 | proof (rule Schottky_lemma0 [OF holf convex_imp_contractible, of 0]) | |
| 248 | show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> h z \<noteq> 1 \<and> h z \<noteq> - 1" | |
| 249 | using h not01 by fastforce+ | |
| 250 | qed auto | |
| 251 | have g0_2_f0: "norm(g 0) \<le> 2 + norm(f 0)" | |
| 252 | proof - | |
| 253 | have "cmod (2 * f 0 - 1) \<le> cmod (2 * f 0) + 1" | |
| 254 | by (metis norm_one norm_triangle_ineq4) | |
| 255 | also have "... \<le> 2 + cmod (f 0) * 3" | |
| 256 | by simp | |
| 257 | finally have "1 + norm(2 * f 0 - 1) / 3 \<le> (2 + norm(f 0) - 1) * 3" | |
| 258 | apply (simp add: divide_simps) | |
| 259 | using norm_ge_zero [of "2 * f 0 - 1"] | |
| 260 | by linarith | |
| 261 | with nh0 have "norm(h 0) \<le> (2 + norm(f 0) - 1) * 3" | |
| 262 | by linarith | |
| 263 | then have "1 + norm(h 0) / 3 \<le> 2 + norm(f 0)" | |
| 264 | by simp | |
| 265 | with ng0 show ?thesis | |
| 266 | by auto | |
| 267 | qed | |
| 268 | have "z \<in> ball 0 1" | |
| 269 | using assms by auto | |
| 270 | have norm_g_12: "norm(g z - g 0) \<le> (12 * t) / (1 - t)" | |
| 271 | proof - | |
| 272 | obtain g' where g': "\<And>x. x \<in> cball 0 1 \<Longrightarrow> (g has_field_derivative g' x) (at x within cball 0 1)" | |
| 273 | using holg [unfolded holomorphic_on_def field_differentiable_def] by metis | |
| 274 | have int_g': "(g' has_contour_integral g z - g 0) (linepath 0 z)" | |
| 275 | using contour_integral_primitive [OF g' valid_path_linepath, of 0 z] | |
| 276 | using \<open>z \<in> ball 0 1\<close> segment_bound1 by fastforce | |
| 277 | have "cmod (g' w) \<le> 12 / (1 - t)" if "w \<in> closed_segment 0 z" for w | |
| 278 | proof - | |
| 279 | have w: "w \<in> ball 0 1" | |
| 280 | using segment_bound [OF that] \<open>z \<in> ball 0 1\<close> by simp | |
| 281 | have ttt: "\<And>z. z \<in> frontier (cball 0 1) \<Longrightarrow> 1 - t \<le> dist w z" | |
| 282 | using \<open>norm z \<le> t\<close> segment_bound1 [OF \<open>w \<in> closed_segment 0 z\<close>] | |
| 283 | apply (simp add: dist_complex_def) | |
| 284 | by (metis diff_left_mono dist_commute dist_complex_def norm_triangle_ineq2 order_trans) | |
| 285 | have *: "\<lbrakk>\<And>b. (\<exists>w \<in> T \<union> U. w \<in> ball b 1); \<And>x. x \<in> D \<Longrightarrow> g x \<notin> T \<union> U\<rbrakk> \<Longrightarrow> \<nexists>b. ball b 1 \<subseteq> g ` D" for T U D | |
| 286 | by force | |
| 287 | have "\<nexists>b. ball b 1 \<subseteq> g ` cball 0 1" | |
| 288 | proof (rule *) | |
| 289 |         show "(\<exists>w \<in> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \<union>
 | |
| 290 |                     (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)}). w \<in> ball b 1)" for b
 | |
| 291 | proof - | |
| 292 | obtain m where m: "m \<in> \<int>" "\<bar>Re b - m\<bar> \<le> 1/2" | |
| 293 | by (metis Ints_of_int abs_minus_commute of_int_round_abs_le) | |
| 294 | show ?thesis | |
| 295 | proof (cases "0::real" "Im b" rule: le_cases) | |
| 296 | case le | |
| 297 | then obtain n where "0 < n" and n: "\<bar>Im b - ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" | |
| 298 | using Schottky_lemma2 [of "Im b"] by blast | |
| 299 | have "dist b (Complex m (Im b)) \<le> 1/2" | |
| 300 | by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code) | |
| 301 | moreover | |
| 302 | have "dist (Complex m (Im b)) (Complex m (ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1/2" | |
| 303 | using n by (simp add: complex_norm cmod_eq_Re complex_diff dist_norm del: Complex_eq) | |
| 304 | ultimately have "dist b (Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1" | |
| 305 | by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute) | |
| 306 | with le m \<open>0 < n\<close> show ?thesis | |
| 307 | apply (rule_tac x = "Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI) | |
| 308 | apply (simp_all del: Complex_eq greaterThan_0) | |
| 309 | by blast | |
| 310 | next | |
| 311 | case ge | |
| 312 | then obtain n where "0 < n" and n: "\<bar>- Im b - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" | |
| 313 | using Schottky_lemma2 [of "- Im b"] by auto | |
| 314 | have "dist b (Complex m (Im b)) \<le> 1/2" | |
| 315 | by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code) | |
| 316 | moreover | |
| 317 | have "dist (Complex m (- ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) (Complex m (Im b)) < 1/2" | |
| 318 | using n | |
| 319 | apply (simp add: complex_norm cmod_eq_Re complex_diff dist_norm del: Complex_eq) | |
| 320 | by (metis add.commute add_uminus_conv_diff) | |
| 321 | ultimately have "dist b (Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1" | |
| 322 | by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute) | |
| 323 | with ge m \<open>0 < n\<close> show ?thesis | |
| 324 | apply (rule_tac x = "Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI) | |
| 325 | apply (simp_all del: Complex_eq greaterThan_0) | |
| 326 | by blast | |
| 327 | qed | |
| 328 | qed | |
| 329 |         show "g v \<notin> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \<union>
 | |
| 330 |                     (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})"
 | |
| 331 | if "v \<in> cball 0 1" for v | |
| 332 | using not01 [OF that] | |
| 333 | by (force simp: g [OF that, symmetric] h [OF that, symmetric] dest!: Schottky_lemma3 [of "g v"]) | |
| 334 | qed | |
| 335 | then have 12: "(1 - t) * cmod (deriv g w) / 12 < 1" | |
| 336 | using Bloch_general [OF holg _ ttt, of 1] w by force | |
| 337 | have "g field_differentiable at w within cball 0 1" | |
| 338 | using holg w by (simp add: holomorphic_on_def) | |
| 339 | then have "g field_differentiable at w within ball 0 1" | |
| 340 | using ball_subset_cball field_differentiable_within_subset by blast | |
| 341 | with w have der_gw: "(g has_field_derivative deriv g w) (at w)" | |
| 342 | by (simp add: field_differentiable_within_open [of _ "ball 0 1"] field_differentiable_derivI) | |
| 343 | with DERIV_unique [OF der_gw] g' w have "deriv g w = g' w" | |
| 344 | by (metis Topology_Euclidean_Space.open_ball at_within_open ball_subset_cball has_field_derivative_subset subsetCE) | |
| 345 | then show "cmod (g' w) \<le> 12 / (1 - t)" | |
| 346 | using g' 12 \<open>t < 1\<close> by (simp add: field_simps) | |
| 347 | qed | |
| 348 | then have "cmod (g z - g 0) \<le> 12 / (1 - t) * cmod z" | |
| 349 | using has_contour_integral_bound_linepath [OF int_g', of "12/(1 - t)"] assms | |
| 350 | by simp | |
| 351 | with \<open>cmod z \<le> t\<close> \<open>t < 1\<close> show ?thesis | |
| 352 | by (simp add: divide_simps) | |
| 353 | qed | |
| 354 | have fz: "f z = (1 + cos(of_real pi * h z)) / 2" | |
| 355 | using h \<open>z \<in> ball 0 1\<close> by (auto simp: field_simps) | |
| 356 | have "cmod (f z) \<le> exp (cmod (complex_of_real pi * h z))" | |
| 357 | by (simp add: fz mult.commute norm_cos_plus1_le) | |
| 358 | also have "... \<le> exp (pi * exp (pi * (2 + 2 * r + 12 * t / (1 - t))))" | |
| 359 | proof (simp add: norm_mult) | |
| 360 | have "cmod (g z - g 0) \<le> 12 * t / (1 - t)" | |
| 361 | using norm_g_12 \<open>t < 1\<close> by (simp add: norm_mult) | |
| 362 | then have "cmod (g z) - cmod (g 0) \<le> 12 * t / (1 - t)" | |
| 363 | using norm_triangle_ineq2 order_trans by blast | |
| 364 | then have *: "cmod (g z) \<le> 2 + 2 * r + 12 * t / (1 - t)" | |
| 365 | using g0_2_f0 norm_ge_zero [of "f 0"] nof0 | |
| 366 | by linarith | |
| 367 | have "cmod (h z) \<le> exp (cmod (complex_of_real pi * g z))" | |
| 368 | using \<open>z \<in> ball 0 1\<close> by (simp add: g norm_cos_le) | |
| 369 | also have "... \<le> exp (pi * (2 + 2 * r + 12 * t / (1 - t)))" | |
| 370 | using \<open>t < 1\<close> nof0 * by (simp add: norm_mult) | |
| 371 | finally show "cmod (h z) \<le> exp (pi * (2 + 2 * r + 12 * t / (1 - t)))" . | |
| 372 | qed | |
| 373 | finally show ?thesis . | |
| 374 | qed | |
| 375 | ||
| 376 | ||
| 377 | subsection\<open>The Little Picard Theorem\<close> | |
| 378 | ||
| 379 | lemma Landau_Picard: | |
| 380 | obtains R | |
| 381 | where "\<And>z. 0 < R z" | |
| 382 | "\<And>f. \<lbrakk>f holomorphic_on cball 0 (R(f 0)); | |
| 383 | \<And>z. norm z \<le> R(f 0) \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv f 0) < 1" | |
| 384 | proof - | |
| 385 | define R where "R \<equiv> \<lambda>z. 3 * exp(pi * exp(pi*(2 + 2 * cmod z + 12)))" | |
| 386 | show ?thesis | |
| 387 | proof | |
| 388 | show Rpos: "\<And>z. 0 < R z" | |
| 389 | by (auto simp: R_def) | |
| 390 | show "norm(deriv f 0) < 1" | |
| 391 | if holf: "f holomorphic_on cball 0 (R(f 0))" | |
| 392 | and Rf: "\<And>z. norm z \<le> R(f 0) \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1" for f | |
| 393 | proof - | |
| 394 | let ?r = "R(f 0)" | |
| 395 | define g where "g \<equiv> f \<circ> (\<lambda>z. of_real ?r * z)" | |
| 396 | have "0 < ?r" | |
| 397 | using Rpos by blast | |
| 398 | have holg: "g holomorphic_on cball 0 1" | |
| 399 | unfolding g_def | |
| 400 | apply (intro holomorphic_intros holomorphic_on_compose holomorphic_on_subset [OF holf]) | |
| 401 | using Rpos by (auto simp: less_imp_le norm_mult) | |
| 402 | have *: "norm(g z) \<le> exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12 * t / (1 - t))))" | |
| 403 | if "0 < t" "t < 1" "norm z \<le> t" for t z | |
| 404 | proof (rule Schottky [OF holg]) | |
| 405 | show "cmod (g 0) \<le> cmod (f 0)" | |
| 406 | by (simp add: g_def) | |
| 407 | show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> \<not> (g z = 0 \<or> g z = 1)" | |
| 408 | using Rpos by (simp add: g_def less_imp_le norm_mult Rf) | |
| 409 | qed (auto simp: that) | |
| 410 | have C1: "g holomorphic_on ball 0 (1 / 2)" | |
| 411 | by (rule holomorphic_on_subset [OF holg]) auto | |
| 412 | have C2: "continuous_on (cball 0 (1 / 2)) g" | |
| 413 | by (meson cball_divide_subset_numeral holg holomorphic_on_imp_continuous_on holomorphic_on_subset) | |
| 414 | have C3: "cmod (g z) \<le> R (f 0) / 3" if "cmod (0 - z) = 1/2" for z | |
| 415 | proof - | |
| 416 | have "norm(g z) \<le> exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12)))" | |
| 417 | using * [of "1/2"] that by simp | |
| 418 | also have "... = ?r / 3" | |
| 419 | by (simp add: R_def) | |
| 420 | finally show ?thesis . | |
| 421 | qed | |
| 422 | then have cmod_g'_le: "cmod (deriv g 0) * 3 \<le> R (f 0) * 2" | |
| 423 | using Cauchy_inequality [OF C1 C2 _ C3, of 1] by simp | |
| 424 | have holf': "f holomorphic_on ball 0 (R(f 0))" | |
| 425 | by (rule holomorphic_on_subset [OF holf]) auto | |
| 426 | then have fd0: "f field_differentiable at 0" | |
| 427 | by (rule holomorphic_on_imp_differentiable_at [OF _ open_ball]) | |
| 428 | (auto simp: Rpos [of "f 0"]) | |
| 429 | have g_eq: "deriv g 0 = of_real ?r * deriv f 0" | |
| 430 | apply (rule DERIV_imp_deriv) | |
| 431 | apply (simp add: g_def) | |
| 432 | by (metis DERIV_chain DERIV_cmult_Id fd0 field_differentiable_derivI mult.commute mult_zero_right) | |
| 433 | show ?thesis | |
| 434 | using cmod_g'_le Rpos [of "f 0"] by (simp add: g_eq norm_mult) | |
| 435 | qed | |
| 436 | qed | |
| 437 | qed | |
| 438 | ||
| 439 | lemma little_Picard_01: | |
| 440 | assumes holf: "f holomorphic_on UNIV" and f01: "\<And>z. f z \<noteq> 0 \<and> f z \<noteq> 1" | |
| 441 | obtains c where "f = (\<lambda>x. c)" | |
| 442 | proof - | |
| 443 | obtain R | |
| 444 | where Rpos: "\<And>z. 0 < R z" | |
| 445 | and R: "\<And>h. \<lbrakk>h holomorphic_on cball 0 (R(h 0)); | |
| 446 | \<And>z. norm z \<le> R(h 0) \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv h 0) < 1" | |
| 447 | using Landau_Picard by metis | |
| 448 | have contf: "continuous_on UNIV f" | |
| 449 | by (simp add: holf holomorphic_on_imp_continuous_on) | |
| 450 | show ?thesis | |
| 451 | proof (cases "\<forall>x. deriv f x = 0") | |
| 452 | case True | |
| 453 | obtain c where "\<And>x. f(x) = c" | |
| 454 | apply (rule DERIV_zero_connected_constant [OF connected_UNIV open_UNIV finite.emptyI contf]) | |
| 455 | apply (metis True DiffE holf holomorphic_derivI open_UNIV, auto) | |
| 456 | done | |
| 457 | then show ?thesis | |
| 458 | using that by auto | |
| 459 | next | |
| 460 | case False | |
| 461 | then obtain w where w: "deriv f w \<noteq> 0" by auto | |
| 462 | define fw where "fw \<equiv> (f \<circ> (\<lambda>z. w + z / deriv f w))" | |
| 463 | have norm_let1: "norm(deriv fw 0) < 1" | |
| 464 | proof (rule R) | |
| 465 | show "fw holomorphic_on cball 0 (R (fw 0))" | |
| 466 | unfolding fw_def | |
| 467 | by (intro holomorphic_intros holomorphic_on_compose w holomorphic_on_subset [OF holf] subset_UNIV) | |
| 468 | show "fw z \<noteq> 0 \<and> fw z \<noteq> 1" if "cmod z \<le> R (fw 0)" for z | |
| 469 | using f01 by (simp add: fw_def) | |
| 470 | qed | |
| 471 | have "(fw has_field_derivative deriv f w * inverse (deriv f w)) (at 0)" | |
| 472 | apply (simp add: fw_def) | |
| 473 | apply (rule DERIV_chain) | |
| 474 | using holf holomorphic_derivI apply force | |
| 475 | apply (intro derivative_eq_intros w) | |
| 476 | apply (auto simp: field_simps) | |
| 477 | done | |
| 478 | then show ?thesis | |
| 479 | using norm_let1 w by (simp add: DERIV_imp_deriv) | |
| 480 | qed | |
| 481 | qed | |
| 482 | ||
| 483 | ||
| 484 | theorem little_Picard: | |
| 485 | assumes holf: "f holomorphic_on UNIV" | |
| 486 |       and "a \<noteq> b" "range f \<inter> {a,b} = {}"
 | |
| 487 | obtains c where "f = (\<lambda>x. c)" | |
| 488 | proof - | |
| 489 | let ?g = "\<lambda>x. 1/(b - a)*(f x - b) + 1" | |
| 490 | obtain c where "?g = (\<lambda>x. c)" | |
| 491 | proof (rule little_Picard_01) | |
| 492 | show "?g holomorphic_on UNIV" | |
| 493 | by (intro holomorphic_intros holf) | |
| 494 | show "\<And>z. ?g z \<noteq> 0 \<and> ?g z \<noteq> 1" | |
| 495 | using assms by (auto simp: field_simps) | |
| 496 | qed auto | |
| 497 | then have "?g x = c" for x | |
| 498 | by meson | |
| 499 | then have "f x = c * (b-a) + a" for x | |
| 500 | using assms by (auto simp: field_simps) | |
| 501 | then show ?thesis | |
| 502 | using that by blast | |
| 503 | qed | |
| 504 | ||
| 505 | ||
| 506 | text\<open>A couple of little applications of Little Picard\<close> | |
| 507 | ||
| 508 | lemma holomorphic_periodic_fixpoint: | |
| 509 | assumes holf: "f holomorphic_on UNIV" | |
| 510 | and "p \<noteq> 0" and per: "\<And>z. f(z + p) = f z" | |
| 511 | obtains x where "f x = x" | |
| 512 | proof - | |
| 513 | have False if non: "\<And>x. f x \<noteq> x" | |
| 514 | proof - | |
| 515 | obtain c where "(\<lambda>z. f z - z) = (\<lambda>z. c)" | |
| 516 | proof (rule little_Picard) | |
| 517 | show "(\<lambda>z. f z - z) holomorphic_on UNIV" | |
| 518 | by (simp add: holf holomorphic_on_diff) | |
| 519 |       show "range (\<lambda>z. f z - z) \<inter> {p,0} = {}"
 | |
| 520 | using assms non by auto (metis add.commute diff_eq_eq) | |
| 521 | qed (auto simp: assms) | |
| 522 | with per show False | |
| 523 | by (metis add.commute add_cancel_left_left \<open>p \<noteq> 0\<close> diff_add_cancel) | |
| 524 | qed | |
| 525 | then show ?thesis | |
| 526 | using that by blast | |
| 527 | qed | |
| 528 | ||
| 529 | ||
| 530 | lemma holomorphic_involution_point: | |
| 531 | assumes holfU: "f holomorphic_on UNIV" and non: "\<And>a. f \<noteq> (\<lambda>x. a + x)" | |
| 532 | obtains x where "f(f x) = x" | |
| 533 | proof - | |
| 534 |   { assume non_ff [simp]: "\<And>x. f(f x) \<noteq> x"
 | |
| 535 | then have non_fp [simp]: "f z \<noteq> z" for z | |
| 536 | by metis | |
| 537 | have holf: "f holomorphic_on X" for X | |
| 538 | using assms holomorphic_on_subset by blast | |
| 539 | obtain c where c: "(\<lambda>x. (f(f x) - x)/(f x - x)) = (\<lambda>x. c)" | |
| 540 | proof (rule little_Picard_01) | |
| 541 | show "(\<lambda>x. (f(f x) - x)/(f x - x)) holomorphic_on UNIV" | |
| 542 | apply (intro holomorphic_intros holf holomorphic_on_compose [unfolded o_def, OF holf]) | |
| 543 | using non_fp by auto | |
| 544 | qed auto | |
| 545 | then obtain "c \<noteq> 0" "c \<noteq> 1" | |
| 546 | by (metis (no_types, hide_lams) non_ff diff_zero divide_eq_0_iff right_inverse_eq) | |
| 547 | have eq: "f(f x) - c * f x = x*(1 - c)" for x | |
| 548 | using fun_cong [OF c, of x] by (simp add: field_simps) | |
| 549 | have df_times_dff: "deriv f z * (deriv f (f z) - c) = 1 * (1 - c)" for z | |
| 550 | proof (rule DERIV_unique) | |
| 551 | show "((\<lambda>x. f (f x) - c * f x) has_field_derivative | |
| 552 | deriv f z * (deriv f (f z) - c)) (at z)" | |
| 553 | apply (intro derivative_eq_intros) | |
| 554 | apply (rule DERIV_chain [unfolded o_def, of f]) | |
| 555 | apply (auto simp: algebra_simps intro!: holomorphic_derivI [OF holfU]) | |
| 556 | done | |
| 557 | show "((\<lambda>x. f (f x) - c * f x) has_field_derivative 1 * (1 - c)) (at z)" | |
| 558 | by (simp add: eq mult_commute_abs) | |
| 559 | qed | |
| 560 |     { fix z::complex
 | |
| 561 | obtain k where k: "deriv f \<circ> f = (\<lambda>x. k)" | |
| 562 | proof (rule little_Picard) | |
| 563 | show "(deriv f \<circ> f) holomorphic_on UNIV" | |
| 564 | by (meson holfU holomorphic_deriv holomorphic_on_compose holomorphic_on_subset open_UNIV subset_UNIV) | |
| 565 | obtain "deriv f (f x) \<noteq> 0" "deriv f (f x) \<noteq> c" for x | |
| 566 | using df_times_dff \<open>c \<noteq> 1\<close> eq_iff_diff_eq_0 | |
| 567 | by (metis lambda_one mult_zero_left mult_zero_right) | |
| 568 |         then show "range (deriv f \<circ> f) \<inter> {0,c} = {}"
 | |
| 569 | by force | |
| 570 | qed (use \<open>c \<noteq> 0\<close> in auto) | |
| 571 | have "\<not> f constant_on UNIV" | |
| 572 | by (meson UNIV_I non_ff constant_on_def) | |
| 573 | with holf open_mapping_thm have "open(range f)" | |
| 574 | by blast | |
| 575 | obtain l where l: "\<And>x. f x - k * x = l" | |
| 576 |       proof (rule DERIV_zero_connected_constant [of UNIV "{}" "\<lambda>x. f x - k * x"], simp_all)
 | |
| 577 | have "deriv f w - k = 0" for w | |
| 578 | proof (rule analytic_continuation [OF _ open_UNIV connected_UNIV subset_UNIV, of "\<lambda>z. deriv f z - k" "f z" "range f" w]) | |
| 579 | show "(\<lambda>z. deriv f z - k) holomorphic_on UNIV" | |
| 580 | by (intro holomorphic_intros holf open_UNIV) | |
| 581 | show "f z islimpt range f" | |
| 582 | by (metis (no_types, lifting) IntI UNIV_I \<open>open (range f)\<close> image_eqI inf.absorb_iff2 inf_aci(1) islimpt_UNIV islimpt_eq_acc_point open_Int top_greatest) | |
| 583 | show "\<And>z. z \<in> range f \<Longrightarrow> deriv f z - k = 0" | |
| 584 | by (metis comp_def diff_self image_iff k) | |
| 585 | qed auto | |
| 586 | moreover | |
| 587 | have "((\<lambda>x. f x - k * x) has_field_derivative deriv f x - k) (at x)" for x | |
| 588 | by (metis DERIV_cmult_Id Deriv.field_differentiable_diff UNIV_I field_differentiable_derivI holf holomorphic_on_def) | |
| 589 | ultimately | |
| 590 | show "\<forall>x. ((\<lambda>x. f x - k * x) has_field_derivative 0) (at x)" | |
| 591 | by auto | |
| 592 | show "continuous_on UNIV (\<lambda>x. f x - k * x)" | |
| 593 | by (simp add: continuous_on_diff holf holomorphic_on_imp_continuous_on) | |
| 594 | qed (auto simp: connected_UNIV) | |
| 595 | have False | |
| 596 | proof (cases "k=1") | |
| 597 | case True | |
| 598 | then have "\<exists>x. k * x + l \<noteq> a + x" for a | |
| 599 | using l non [of a] ext [of f "op + a"] | |
| 600 | by (metis add.commute diff_eq_eq) | |
| 601 | with True show ?thesis by auto | |
| 602 | next | |
| 603 | case False | |
| 604 | have "\<And>x. (1 - k) * x \<noteq> f 0" | |
| 605 | using l [of 0] apply (simp add: algebra_simps) | |
| 606 | by (metis diff_add_cancel l mult.commute non_fp) | |
| 607 | then show False | |
| 608 | by (metis False eq_iff_diff_eq_0 mult.commute nonzero_mult_div_cancel_right times_divide_eq_right) | |
| 609 | qed | |
| 610 | } | |
| 611 | } | |
| 612 | then show thesis | |
| 613 | using that by blast | |
| 614 | qed | |
| 615 | ||
| 616 | ||
| 65823 | 617 | subsection\<open>The Arzelà --Ascoli theorem\<close> | 
| 65040 | 618 | |
| 619 | lemma subsequence_diagonalization_lemma: | |
| 620 | fixes P :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" | |
| 621 | assumes sub: "\<And>i r. \<exists>k. subseq k \<and> P i (r \<circ> k)" | |
| 622 | and P_P: "\<And>i r::nat \<Rightarrow> 'a. \<And>k1 k2 N. | |
| 623 | \<lbrakk>P i (r \<circ> k1); \<And>j. N \<le> j \<Longrightarrow> \<exists>j'. j \<le> j' \<and> k2 j = k1 j'\<rbrakk> \<Longrightarrow> P i (r \<circ> k2)" | |
| 624 | obtains k where "subseq k" "\<And>i. P i (r \<circ> k)" | |
| 625 | proof - | |
| 626 | obtain kk where "\<And>i r. subseq (kk i r) \<and> P i (r \<circ> (kk i r))" | |
| 627 | using sub by metis | |
| 628 | then have sub_kk: "\<And>i r. subseq (kk i r)" and P_kk: "\<And>i r. P i (r \<circ> (kk i r))" | |
| 629 | by auto | |
| 630 | define rr where "rr \<equiv> rec_nat (kk 0 r) (\<lambda>n x. x \<circ> kk (Suc n) (r \<circ> x))" | |
| 631 | then have [simp]: "rr 0 = kk 0 r" "\<And>n. rr(Suc n) = rr n \<circ> kk (Suc n) (r \<circ> rr n)" | |
| 632 | by auto | |
| 633 | show thesis | |
| 634 | proof | |
| 635 | have sub_rr: "subseq (rr i)" for i | |
| 636 | using sub_kk by (induction i) (auto simp: subseq_def o_def) | |
| 637 | have P_rr: "P i (r \<circ> rr i)" for i | |
| 638 | using P_kk by (induction i) (auto simp: o_def) | |
| 639 | have "i \<le> i+d \<Longrightarrow> rr i n \<le> rr (i+d) n" for d i n | |
| 640 | proof (induction d) | |
| 641 | case 0 then show ?case | |
| 642 | by simp | |
| 643 | next | |
| 644 | case (Suc d) then show ?case | |
| 645 | apply simp | |
| 646 | using seq_suble [OF sub_kk] order_trans subseq_le_mono [OF sub_rr] by blast | |
| 647 | qed | |
| 648 | then have "\<And>i j n. i \<le> j \<Longrightarrow> rr i n \<le> rr j n" | |
| 649 | by (metis le_iff_add) | |
| 650 | show "subseq (\<lambda>n. rr n n)" | |
| 651 | apply (simp add: subseq_Suc_iff) | |
| 652 | by (meson Suc_le_eq seq_suble sub_kk sub_rr subseq_mono) | |
| 653 | have "\<exists>j. i \<le> j \<and> rr (n+d) i = rr n j" for d n i | |
| 654 | apply (induction d arbitrary: i, auto) | |
| 655 | by (meson order_trans seq_suble sub_kk) | |
| 656 | then have "\<And>m n i. n \<le> m \<Longrightarrow> \<exists>j. i \<le> j \<and> rr m i = rr n j" | |
| 657 | by (metis le_iff_add) | |
| 658 | then show "P i (r \<circ> (\<lambda>n. rr n n))" for i | |
| 659 | by (meson P_rr P_P) | |
| 660 | qed | |
| 661 | qed | |
| 662 | ||
| 663 | lemma function_convergent_subsequence: | |
| 664 |   fixes f :: "[nat,'a] \<Rightarrow> 'b::{real_normed_vector,heine_borel}"
 | |
| 665 | assumes "countable S" and M: "\<And>n::nat. \<And>x. x \<in> S \<Longrightarrow> norm(f n x) \<le> M" | |
| 666 | obtains k where "subseq k" "\<And>x. x \<in> S \<Longrightarrow> \<exists>l. (\<lambda>n. f (k n) x) \<longlonglongrightarrow> l" | |
| 667 | proof (cases "S = {}")
 | |
| 668 | case True | |
| 669 | then show ?thesis | |
| 670 | using subseq_id that by fastforce | |
| 671 | next | |
| 672 | case False | |
| 673 | with \<open>countable S\<close> obtain \<sigma> :: "nat \<Rightarrow> 'a" where \<sigma>: "S = range \<sigma>" | |
| 674 | using uncountable_def by blast | |
| 675 | obtain k where "subseq k" and k: "\<And>i. \<exists>l. (\<lambda>n. (f \<circ> k) n (\<sigma> i)) \<longlonglongrightarrow> l" | |
| 676 | proof (rule subsequence_diagonalization_lemma | |
| 677 | [of "\<lambda>i r. \<exists>l. ((\<lambda>n. (f \<circ> r) n (\<sigma> i)) \<longlongrightarrow> l) sequentially" id]) | |
| 678 | show "\<exists>k. subseq k \<and> (\<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k)) n (\<sigma> i)) \<longlonglongrightarrow> l)" for i r | |
| 679 | proof - | |
| 680 | have "f (r n) (\<sigma> i) \<in> cball 0 M" for n | |
| 681 | by (simp add: \<sigma> M) | |
| 682 | then show ?thesis | |
| 683 | using compact_def [of "cball (0::'b) M"] apply simp | |
| 684 | apply (drule_tac x="(\<lambda>n. f (r n) (\<sigma> i))" in spec) | |
| 685 | apply (force simp: o_def) | |
| 686 | done | |
| 687 | qed | |
| 688 | show "\<And>i r k1 k2 N. | |
| 689 | \<lbrakk>\<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k1)) n (\<sigma> i)) \<longlonglongrightarrow> l; \<And>j. N \<le> j \<Longrightarrow> \<exists>j'\<ge>j. k2 j = k1 j'\<rbrakk> | |
| 690 | \<Longrightarrow> \<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k2)) n (\<sigma> i)) \<longlonglongrightarrow> l" | |
| 691 | apply (simp add: lim_sequentially) | |
| 692 | apply (erule ex_forward all_forward imp_forward)+ | |
| 693 | apply auto | |
| 694 | by (metis (no_types, hide_lams) le_cases order_trans) | |
| 695 | qed auto | |
| 696 | with \<sigma> that show ?thesis | |
| 697 | by force | |
| 698 | qed | |
| 699 | ||
| 700 | ||
| 701 | theorem Arzela_Ascoli: | |
| 702 |   fixes \<F> :: "[nat,'a::euclidean_space] \<Rightarrow> 'b::{real_normed_vector,heine_borel}"
 | |
| 703 | assumes "compact S" | |
| 704 | and M: "\<And>n x. x \<in> S \<Longrightarrow> norm(\<F> n x) \<le> M" | |
| 705 | and equicont: | |
| 706 | "\<And>x e. \<lbrakk>x \<in> S; 0 < e\<rbrakk> | |
| 707 | \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>n y. y \<in> S \<and> norm(x - y) < d \<longrightarrow> norm(\<F> n x - \<F> n y) < e)" | |
| 708 | obtains g k where "continuous_on S g" "subseq k" | |
| 709 | "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<and> x \<in> S \<longrightarrow> norm(\<F>(k n) x - g x) < e" | |
| 710 | proof - | |
| 711 | have UEQ: "\<And>e. 0 < e \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>n. \<forall>x \<in> S. \<forall>x' \<in> S. dist x' x < d \<longrightarrow> dist (\<F> n x') (\<F> n x) < e)" | |
| 712 | apply (rule compact_uniformly_equicontinuous [OF \<open>compact S\<close>, of "range \<F>"]) | |
| 713 | using equicont by (force simp: dist_commute dist_norm)+ | |
| 714 | have "continuous_on S g" | |
| 715 | if "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<and> x \<in> S \<longrightarrow> norm(\<F>(r n) x - g x) < e" | |
| 716 | for g:: "'a \<Rightarrow> 'b" and r :: "nat \<Rightarrow> nat" | |
| 717 | proof (rule uniform_limit_theorem [of _ "\<F> \<circ> r"]) | |
| 718 | show "\<forall>\<^sub>F n in sequentially. continuous_on S ((\<F> \<circ> r) n)" | |
| 719 | apply (simp add: eventually_sequentially) | |
| 720 | apply (rule_tac x=0 in exI) | |
| 721 | using UEQ apply (force simp: continuous_on_iff) | |
| 722 | done | |
| 723 | show "uniform_limit S (\<F> \<circ> r) g sequentially" | |
| 724 | apply (simp add: uniform_limit_iff eventually_sequentially) | |
| 725 | by (metis dist_norm that) | |
| 726 | qed auto | |
| 727 | moreover | |
| 728 | obtain R where "countable R" "R \<subseteq> S" and SR: "S \<subseteq> closure R" | |
| 729 | by (metis separable that) | |
| 730 | obtain k where "subseq k" and k: "\<And>x. x \<in> R \<Longrightarrow> \<exists>l. (\<lambda>n. \<F> (k n) x) \<longlonglongrightarrow> l" | |
| 731 | apply (rule function_convergent_subsequence [OF \<open>countable R\<close> M]) | |
| 732 | using \<open>R \<subseteq> S\<close> apply force+ | |
| 733 | done | |
| 734 | then have Cauchy: "Cauchy ((\<lambda>n. \<F> (k n) x))" if "x \<in> R" for x | |
| 735 | using convergent_eq_Cauchy that by blast | |
| 736 | have "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> x \<in> S \<longrightarrow> dist ((\<F> \<circ> k) m x) ((\<F> \<circ> k) n x) < e" | |
| 737 | if "0 < e" for e | |
| 738 | proof - | |
| 739 | obtain d where "0 < d" | |
| 740 | and d: "\<And>n. \<forall>x \<in> S. \<forall>x' \<in> S. dist x' x < d \<longrightarrow> dist (\<F> n x') (\<F> n x) < e/3" | |
| 741 | by (metis UEQ \<open>0 < e\<close> divide_pos_pos zero_less_numeral) | |
| 742 | obtain T where "T \<subseteq> R" and "finite T" and T: "S \<subseteq> (\<Union>c\<in>T. ball c d)" | |
| 743 | proof (rule compactE_image [OF \<open>compact S\<close>, of R "(\<lambda>x. ball x d)"]) | |
| 744 | have "closure R \<subseteq> (\<Union>c\<in>R. ball c d)" | |
| 745 | apply clarsimp | |
| 746 | using \<open>0 < d\<close> closure_approachable by blast | |
| 747 | with SR show "S \<subseteq> (\<Union>c\<in>R. ball c d)" | |
| 748 | by auto | |
| 749 | qed auto | |
| 750 | have "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (\<F> (k m) x) (\<F> (k n) x) < e/3" if "x \<in> R" for x | |
| 751 | using Cauchy \<open>0 < e\<close> that unfolding Cauchy_def | |
| 752 | by (metis less_divide_eq_numeral1(1) mult_zero_left) | |
| 753 | then obtain MF where MF: "\<And>x m n. \<lbrakk>x \<in> R; m \<ge> MF x; n \<ge> MF x\<rbrakk> \<Longrightarrow> norm (\<F> (k m) x - \<F> (k n) x) < e/3" | |
| 754 | using dist_norm by metis | |
| 755 | have "dist ((\<F> \<circ> k) m x) ((\<F> \<circ> k) n x) < e" | |
| 756 | if m: "Max (MF ` T) \<le> m" and n: "Max (MF ` T) \<le> n" "x \<in> S" for m n x | |
| 757 | proof - | |
| 758 | obtain t where "t \<in> T" and t: "x \<in> ball t d" | |
| 759 | using \<open>x \<in> S\<close> T by auto | |
| 760 | have "norm(\<F> (k m) t - \<F> (k m) x) < e / 3" | |
| 761 | by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> d dist_norm mem_ball subset_iff t \<open>x \<in> S\<close>) | |
| 762 | moreover | |
| 763 | have "norm(\<F> (k n) t - \<F> (k n) x) < e / 3" | |
| 764 | by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> subsetD d dist_norm mem_ball t \<open>x \<in> S\<close>) | |
| 765 | moreover | |
| 766 | have "norm(\<F> (k m) t - \<F> (k n) t) < e / 3" | |
| 767 | proof (rule MF) | |
| 768 | show "t \<in> R" | |
| 769 | using \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> by blast | |
| 770 | show "MF t \<le> m" "MF t \<le> n" | |
| 771 | by (meson Max_ge \<open>finite T\<close> \<open>t \<in> T\<close> finite_imageI imageI le_trans m n)+ | |
| 772 | qed | |
| 773 | ultimately | |
| 774 | show ?thesis | |
| 775 | unfolding dist_norm [symmetric] o_def | |
| 776 | by (metis dist_triangle_third dist_commute) | |
| 777 | qed | |
| 778 | then show ?thesis | |
| 779 | by force | |
| 780 | qed | |
| 781 | then have "\<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> S. norm(\<F>(k n) x - g x) < e" | |
| 782 | using uniformly_convergent_eq_cauchy [of "\<lambda>x. x \<in> S" "\<F> \<circ> k"] | |
| 783 | apply (simp add: o_def dist_norm) | |
| 784 | by meson | |
| 785 | ultimately show thesis | |
| 786 | by (metis that \<open>subseq k\<close>) | |
| 787 | qed | |
| 788 | ||
| 789 | ||
| 790 | ||
| 791 | subsubsection\<open>Montel's theorem\<close> | |
| 792 | ||
| 793 | text\<open>a sequence of holomorphic functions uniformly bounded | |
| 794 | on compact subsets of an open set S has a subsequence that converges to a | |
| 795 | holomorphic function, and converges \emph{uniformly} on compact subsets of S.\<close>
 | |
| 796 | ||
| 797 | ||
| 798 | theorem Montel: | |
| 799 | fixes \<F> :: "[nat,complex] \<Rightarrow> complex" | |
| 800 | assumes "open S" | |
| 801 | and \<H>: "\<And>h. h \<in> \<H> \<Longrightarrow> h holomorphic_on S" | |
| 802 | and bounded: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>B. \<forall>h \<in> \<H>. \<forall> z \<in> K. norm(h z) \<le> B" | |
| 803 | and rng_f: "range \<F> \<subseteq> \<H>" | |
| 804 | obtains g r | |
| 805 | where "g holomorphic_on S" "subseq r" | |
| 806 | "\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>n. \<F> (r n) x) \<longlongrightarrow> g x) sequentially" | |
| 807 | "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K (\<F> \<circ> r) g sequentially" | |
| 808 | proof - | |
| 809 | obtain K where comK: "\<And>n. compact(K n)" and KS: "\<And>n::nat. K n \<subseteq> S" | |
| 810 | and subK: "\<And>X. \<lbrakk>compact X; X \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. X \<subseteq> K n" | |
| 811 | using open_Union_compact_subsets [OF \<open>open S\<close>] by metis | |
| 812 | then have "\<And>i. \<exists>B. \<forall>h \<in> \<H>. \<forall> z \<in> K i. norm(h z) \<le> B" | |
| 813 | by (simp add: bounded) | |
| 814 | then obtain B where B: "\<And>i h z. \<lbrakk>h \<in> \<H>; z \<in> K i\<rbrakk> \<Longrightarrow> norm(h z) \<le> B i" | |
| 815 | by metis | |
| 816 | have *: "\<exists>r g. subseq r \<and> (\<forall>e > 0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> r) n x - g x) < e)" | |
| 817 | if "\<And>n. \<F> n \<in> \<H>" for \<F> i | |
| 818 | proof - | |
| 819 | obtain g k where "continuous_on (K i) g" "subseq k" | |
| 820 | "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm(\<F>(k n) x - g x) < e" | |
| 821 | proof (rule Arzela_Ascoli [of "K i" "\<F>" "B i"]) | |
| 822 | show "\<exists>d>0. \<forall>n y. y \<in> K i \<and> cmod (z - y) < d \<longrightarrow> cmod (\<F> n z - \<F> n y) < e" | |
| 823 | if z: "z \<in> K i" and "0 < e" for z e | |
| 824 | proof - | |
| 825 | obtain r where "0 < r" and r: "cball z r \<subseteq> S" | |
| 826 | using z KS [of i] \<open>open S\<close> by (force simp: open_contains_cball) | |
| 827 | have "cball z (2 / 3 * r) \<subseteq> cball z r" | |
| 828 | using \<open>0 < r\<close> by (simp add: cball_subset_cball_iff) | |
| 829 | then have z23S: "cball z (2 / 3 * r) \<subseteq> S" | |
| 830 | using r by blast | |
| 831 | obtain M where "0 < M" and M: "\<And>n w. dist z w \<le> 2/3 * r \<Longrightarrow> norm(\<F> n w) \<le> M" | |
| 832 | proof - | |
| 833 | obtain N where N: "\<forall>n\<ge>N. cball z (2/3 * r) \<subseteq> K n" | |
| 834 | using subK compact_cball [of z "(2 / 3 * r)"] z23S by force | |
| 835 | have "cmod (\<F> n w) \<le> \<bar>B N\<bar> + 1" if "dist z w \<le> 2 / 3 * r" for n w | |
| 836 | proof - | |
| 837 | have "w \<in> K N" | |
| 838 | using N mem_cball that by blast | |
| 839 | then have "cmod (\<F> n w) \<le> B N" | |
| 840 | using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast | |
| 841 | also have "... \<le> \<bar>B N\<bar> + 1" | |
| 842 | by simp | |
| 843 | finally show ?thesis . | |
| 844 | qed | |
| 845 | then show ?thesis | |
| 846 | by (rule_tac M="\<bar>B N\<bar> + 1" in that) auto | |
| 847 | qed | |
| 848 | have "cmod (\<F> n z - \<F> n y) < e" | |
| 849 | if "y \<in> K i" and y_near_z: "cmod (z - y) < r/3" "cmod (z - y) < e * r / (6 * M)" | |
| 850 | for n y | |
| 851 | proof - | |
| 852 | have "((\<lambda>w. \<F> n w / (w - \<xi>)) has_contour_integral | |
| 853 | (2 * pi) * \<i> * winding_number (circlepath z (2 / 3 * r)) \<xi> * \<F> n \<xi>) | |
| 854 | (circlepath z (2 / 3 * r))" | |
| 855 | if "dist \<xi> z < (2 / 3 * r)" for \<xi> | |
| 856 | proof (rule Cauchy_integral_formula_convex_simple) | |
| 857 | have "\<F> n holomorphic_on S" | |
| 858 | by (simp add: \<H> \<open>\<And>n. \<F> n \<in> \<H>\<close>) | |
| 859 | with z23S show "\<F> n holomorphic_on cball z (2 / 3 * r)" | |
| 860 | using holomorphic_on_subset by blast | |
| 861 | qed (use that \<open>0 < r\<close> in \<open>auto simp: dist_commute\<close>) | |
| 862 | then have *: "((\<lambda>w. \<F> n w / (w - \<xi>)) has_contour_integral (2 * pi) * \<i> * \<F> n \<xi>) | |
| 863 | (circlepath z (2 / 3 * r))" | |
| 864 | if "dist \<xi> z < (2 / 3 * r)" for \<xi> | |
| 865 | using that by (simp add: winding_number_circlepath dist_norm) | |
| 866 | have y: "((\<lambda>w. \<F> n w / (w - y)) has_contour_integral (2 * pi) * \<i> * \<F> n y) | |
| 867 | (circlepath z (2 / 3 * r))" | |
| 868 | apply (rule *) | |
| 869 | using that \<open>0 < r\<close> by (simp only: dist_norm norm_minus_commute) | |
| 870 | have z: "((\<lambda>w. \<F> n w / (w - z)) has_contour_integral (2 * pi) * \<i> * \<F> n z) | |
| 871 | (circlepath z (2 / 3 * r))" | |
| 872 | apply (rule *) | |
| 873 | using \<open>0 < r\<close> by simp | |
| 874 | have le_er: "cmod (\<F> n x / (x - y) - \<F> n x / (x - z)) \<le> e / r" | |
| 875 | if "cmod (x - z) = r/3 + r/3" for x | |
| 876 | proof - | |
| 877 | have "~ (cmod (x - y) < r/3)" | |
| 878 | using y_near_z(1) that \<open>M > 0\<close> \<open>r > 0\<close> | |
| 879 | by (metis (full_types) norm_diff_triangle_less norm_minus_commute order_less_irrefl) | |
| 880 | then have r4_le_xy: "r/4 \<le> cmod (x - y)" | |
| 881 | using \<open>r > 0\<close> by simp | |
| 882 | then have neq: "x \<noteq> y" "x \<noteq> z" | |
| 883 | using that \<open>r > 0\<close> by (auto simp: divide_simps norm_minus_commute) | |
| 884 | have leM: "cmod (\<F> n x) \<le> M" | |
| 885 | by (simp add: M dist_commute dist_norm that) | |
| 886 | have "cmod (\<F> n x / (x - y) - \<F> n x / (x - z)) = cmod (\<F> n x) * cmod (1 / (x - y) - 1 / (x - z))" | |
| 887 | by (metis (no_types, lifting) divide_inverse mult.left_neutral norm_mult right_diff_distrib') | |
| 888 | also have "... = cmod (\<F> n x) * cmod ((y - z) / ((x - y) * (x - z)))" | |
| 889 | using neq by (simp add: divide_simps) | |
| 890 | also have "... = cmod (\<F> n x) * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))" | |
| 891 | by (simp add: norm_mult norm_divide that) | |
| 892 | also have "... \<le> M * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))" | |
| 893 | apply (rule mult_mono) | |
| 894 | apply (rule leM) | |
| 895 | using \<open>r > 0\<close> \<open>M > 0\<close> neq by auto | |
| 896 | also have "... < M * ((e * r / (6 * M)) / (cmod(x - y) * (2/3 * r)))" | |
| 897 | unfolding mult_less_cancel_left | |
| 898 | using y_near_z(2) \<open>M > 0\<close> \<open>r > 0\<close> neq | |
| 899 | apply (simp add: field_simps mult_less_0_iff norm_minus_commute) | |
| 900 | done | |
| 901 | also have "... \<le> e/r" | |
| 902 | using \<open>e > 0\<close> \<open>r > 0\<close> r4_le_xy by (simp add: divide_simps) | |
| 903 | finally show ?thesis by simp | |
| 904 | qed | |
| 905 | have "(2 * pi) * cmod (\<F> n y - \<F> n z) = cmod ((2 * pi) * \<i> * \<F> n y - (2 * pi) * \<i> * \<F> n z)" | |
| 906 | by (simp add: right_diff_distrib [symmetric] norm_mult) | |
| 907 | also have "cmod ((2 * pi) * \<i> * \<F> n y - (2 * pi) * \<i> * \<F> n z) \<le> e / r * (2 * pi * (2 / 3 * r))" | |
| 908 | apply (rule has_contour_integral_bound_circlepath [OF has_contour_integral_diff [OF y z], of "e/r"]) | |
| 909 | using \<open>e > 0\<close> \<open>r > 0\<close> le_er by auto | |
| 910 | also have "... = (2 * pi) * e * ((2 / 3))" | |
| 911 | using \<open>r > 0\<close> by (simp add: divide_simps) | |
| 912 | finally have "cmod (\<F> n y - \<F> n z) \<le> e * (2 / 3)" | |
| 913 | by simp | |
| 914 | also have "... < e" | |
| 915 | using \<open>e > 0\<close> by simp | |
| 916 | finally show ?thesis by (simp add: norm_minus_commute) | |
| 917 | qed | |
| 918 | then show ?thesis | |
| 919 | apply (rule_tac x="min (r/3) ((e * r)/(6 * M))" in exI) | |
| 920 | using \<open>0 < e\<close> \<open>0 < r\<close> \<open>0 < M\<close> by simp | |
| 921 | qed | |
| 922 | show "\<And>n x. x \<in> K i \<Longrightarrow> cmod (\<F> n x) \<le> B i" | |
| 923 | using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast | |
| 924 | qed (use comK in \<open>fastforce+\<close>) | |
| 925 | then show ?thesis | |
| 926 | by fastforce | |
| 927 | qed | |
| 928 | have "\<exists>k g. subseq k \<and> (\<forall>e > 0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> r \<circ> k) n x - g x) < e)" | |
| 929 | for i r | |
| 930 | apply (rule *) | |
| 931 | using rng_f by auto | |
| 932 | then have **: "\<And>i r. \<exists>k. subseq k \<and> (\<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> (r \<circ> k)) n x - g x) < e)" | |
| 933 | by (force simp: o_assoc) | |
| 934 | obtain k where "subseq k" | |
| 935 | and "\<And>i. \<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod ((\<F> \<circ> (id \<circ> k)) n x - g x) < e" | |
| 936 | apply (rule subsequence_diagonalization_lemma [OF **, of id]) | |
| 937 | apply (erule ex_forward all_forward imp_forward)+ | |
| 938 | apply auto | |
| 939 | apply (rule_tac x="max N Na" in exI, fastforce+) | |
| 940 | done | |
| 941 | then have lt_e: "\<And>i. \<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod ((\<F> \<circ> k) n x - g x) < e" | |
| 942 | by simp | |
| 943 | have "\<exists>l. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. norm(\<F> (k n) z - l) < e" if "z \<in> S" for z | |
| 944 | proof - | |
| 945 | obtain G where G: "\<And>i e. e > 0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K i. cmod ((\<F> \<circ> k) n x - G i x) < e" | |
| 946 | using lt_e by metis | |
| 947 | obtain N where "\<And>n. n \<ge> N \<Longrightarrow> z \<in> K n" | |
| 948 |       using subK [of "{z}"] that \<open>z \<in> S\<close> by auto
 | |
| 949 | moreover have "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K N. cmod ((\<F> \<circ> k) n x - G N x) < e" | |
| 950 | using G by auto | |
| 951 | ultimately show ?thesis | |
| 952 | by (metis comp_apply order_refl) | |
| 953 | qed | |
| 954 | then obtain g where g: "\<And>z e. \<lbrakk>z \<in> S; e > 0\<rbrakk> \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. norm(\<F> (k n) z - g z) < e" | |
| 955 | by metis | |
| 956 | show ?thesis | |
| 957 | proof | |
| 958 | show g_lim: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<F> (k n) x) \<longlonglongrightarrow> g x" | |
| 959 | by (simp add: lim_sequentially g dist_norm) | |
| 960 | have dg_le_e: "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>T. cmod (\<F> (k n) x - g x) < e" | |
| 961 | if T: "compact T" "T \<subseteq> S" and "0 < e" for T e | |
| 962 | proof - | |
| 963 | obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> T \<subseteq> K n" | |
| 964 | using subK [OF T] by blast | |
| 965 | obtain h where h: "\<And>e. e>0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K N. cmod ((\<F> \<circ> k) n x - h x) < e" | |
| 966 | using lt_e by blast | |
| 967 | have geq: "g w = h w" if "w \<in> T" for w | |
| 968 | apply (rule LIMSEQ_unique [of "\<lambda>n. \<F>(k n) w"]) | |
| 969 | using \<open>T \<subseteq> S\<close> g_lim that apply blast | |
| 970 | using h N that by (force simp: lim_sequentially dist_norm) | |
| 971 | show ?thesis | |
| 972 | using T h N \<open>0 < e\<close> by (fastforce simp add: geq) | |
| 973 | qed | |
| 974 | then show "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> | |
| 975 | \<Longrightarrow> uniform_limit K (\<F> \<circ> k) g sequentially" | |
| 976 | by (simp add: uniform_limit_iff dist_norm eventually_sequentially) | |
| 977 | show "g holomorphic_on S" | |
| 978 | proof (rule holomorphic_uniform_sequence [OF \<open>open S\<close> \<H>]) | |
| 979 | show "\<And>n. (\<F> \<circ> k) n \<in> \<H>" | |
| 980 | by (simp add: range_subsetD rng_f) | |
| 981 | show "\<exists>d>0. cball z d \<subseteq> S \<and> uniform_limit (cball z d) (\<lambda>n. (\<F> \<circ> k) n) g sequentially" | |
| 982 | if "z \<in> S" for z | |
| 983 | proof - | |
| 984 | obtain d where d: "d>0" "cball z d \<subseteq> S" | |
| 985 | using \<open>open S\<close> \<open>z \<in> S\<close> open_contains_cball by blast | |
| 986 | then have "uniform_limit (cball z d) (\<F> \<circ> k) g sequentially" | |
| 987 | using dg_le_e compact_cball by (auto simp: uniform_limit_iff eventually_sequentially dist_norm) | |
| 988 | with d show ?thesis by blast | |
| 989 | qed | |
| 990 | qed | |
| 991 | qed (auto simp: \<open>subseq k\<close>) | |
| 992 | qed | |
| 993 | ||
| 994 | ||
| 995 | ||
| 996 | subsection\<open>Some simple but useful cases of Hurwitz's theorem\<close> | |
| 997 | ||
| 998 | proposition Hurwitz_no_zeros: | |
| 999 | assumes S: "open S" "connected S" | |
| 1000 | and holf: "\<And>n::nat. \<F> n holomorphic_on S" | |
| 1001 | and holg: "g holomorphic_on S" | |
| 1002 | and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially" | |
| 1003 | and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c" | |
| 1004 | and nz: "\<And>n z. z \<in> S \<Longrightarrow> \<F> n z \<noteq> 0" | |
| 1005 | and "z0 \<in> S" | |
| 1006 | shows "g z0 \<noteq> 0" | |
| 1007 | proof | |
| 1008 | assume g0: "g z0 = 0" | |
| 1009 | obtain h r m | |
| 1010 | where "0 < m" "0 < r" and subS: "ball z0 r \<subseteq> S" | |
| 1011 | and holh: "h holomorphic_on ball z0 r" | |
| 1012 | and geq: "\<And>w. w \<in> ball z0 r \<Longrightarrow> g w = (w - z0)^m * h w" | |
| 1013 | and hnz: "\<And>w. w \<in> ball z0 r \<Longrightarrow> h w \<noteq> 0" | |
| 1014 | by (blast intro: holomorphic_factor_zero_nonconstant [OF holg S \<open>z0 \<in> S\<close> g0 nonconst]) | |
| 1015 | then have holf0: "\<F> n holomorphic_on ball z0 r" for n | |
| 1016 | by (meson holf holomorphic_on_subset) | |
| 1017 | have *: "((\<lambda>z. deriv (\<F> n) z / \<F> n z) has_contour_integral 0) (circlepath z0 (r/2))" for n | |
| 1018 | proof (rule Cauchy_theorem_disc_simple [of _ z0 r]) | |
| 1019 | show "(\<lambda>z. deriv (\<F> n) z / \<F> n z) holomorphic_on ball z0 r" | |
| 1020 | apply (intro holomorphic_intros holomorphic_deriv holf holf0 open_ball nz) | |
| 1021 | using \<open>ball z0 r \<subseteq> S\<close> by blast | |
| 1022 | qed (use \<open>0 < r\<close> in auto) | |
| 1023 | have hol_dg: "deriv g holomorphic_on S" | |
| 1024 | by (simp add: \<open>open S\<close> holg holomorphic_deriv) | |
| 1025 | have "continuous_on (sphere z0 (r/2)) (deriv g)" | |
| 1026 | apply (intro holomorphic_on_imp_continuous_on holomorphic_on_subset [OF hol_dg]) | |
| 1027 | using \<open>0 < r\<close> subS by auto | |
| 1028 | then have "compact (deriv g ` (sphere z0 (r/2)))" | |
| 1029 | by (rule compact_continuous_image [OF _ compact_sphere]) | |
| 1030 | then have bo_dg: "bounded (deriv g ` (sphere z0 (r/2)))" | |
| 1031 | using compact_imp_bounded by blast | |
| 1032 | have "continuous_on (sphere z0 (r/2)) (cmod \<circ> g)" | |
| 1033 | apply (intro continuous_intros holomorphic_on_imp_continuous_on holomorphic_on_subset [OF holg]) | |
| 1034 | using \<open>0 < r\<close> subS by auto | |
| 1035 | then have "compact ((cmod \<circ> g) ` sphere z0 (r/2))" | |
| 1036 | by (rule compact_continuous_image [OF _ compact_sphere]) | |
| 1037 |   moreover have "(cmod \<circ> g) ` sphere z0 (r/2) \<noteq> {}"
 | |
| 1038 | using \<open>0 < r\<close> by auto | |
| 1039 | ultimately obtain b where b: "b \<in> (cmod \<circ> g) ` sphere z0 (r/2)" | |
| 1040 | "\<And>t. t \<in> (cmod \<circ> g) ` sphere z0 (r/2) \<Longrightarrow> b \<le> t" | |
| 1041 | using compact_attains_inf [of "(norm \<circ> g) ` (sphere z0 (r/2))"] by blast | |
| 1042 | have "(\<lambda>n. contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv (\<F> n) z / \<F> n z)) \<longlonglongrightarrow> | |
| 1043 | contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z)" | |
| 1044 | proof (rule contour_integral_uniform_limit_circlepath) | |
| 1045 | show "\<forall>\<^sub>F n in sequentially. (\<lambda>z. deriv (\<F> n) z / \<F> n z) contour_integrable_on circlepath z0 (r/2)" | |
| 1046 | using * contour_integrable_on_def eventually_sequentiallyI by meson | |
| 1047 | show "uniform_limit (sphere z0 (r/2)) (\<lambda>n z. deriv (\<F> n) z / \<F> n z) (\<lambda>z. deriv g z / g z) sequentially" | |
| 1048 | proof (rule uniform_lim_divide [OF _ _ bo_dg]) | |
| 1049 | show "uniform_limit (sphere z0 (r/2)) (\<lambda>a. deriv (\<F> a)) (deriv g) sequentially" | |
| 1050 | proof (rule uniform_limitI) | |
| 1051 | fix e::real | |
| 1052 | assume "0 < e" | |
| 1053 | have *: "dist (deriv (\<F> n) w) (deriv g w) < e" | |
| 1054 | if e8: "\<And>x. dist z0 x \<le> 3 * r / 4 \<Longrightarrow> dist (\<F> n x) (g x) * 8 < r * e" | |
| 1055 | and w: "dist w z0 = r/2" for n w | |
| 1056 | proof - | |
| 1057 | have "ball w (r/4) \<subseteq> ball z0 r" "cball w (r/4) \<subseteq> ball z0 r" | |
| 1058 | using \<open>0 < r\<close> by (simp_all add: ball_subset_ball_iff cball_subset_ball_iff w) | |
| 1059 | with subS have wr4_sub: "ball w (r/4) \<subseteq> S" "cball w (r/4) \<subseteq> S" by force+ | |
| 1060 | moreover | |
| 1061 | have "(\<lambda>z. \<F> n z - g z) holomorphic_on S" | |
| 1062 | by (intro holomorphic_intros holf holg) | |
| 1063 | ultimately have hol: "(\<lambda>z. \<F> n z - g z) holomorphic_on ball w (r/4)" | |
| 1064 | and cont: "continuous_on (cball w (r / 4)) (\<lambda>z. \<F> n z - g z)" | |
| 1065 | using holomorphic_on_subset by (blast intro: holomorphic_on_imp_continuous_on)+ | |
| 1066 | have "w \<in> S" | |
| 1067 | using \<open>0 < r\<close> wr4_sub by auto | |
| 1068 | have "\<And>y. dist w y < r / 4 \<Longrightarrow> dist z0 y \<le> 3 * r / 4" | |
| 1069 | apply (rule dist_triangle_le [where z=w]) | |
| 1070 | using w by (simp add: dist_commute) | |
| 1071 | with e8 have in_ball: "\<And>y. y \<in> ball w (r/4) \<Longrightarrow> \<F> n y - g y \<in> ball 0 (r/4 * e/2)" | |
| 1072 | by (simp add: dist_norm [symmetric]) | |
| 1073 | have "\<F> n field_differentiable at w" | |
| 1074 | by (metis holomorphic_on_imp_differentiable_at \<open>w \<in> S\<close> holf \<open>open S\<close>) | |
| 1075 | moreover | |
| 1076 | have "g field_differentiable at w" | |
| 1077 | using \<open>w \<in> S\<close> \<open>open S\<close> holg holomorphic_on_imp_differentiable_at by auto | |
| 1078 | moreover | |
| 1079 | have "cmod (deriv (\<lambda>w. \<F> n w - g w) w) * 2 \<le> e" | |
| 1080 | apply (rule Cauchy_higher_deriv_bound [OF hol cont in_ball, of 1, simplified]) | |
| 1081 | using \<open>r > 0\<close> by auto | |
| 1082 | ultimately have "dist (deriv (\<F> n) w) (deriv g w) \<le> e/2" | |
| 1083 | by (simp add: dist_norm) | |
| 1084 | then show ?thesis | |
| 1085 | using \<open>e > 0\<close> by auto | |
| 1086 | qed | |
| 1087 | have "cball z0 (3 * r / 4) \<subseteq> ball z0 r" | |
| 1088 | by (simp add: cball_subset_ball_iff \<open>0 < r\<close>) | |
| 1089 | with subS have "uniform_limit (cball z0 (3 * r/4)) \<F> g sequentially" | |
| 1090 | by (force intro: ul_g) | |
| 1091 | then have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>cball z0 (3 * r / 4). dist (\<F> n x) (g x) < r / 4 * e / 2" | |
| 1092 | using \<open>0 < e\<close> \<open>0 < r\<close> by (force simp: intro!: uniform_limitD) | |
| 1093 | then show "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> sphere z0 (r/2). dist (deriv (\<F> n) x) (deriv g x) < e" | |
| 1094 | apply (simp add: eventually_sequentially) | |
| 1095 | apply (elim ex_forward all_forward imp_forward asm_rl) | |
| 1096 | using * apply (force simp: dist_commute) | |
| 1097 | done | |
| 1098 | qed | |
| 1099 | show "uniform_limit (sphere z0 (r/2)) \<F> g sequentially" | |
| 1100 | proof (rule uniform_limitI) | |
| 1101 | fix e::real | |
| 1102 | assume "0 < e" | |
| 1103 | have "sphere z0 (r/2) \<subseteq> ball z0 r" | |
| 1104 | using \<open>0 < r\<close> by auto | |
| 1105 | with subS have "uniform_limit (sphere z0 (r/2)) \<F> g sequentially" | |
| 1106 | by (force intro: ul_g) | |
| 1107 | then show "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> sphere z0 (r/2). dist (\<F> n x) (g x) < e" | |
| 1108 | apply (rule uniform_limitD) | |
| 1109 | using \<open>0 < e\<close> by force | |
| 1110 | qed | |
| 1111 | show "b > 0" "\<And>x. x \<in> sphere z0 (r/2) \<Longrightarrow> b \<le> cmod (g x)" | |
| 1112 | using b \<open>0 < r\<close> by (fastforce simp: geq hnz)+ | |
| 1113 | qed | |
| 1114 | qed (use \<open>0 < r\<close> in auto) | |
| 1115 | then have "(\<lambda>n. 0) \<longlonglongrightarrow> contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z)" | |
| 1116 | by (simp add: contour_integral_unique [OF *]) | |
| 1117 | then have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z) = 0" | |
| 1118 | by (simp add: LIMSEQ_const_iff) | |
| 1119 | moreover | |
| 1120 | have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z) = | |
| 1121 | contour_integral (circlepath z0 (r/2)) (\<lambda>z. m / (z - z0) + deriv h z / h z)" | |
| 1122 | proof (rule contour_integral_eq, use \<open>0 < r\<close> in simp) | |
| 1123 | fix w | |
| 1124 | assume w: "dist z0 w * 2 = r" | |
| 1125 | then have w_inb: "w \<in> ball z0 r" | |
| 1126 | using \<open>0 < r\<close> by auto | |
| 1127 | have h_der: "(h has_field_derivative deriv h w) (at w)" | |
| 1128 | using holh holomorphic_derivI w_inb by blast | |
| 1129 | have "deriv g w = ((of_nat m * h w + deriv h w * (w - z0)) * (w - z0) ^ m) / (w - z0)" | |
| 1130 | if "r = dist z0 w * 2" "w \<noteq> z0" | |
| 1131 | proof - | |
| 1132 | have "((\<lambda>w. (w - z0) ^ m * h w) has_field_derivative | |
| 1133 | (m * h w + deriv h w * (w - z0)) * (w - z0) ^ m / (w - z0)) (at w)" | |
| 1134 | apply (rule derivative_eq_intros h_der refl)+ | |
| 1135 | using that \<open>m > 0\<close> \<open>0 < r\<close> apply (simp add: divide_simps distrib_right) | |
| 1136 | apply (metis Suc_pred mult.commute power_Suc) | |
| 1137 | done | |
| 1138 | then show ?thesis | |
| 1139 | apply (rule DERIV_imp_deriv [OF DERIV_transform_within_open [where s = "ball z0 r"]]) | |
| 1140 | using that \<open>m > 0\<close> \<open>0 < r\<close> | |
| 1141 | apply (simp_all add: hnz geq) | |
| 1142 | done | |
| 1143 | qed | |
| 1144 | with \<open>0 < r\<close> \<open>0 < m\<close> w w_inb show "deriv g w / g w = of_nat m / (w - z0) + deriv h w / h w" | |
| 1145 | by (auto simp: geq divide_simps hnz) | |
| 1146 | qed | |
| 1147 | moreover | |
| 1148 | have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. m / (z - z0) + deriv h z / h z) = | |
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
65040diff
changeset | 1149 | 2 * of_real pi * \<i> * m + 0" | 
| 65040 | 1150 | proof (rule contour_integral_unique [OF has_contour_integral_add]) | 
| 1151 | show "((\<lambda>x. m / (x - z0)) has_contour_integral 2 * of_real pi * \<i> * m) (circlepath z0 (r/2))" | |
| 1152 | by (force simp: \<open>0 < r\<close> intro: Cauchy_integral_circlepath_simple) | |
| 1153 | show "((\<lambda>x. deriv h x / h x) has_contour_integral 0) (circlepath z0 (r/2))" | |
| 1154 | apply (rule Cauchy_theorem_disc_simple [of _ z0 r]) | |
| 1155 | using hnz holh holomorphic_deriv holomorphic_on_divide \<open>0 < r\<close> | |
| 1156 | apply force+ | |
| 1157 | done | |
| 1158 | qed | |
| 1159 | ultimately show False using \<open>0 < m\<close> by auto | |
| 1160 | qed | |
| 1161 | ||
| 1162 | corollary Hurwitz_injective: | |
| 1163 | assumes S: "open S" "connected S" | |
| 1164 | and holf: "\<And>n::nat. \<F> n holomorphic_on S" | |
| 1165 | and holg: "g holomorphic_on S" | |
| 1166 | and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially" | |
| 1167 | and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c" | |
| 1168 | and inj: "\<And>n. inj_on (\<F> n) S" | |
| 1169 | shows "inj_on g S" | |
| 1170 | proof - | |
| 1171 | have False if z12: "z1 \<in> S" "z2 \<in> S" "z1 \<noteq> z2" "g z2 = g z1" for z1 z2 | |
| 1172 | proof - | |
| 1173 | obtain z0 where "z0 \<in> S" and z0: "g z0 \<noteq> g z2" | |
| 1174 | using nonconst by blast | |
| 1175 | have "(\<lambda>z. g z - g z1) holomorphic_on S" | |
| 1176 | by (intro holomorphic_intros holg) | |
| 1177 | then obtain r where "0 < r" "ball z2 r \<subseteq> S" "\<And>z. dist z2 z < r \<and> z \<noteq> z2 \<Longrightarrow> g z \<noteq> g z1" | |
| 1178 | apply (rule isolated_zeros [of "\<lambda>z. g z - g z1" S z2 z0]) | |
| 1179 | using S \<open>z0 \<in> S\<close> z0 z12 by auto | |
| 1180 | have "g z2 - g z1 \<noteq> 0" | |
| 1181 |     proof (rule Hurwitz_no_zeros [of "S - {z1}" "\<lambda>n z. \<F> n z - \<F> n z1" "\<lambda>z. g z - g z1"])
 | |
| 1182 |       show "open (S - {z1})"
 | |
| 1183 | by (simp add: S open_delete) | |
| 1184 |       show "connected (S - {z1})"
 | |
| 1185 | by (simp add: connected_open_delete [OF S]) | |
| 1186 |       show "\<And>n. (\<lambda>z. \<F> n z - \<F> n z1) holomorphic_on S - {z1}"
 | |
| 1187 | by (intro holomorphic_intros holomorphic_on_subset [OF holf]) blast | |
| 1188 |       show "(\<lambda>z. g z - g z1) holomorphic_on S - {z1}"
 | |
| 1189 | by (intro holomorphic_intros holomorphic_on_subset [OF holg]) blast | |
| 1190 | show "uniform_limit K (\<lambda>n z. \<F> n z - \<F> n z1) (\<lambda>z. g z - g z1) sequentially" | |
| 1191 |            if "compact K" "K \<subseteq> S - {z1}" for K
 | |
| 1192 | proof (rule uniform_limitI) | |
| 1193 | fix e::real | |
| 1194 | assume "e > 0" | |
| 1195 | have "uniform_limit K \<F> g sequentially" | |
| 1196 | using that ul_g by fastforce | |
| 1197 | then have K: "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> K. dist (\<F> n x) (g x) < e/2" | |
| 1198 | using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD) | |
| 1199 |         have "uniform_limit {z1} \<F> g sequentially"
 | |
| 1200 | by (simp add: ul_g z12) | |
| 1201 |         then have "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> {z1}. dist (\<F> n x) (g x) < e/2"
 | |
| 1202 | using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD) | |
| 1203 | then have z1: "\<forall>\<^sub>F n in sequentially. dist (\<F> n z1) (g z1) < e/2" | |
| 1204 | by simp | |
| 1205 | have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e/2 + e/2" | |
| 1206 | apply (rule eventually_mono [OF eventually_conj [OF K z1]]) | |
| 1207 | apply (simp add: dist_norm algebra_simps del: divide_const_simps) | |
| 1208 | by (metis add.commute dist_commute dist_norm dist_triangle_add_half) | |
| 1209 | have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e/2 + e/2" | |
| 1210 | using eventually_conj [OF K z1] | |
| 1211 | apply (rule eventually_mono) | |
| 1212 | by (metis (no_types, hide_lams) diff_add_eq diff_diff_eq2 dist_commute dist_norm dist_triangle_add_half real_sum_of_halves) | |
| 1213 | then | |
| 1214 | show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e" | |
| 1215 | by simp | |
| 1216 | qed | |
| 1217 |       show "\<And>c. \<exists>z\<in>S - {z1}. g z - g z1 \<noteq> c"
 | |
| 1218 | by (metis Diff_iff \<open>z0 \<in> S\<close> empty_iff insert_iff right_minus_eq z0 z12) | |
| 1219 |       show "\<And>n z. z \<in> S - {z1} \<Longrightarrow> \<F> n z - \<F> n z1 \<noteq> 0"
 | |
| 1220 | by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 \<open>z1 \<in> S\<close>) | |
| 1221 |       show "z2 \<in> S - {z1}"
 | |
| 1222 | using \<open>z2 \<in> S\<close> \<open>z1 \<noteq> z2\<close> by auto | |
| 1223 | qed | |
| 1224 | with z12 show False by auto | |
| 1225 | qed | |
| 1226 | then show ?thesis by (auto simp: inj_on_def) | |
| 1227 | qed | |
| 1228 | ||
| 1229 | ||
| 1230 | ||
| 1231 | subsection\<open>The Great Picard theorem\<close> | |
| 1232 | ||
| 1233 | lemma GPicard1: | |
| 1234 | assumes S: "open S" "connected S" and "w \<in> S" "0 < r" "Y \<subseteq> X" | |
| 1235 | and holX: "\<And>h. h \<in> X \<Longrightarrow> h holomorphic_on S" | |
| 1236 | and X01: "\<And>h z. \<lbrakk>h \<in> X; z \<in> S\<rbrakk> \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1" | |
| 1237 | and r: "\<And>h. h \<in> Y \<Longrightarrow> norm(h w) \<le> r" | |
| 1238 | obtains B Z where "0 < B" "open Z" "w \<in> Z" "Z \<subseteq> S" "\<And>h z. \<lbrakk>h \<in> Y; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" | |
| 1239 | proof - | |
| 1240 | obtain e where "e > 0" and e: "cball w e \<subseteq> S" | |
| 1241 | using assms open_contains_cball_eq by blast | |
| 1242 | show ?thesis | |
| 1243 | proof | |
| 1244 | show "0 < exp(pi * exp(pi * (2 + 2 * r + 12)))" | |
| 1245 | by simp | |
| 1246 | show "ball w (e / 2) \<subseteq> S" | |
| 1247 | using e ball_divide_subset_numeral ball_subset_cball by blast | |
| 1248 | show "cmod (h z) \<le> exp (pi * exp (pi * (2 + 2 * r + 12)))" | |
| 1249 | if "h \<in> Y" "z \<in> ball w (e / 2)" for h z | |
| 1250 | proof - | |
| 1251 | have "h \<in> X" | |
| 1252 | using \<open>Y \<subseteq> X\<close> \<open>h \<in> Y\<close> by blast | |
| 1253 | with holX have "h holomorphic_on S" | |
| 1254 | by auto | |
| 1255 | then have "h holomorphic_on cball w e" | |
| 1256 | by (metis e holomorphic_on_subset) | |
| 1257 | then have hol_h_o: "(h \<circ> (\<lambda>z. (w + of_real e * z))) holomorphic_on cball 0 1" | |
| 1258 | apply (intro holomorphic_intros holomorphic_on_compose) | |
| 1259 | apply (erule holomorphic_on_subset) | |
| 1260 | using that \<open>e > 0\<close> by (auto simp: dist_norm norm_mult) | |
| 1261 | have norm_le_r: "cmod ((h \<circ> (\<lambda>z. w + complex_of_real e * z)) 0) \<le> r" | |
| 1262 | by (auto simp: r \<open>h \<in> Y\<close>) | |
| 1263 | have le12: "norm (of_real(inverse e) * (z - w)) \<le> 1/2" | |
| 1264 | using that \<open>e > 0\<close> by (simp add: inverse_eq_divide dist_norm norm_minus_commute norm_divide) | |
| 1265 | have non01: "\<And>z::complex. cmod z \<le> 1 \<Longrightarrow> h (w + e * z) \<noteq> 0 \<and> h (w + e * z) \<noteq> 1" | |
| 1266 | apply (rule X01 [OF \<open>h \<in> X\<close>]) | |
| 1267 | apply (rule subsetD [OF e]) | |
| 1268 | using \<open>0 < e\<close> by (auto simp: dist_norm norm_mult) | |
| 1269 | have "cmod (h z) \<le> cmod (h (w + of_real e * (inverse e * (z - w))))" | |
| 1270 | using \<open>0 < e\<close> by (simp add: divide_simps) | |
| 1271 | also have "... \<le> exp (pi * exp (pi * (14 + 2 * r)))" | |
| 1272 | using r [OF \<open>h \<in> Y\<close>] Schottky [OF hol_h_o norm_le_r _ _ _ le12] non01 by auto | |
| 1273 | finally | |
| 1274 | show ?thesis by simp | |
| 1275 | qed | |
| 1276 | qed (use \<open>e > 0\<close> in auto) | |
| 1277 | qed | |
| 1278 | ||
| 1279 | lemma GPicard2: | |
| 1280 |   assumes "S \<subseteq> T" "connected T" "S \<noteq> {}" "open S" "\<And>x. \<lbrakk>x islimpt S; x \<in> T\<rbrakk> \<Longrightarrow> x \<in> S"
 | |
| 1281 | shows "S = T" | |
| 1282 | by (metis assms open_subset connected_clopen closedin_limpt) | |
| 1283 | ||
| 1284 | ||
| 1285 | lemma GPicard3: | |
| 1286 | assumes S: "open S" "connected S" "w \<in> S" and "Y \<subseteq> X" | |
| 1287 | and holX: "\<And>h. h \<in> X \<Longrightarrow> h holomorphic_on S" | |
| 1288 | and X01: "\<And>h z. \<lbrakk>h \<in> X; z \<in> S\<rbrakk> \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1" | |
| 1289 | and no_hw_le1: "\<And>h. h \<in> Y \<Longrightarrow> norm(h w) \<le> 1" | |
| 1290 | and "compact K" "K \<subseteq> S" | |
| 1291 | obtains B where "\<And>h z. \<lbrakk>h \<in> Y; z \<in> K\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" | |
| 1292 | proof - | |
| 1293 |   define U where "U \<equiv> {z \<in> S. \<exists>B Z. 0 < B \<and> open Z \<and> z \<in> Z \<and> Z \<subseteq> S \<and>
 | |
| 1294 | (\<forall>h z'. h \<in> Y \<and> z' \<in> Z \<longrightarrow> norm(h z') \<le> B)}" | |
| 1295 | then have "U \<subseteq> S" by blast | |
| 1296 | have "U = S" | |
| 1297 | proof (rule GPicard2 [OF \<open>U \<subseteq> S\<close> \<open>connected S\<close>]) | |
| 1298 |     show "U \<noteq> {}"
 | |
| 1299 | proof - | |
| 1300 | obtain B Z where "0 < B" "open Z" "w \<in> Z" "Z \<subseteq> S" | |
| 1301 | and "\<And>h z. \<lbrakk>h \<in> Y; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" | |
| 1302 | apply (rule GPicard1 [OF S zero_less_one \<open>Y \<subseteq> X\<close> holX]) | |
| 1303 | using no_hw_le1 X01 by force+ | |
| 1304 | then show ?thesis | |
| 1305 | unfolding U_def using \<open>w \<in> S\<close> by blast | |
| 1306 | qed | |
| 1307 | show "open U" | |
| 1308 | unfolding open_subopen [of U] by (auto simp: U_def) | |
| 1309 | fix v | |
| 1310 | assume v: "v islimpt U" "v \<in> S" | |
| 1311 | have "~ (\<forall>r>0. \<exists>h\<in>Y. r < cmod (h v))" | |
| 1312 | proof | |
| 1313 | assume "\<forall>r>0. \<exists>h\<in>Y. r < cmod (h v)" | |
| 1314 | then have "\<forall>n. \<exists>h\<in>Y. Suc n < cmod (h v)" | |
| 1315 | by simp | |
| 1316 | then obtain \<F> where FY: "\<And>n. \<F> n \<in> Y" and ltF: "\<And>n. Suc n < cmod (\<F> n v)" | |
| 1317 | by metis | |
| 1318 | define \<G> where "\<G> \<equiv> \<lambda>n z. inverse(\<F> n z)" | |
| 1319 | have hol\<G>: "\<G> n holomorphic_on S" for n | |
| 1320 | apply (simp add: \<G>_def) | |
| 1321 | using FY X01 \<open>Y \<subseteq> X\<close> holX apply (blast intro: holomorphic_on_inverse) | |
| 1322 | done | |
| 1323 | have \<G>not0: "\<G> n z \<noteq> 0" and \<G>not1: "\<G> n z \<noteq> 1" if "z \<in> S" for n z | |
| 1324 | using FY X01 \<open>Y \<subseteq> X\<close> that by (force simp: \<G>_def)+ | |
| 1325 | have \<G>_le1: "cmod (\<G> n v) \<le> 1" for n | |
| 1326 | using less_le_trans linear ltF | |
| 1327 | by (fastforce simp add: \<G>_def norm_inverse inverse_le_1_iff) | |
| 1328 |       define W where "W \<equiv> {h. h holomorphic_on S \<and> (\<forall>z \<in> S. h z \<noteq> 0 \<and> h z \<noteq> 1)}"
 | |
| 1329 | obtain B Z where "0 < B" "open Z" "v \<in> Z" "Z \<subseteq> S" | |
| 1330 | and B: "\<And>h z. \<lbrakk>h \<in> range \<G>; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" | |
| 1331 | apply (rule GPicard1 [OF \<open>open S\<close> \<open>connected S\<close> \<open>v \<in> S\<close> zero_less_one, of "range \<G>" W]) | |
| 1332 | using hol\<G> \<G>not0 \<G>not1 \<G>_le1 by (force simp: W_def)+ | |
| 1333 | then obtain e where "e > 0" and e: "ball v e \<subseteq> Z" | |
| 1334 | by (meson open_contains_ball) | |
| 1335 | obtain h j where holh: "h holomorphic_on ball v e" and "subseq j" | |
| 1336 | and lim: "\<And>x. x \<in> ball v e \<Longrightarrow> (\<lambda>n. \<G> (j n) x) \<longlonglongrightarrow> h x" | |
| 1337 | and ulim: "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> | |
| 1338 | \<Longrightarrow> uniform_limit K (\<G> \<circ> j) h sequentially" | |
| 1339 | proof (rule Montel) | |
| 1340 | show "\<And>h. h \<in> range \<G> \<Longrightarrow> h holomorphic_on ball v e" | |
| 1341 | by (metis \<open>Z \<subseteq> S\<close> e hol\<G> holomorphic_on_subset imageE) | |
| 1342 | show "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> \<Longrightarrow> \<exists>B. \<forall>h\<in>range \<G>. \<forall>z\<in>K. cmod (h z) \<le> B" | |
| 1343 | using B e by blast | |
| 1344 | qed auto | |
| 1345 | have "h v = 0" | |
| 1346 | proof (rule LIMSEQ_unique) | |
| 1347 | show "(\<lambda>n. \<G> (j n) v) \<longlonglongrightarrow> h v" | |
| 1348 | using \<open>e > 0\<close> lim by simp | |
| 1349 | have lt_Fj: "real x \<le> cmod (\<F> (j x) v)" for x | |
| 1350 | by (metis of_nat_Suc ltF \<open>subseq j\<close> add.commute less_eq_real_def less_le_trans nat_le_real_less seq_suble) | |
| 1351 | show "(\<lambda>n. \<G> (j n) v) \<longlonglongrightarrow> 0" | |
| 1352 | proof (rule Lim_null_comparison [OF eventually_sequentiallyI seq_harmonic]) | |
| 1353 | show "cmod (\<G> (j x) v) \<le> inverse (real x)" if "1 \<le> x" for x | |
| 1354 | using that by (simp add: \<G>_def norm_inverse_le_norm [OF lt_Fj]) | |
| 1355 | qed | |
| 1356 | qed | |
| 1357 | have "h v \<noteq> 0" | |
| 1358 | proof (rule Hurwitz_no_zeros [of "ball v e" "\<G> \<circ> j" h]) | |
| 1359 | show "\<And>n. (\<G> \<circ> j) n holomorphic_on ball v e" | |
| 1360 | using \<open>Z \<subseteq> S\<close> e hol\<G> by force | |
| 1361 | show "\<And>n z. z \<in> ball v e \<Longrightarrow> (\<G> \<circ> j) n z \<noteq> 0" | |
| 1362 | using \<G>not0 \<open>Z \<subseteq> S\<close> e by fastforce | |
| 1363 | show "\<exists>z\<in>ball v e. h z \<noteq> c" for c | |
| 1364 | proof - | |
| 1365 | have False if "\<And>z. dist v z < e \<Longrightarrow> h z = c" | |
| 1366 | proof - | |
| 1367 | have "h v = c" | |
| 1368 | by (simp add: \<open>0 < e\<close> that) | |
| 1369 | obtain y where "y \<in> U" "y \<noteq> v" and y: "dist y v < e" | |
| 1370 | using v \<open>e > 0\<close> by (auto simp: islimpt_approachable) | |
| 1371 | then obtain C T where "y \<in> S" "C > 0" "open T" "y \<in> T" "T \<subseteq> S" | |
| 1372 | and "\<And>h z'. \<lbrakk>h \<in> Y; z' \<in> T\<rbrakk> \<Longrightarrow> cmod (h z') \<le> C" | |
| 1373 | using \<open>y \<in> U\<close> by (auto simp: U_def) | |
| 1374 | then have le_C: "\<And>n. cmod (\<F> n y) \<le> C" | |
| 1375 | using FY by blast | |
| 1376 | have "\<forall>\<^sub>F n in sequentially. dist (\<G> (j n) y) (h y) < inverse C" | |
| 1377 |               using uniform_limitD [OF ulim [of "{y}"], of "inverse C"] \<open>C > 0\<close> y
 | |
| 1378 | by (simp add: dist_commute) | |
| 1379 | then obtain n where "dist (\<G> (j n) y) (h y) < inverse C" | |
| 1380 | by (meson eventually_at_top_linorder order_refl) | |
| 1381 | moreover | |
| 1382 | have "h y = h v" | |
| 1383 | by (metis \<open>h v = c\<close> dist_commute that y) | |
| 1384 | ultimately have "norm (\<G> (j n) y) < inverse C" | |
| 1385 | by (simp add: \<open>h v = 0\<close>) | |
| 1386 | then have "C < norm (\<F> (j n) y)" | |
| 1387 | apply (simp add: \<G>_def) | |
| 1388 | by (metis FY X01 \<open>0 < C\<close> \<open>y \<in> S\<close> \<open>Y \<subseteq> X\<close> inverse_less_iff_less norm_inverse subsetD zero_less_norm_iff) | |
| 1389 | show False | |
| 1390 | using \<open>C < cmod (\<F> (j n) y)\<close> le_C not_less by blast | |
| 1391 | qed | |
| 1392 | then show ?thesis by force | |
| 1393 | qed | |
| 1394 | show "h holomorphic_on ball v e" | |
| 1395 | by (simp add: holh) | |
| 1396 | show "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> \<Longrightarrow> uniform_limit K (\<G> \<circ> j) h sequentially" | |
| 1397 | by (simp add: ulim) | |
| 1398 | qed (use \<open>e > 0\<close> in auto) | |
| 1399 | with \<open>h v = 0\<close> show False by blast | |
| 1400 | qed | |
| 1401 | then show "v \<in> U" | |
| 1402 | apply (clarsimp simp add: U_def v) | |
| 1403 | apply (rule GPicard1[OF \<open>open S\<close> \<open>connected S\<close> \<open>v \<in> S\<close> _ \<open>Y \<subseteq> X\<close> holX]) | |
| 1404 | using X01 no_hw_le1 apply (meson | force simp: not_less)+ | |
| 1405 | done | |
| 1406 | qed | |
| 1407 | have "\<And>x. x \<in> K \<longrightarrow> x \<in> U" | |
| 1408 | using \<open>U = S\<close> \<open>K \<subseteq> S\<close> by blast | |
| 1409 | then have "\<And>x. x \<in> K \<longrightarrow> (\<exists>B Z. 0 < B \<and> open Z \<and> x \<in> Z \<and> | |
| 1410 | (\<forall>h z'. h \<in> Y \<and> z' \<in> Z \<longrightarrow> norm(h z') \<le> B))" | |
| 1411 | unfolding U_def by blast | |
| 1412 | then obtain F Z where F: "\<And>x. x \<in> K \<Longrightarrow> open (Z x) \<and> x \<in> Z x \<and> | |
| 1413 | (\<forall>h z'. h \<in> Y \<and> z' \<in> Z x \<longrightarrow> norm(h z') \<le> F x)" | |
| 1414 | by metis | |
| 1415 | then obtain L where "L \<subseteq> K" "finite L" and L: "K \<subseteq> (\<Union>c \<in> L. Z c)" | |
| 1416 | by (auto intro: compactE_image [OF \<open>compact K\<close>, of K Z]) | |
| 1417 | then have *: "\<And>x h z'. \<lbrakk>x \<in> L; h \<in> Y \<and> z' \<in> Z x\<rbrakk> \<Longrightarrow> cmod (h z') \<le> F x" | |
| 1418 | using F by blast | |
| 1419 | have "\<exists>B. \<forall>h z. h \<in> Y \<and> z \<in> K \<longrightarrow> norm(h z) \<le> B" | |
| 1420 |   proof (cases "L = {}")
 | |
| 1421 | case True with L show ?thesis by simp | |
| 1422 | next | |
| 1423 | case False | |
| 1424 | with \<open>finite L\<close> show ?thesis | |
| 1425 | apply (rule_tac x = "Max (F ` L)" in exI) | |
| 1426 | apply (simp add: linorder_class.Max_ge_iff) | |
| 1427 | using * F by (metis L UN_E subsetD) | |
| 1428 | qed | |
| 1429 | with that show ?thesis by metis | |
| 1430 | qed | |
| 1431 | ||
| 1432 | ||
| 1433 | lemma GPicard4: | |
| 1434 |   assumes "0 < k" and holf: "f holomorphic_on (ball 0 k - {0})" 
 | |
| 1435 | and AE: "\<And>e. \<lbrakk>0 < e; e < k\<rbrakk> \<Longrightarrow> \<exists>d. 0 < d \<and> d < e \<and> (\<forall>z \<in> sphere 0 d. norm(f z) \<le> B)" | |
| 1436 |   obtains \<epsilon> where "0 < \<epsilon>" "\<epsilon> < k" "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> norm(f z) \<le> B"
 | |
| 1437 | proof - | |
| 1438 | obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < k/2" and \<epsilon>: "\<And>z. norm z = \<epsilon> \<Longrightarrow> norm(f z) \<le> B" | |
| 1439 | using AE [of "k/2"] \<open>0 < k\<close> by auto | |
| 1440 | show ?thesis | |
| 1441 | proof | |
| 1442 | show "\<epsilon> < k" | |
| 1443 | using \<open>0 < k\<close> \<open>\<epsilon> < k/2\<close> by auto | |
| 1444 |     show "cmod (f \<xi>) \<le> B" if \<xi>: "\<xi> \<in> ball 0 \<epsilon> - {0}" for \<xi>
 | |
| 1445 | proof - | |
| 1446 | obtain d where "0 < d" "d < norm \<xi>" and d: "\<And>z. norm z = d \<Longrightarrow> norm(f z) \<le> B" | |
| 1447 | using AE [of "norm \<xi>"] \<open>\<epsilon> < k\<close> \<xi> by auto | |
| 1448 | have [simp]: "closure (cball 0 \<epsilon> - ball 0 d) = cball 0 \<epsilon> - ball 0 d" | |
| 1449 | by (blast intro!: closure_closed) | |
| 1450 | have [simp]: "interior (cball 0 \<epsilon> - ball 0 d) = ball 0 \<epsilon> - cball (0::complex) d" | |
| 1451 | using \<open>0 < \<epsilon>\<close> \<open>0 < d\<close> by (simp add: interior_diff) | |
| 1452 | have *: "norm(f w) \<le> B" if "w \<in> cball 0 \<epsilon> - ball 0 d" for w | |
| 1453 | proof (rule maximum_modulus_frontier [of f "cball 0 \<epsilon> - ball 0 d"]) | |
| 1454 | show "f holomorphic_on interior (cball 0 \<epsilon> - ball 0 d)" | |
| 1455 | apply (rule holomorphic_on_subset [OF holf]) | |
| 1456 | using \<open>\<epsilon> < k\<close> \<open>0 < d\<close> that by auto | |
| 1457 | show "continuous_on (closure (cball 0 \<epsilon> - ball 0 d)) f" | |
| 1458 | apply (rule holomorphic_on_imp_continuous_on) | |
| 1459 | apply (rule holomorphic_on_subset [OF holf]) | |
| 1460 | using \<open>0 < d\<close> \<open>\<epsilon> < k\<close> by auto | |
| 1461 | show "\<And>z. z \<in> frontier (cball 0 \<epsilon> - ball 0 d) \<Longrightarrow> cmod (f z) \<le> B" | |
| 1462 | apply (simp add: frontier_def) | |
| 1463 | using \<epsilon> d less_eq_real_def by blast | |
| 1464 | qed (use that in auto) | |
| 1465 | show ?thesis | |
| 1466 | using * \<open>d < cmod \<xi>\<close> that by auto | |
| 1467 | qed | |
| 1468 | qed (use \<open>0 < \<epsilon>\<close> in auto) | |
| 1469 | qed | |
| 1470 | ||
| 1471 | ||
| 1472 | lemma GPicard5: | |
| 1473 |   assumes holf: "f holomorphic_on (ball 0 1 - {0})"
 | |
| 1474 |       and f01:  "\<And>z. z \<in> ball 0 1 - {0} \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1"
 | |
| 1475 | obtains e B where "0 < e" "e < 1" "0 < B" | |
| 1476 |                     "(\<forall>z \<in> ball 0 e - {0}. norm(f z) \<le> B) \<or>
 | |
| 1477 |                      (\<forall>z \<in> ball 0 e - {0}. norm(f z) \<ge> B)"
 | |
| 1478 | proof - | |
| 1479 | have [simp]: "1 + of_nat n \<noteq> (0::complex)" for n | |
| 1480 | using of_nat_eq_0_iff by fastforce | |
| 1481 | have [simp]: "cmod (1 + of_nat n) = 1 + of_nat n" for n | |
| 1482 | by (metis norm_of_nat of_nat_Suc) | |
| 1483 |   have *: "(\<lambda>x::complex. x / of_nat (Suc n)) ` (ball 0 1 - {0}) \<subseteq> ball 0 1 - {0}" for n
 | |
| 1484 | by (auto simp: norm_divide divide_simps split: if_split_asm) | |
| 1485 | define h where "h \<equiv> \<lambda>n z::complex. f (z / (Suc n))" | |
| 1486 |   have holh: "(h n) holomorphic_on ball 0 1 - {0}" for n
 | |
| 1487 | unfolding h_def | |
| 1488 | proof (rule holomorphic_on_compose_gen [unfolded o_def, OF _ holf *]) | |
| 1489 |     show "(\<lambda>x. x / of_nat (Suc n)) holomorphic_on ball 0 1 - {0}"
 | |
| 1490 | by (intro holomorphic_intros) auto | |
| 1491 | qed | |
| 1492 |   have h01: "\<And>n z. z \<in> ball 0 1 - {0} \<Longrightarrow> h n z \<noteq> 0 \<and> h n z \<noteq> 1" 
 | |
| 1493 | unfolding h_def | |
| 1494 | apply (rule f01) | |
| 1495 | using * by force | |
| 1496 |   obtain w where w: "w \<in> ball 0 1 - {0::complex}"
 | |
| 1497 | by (rule_tac w = "1/2" in that) auto | |
| 1498 |   consider "infinite {n. norm(h n w) \<le> 1}" | "infinite {n. 1 \<le> norm(h n w)}"
 | |
| 1499 | by (metis (mono_tags, lifting) infinite_nat_iff_unbounded_le le_cases mem_Collect_eq) | |
| 1500 | then show ?thesis | |
| 1501 | proof cases | |
| 1502 | case 1 | |
| 1503 |     with infinite_enumerate obtain r where "subseq r" and r: "\<And>n. r n \<in> {n. norm(h n w) \<le> 1}"
 | |
| 1504 | by blast | |
| 1505 | obtain B where B: "\<And>j z. \<lbrakk>norm z = 1/2; j \<in> range (h \<circ> r)\<rbrakk> \<Longrightarrow> norm(j z) \<le> B" | |
| 1506 | proof (rule GPicard3 [OF _ _ w, where K = "sphere 0 (1/2)"]) | |
| 1507 | show "range (h \<circ> r) \<subseteq> | |
| 1508 |             {g. g holomorphic_on ball 0 1 - {0} \<and> (\<forall>z\<in>ball 0 1 - {0}. g z \<noteq> 0 \<and> g z \<noteq> 1)}"
 | |
| 1509 | apply clarsimp | |
| 1510 | apply (intro conjI holomorphic_intros holomorphic_on_compose holh) | |
| 1511 | using h01 apply auto | |
| 1512 | done | |
| 1513 |       show "connected (ball 0 1 - {0::complex})"
 | |
| 1514 | by (simp add: connected_open_delete) | |
| 1515 | qed (use r in auto) | |
| 1516 | have normf_le_B: "cmod(f z) \<le> B" if "norm z = 1 / (2 * (1 + of_nat (r n)))" for z n | |
| 1517 | proof - | |
| 1518 | have *: "\<And>w. norm w = 1/2 \<Longrightarrow> cmod((f (w / (1 + of_nat (r n))))) \<le> B" | |
| 1519 | using B by (auto simp: h_def o_def) | |
| 1520 | have half: "norm (z * (1 + of_nat (r n))) = 1/2" | |
| 1521 | by (simp add: norm_mult divide_simps that) | |
| 1522 | show ?thesis | |
| 1523 | using * [OF half] by simp | |
| 1524 | qed | |
| 1525 |     obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < 1" "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> cmod(f z) \<le> B"
 | |
| 1526 | proof (rule GPicard4 [OF zero_less_one holf, of B]) | |
| 1527 | fix e::real | |
| 1528 | assume "0 < e" "e < 1" | |
| 1529 | obtain n where "(1/e - 2) / 2 < real n" | |
| 1530 | using reals_Archimedean2 by blast | |
| 1531 | also have "... \<le> r n" | |
| 1532 | using \<open>subseq r\<close> by (simp add: seq_suble) | |
| 1533 | finally have "(1/e - 2) / 2 < real (r n)" . | |
| 1534 | with \<open>0 < e\<close> have e: "e > 1 / (2 + 2 * real (r n))" | |
| 1535 | by (simp add: field_simps) | |
| 1536 | show "\<exists>d>0. d < e \<and> (\<forall>z\<in>sphere 0 d. cmod (f z) \<le> B)" | |
| 1537 | apply (rule_tac x="1 / (2 * (1 + of_nat (r n)))" in exI) | |
| 1538 | using normf_le_B by (simp add: e) | |
| 1539 | qed blast | |
| 1540 | then have \<epsilon>: "cmod (f z) \<le> \<bar>B\<bar> + 1" if "cmod z < \<epsilon>" "z \<noteq> 0" for z | |
| 1541 | using that by fastforce | |
| 1542 | have "0 < \<bar>B\<bar> + 1" | |
| 1543 | by simp | |
| 1544 | then show ?thesis | |
| 1545 | apply (rule that [OF \<open>0 < \<epsilon>\<close> \<open>\<epsilon> < 1\<close>]) | |
| 1546 | using \<epsilon> by auto | |
| 1547 | next | |
| 1548 | case 2 | |
| 1549 |     with infinite_enumerate obtain r where "subseq r" and r: "\<And>n. r n \<in> {n. norm(h n w) \<ge> 1}"
 | |
| 1550 | by blast | |
| 1551 | obtain B where B: "\<And>j z. \<lbrakk>norm z = 1/2; j \<in> range (\<lambda>n. inverse \<circ> h (r n))\<rbrakk> \<Longrightarrow> norm(j z) \<le> B" | |
| 1552 | proof (rule GPicard3 [OF _ _ w, where K = "sphere 0 (1/2)"]) | |
| 1553 | show "range (\<lambda>n. inverse \<circ> h (r n)) \<subseteq> | |
| 1554 |             {g. g holomorphic_on ball 0 1 - {0} \<and> (\<forall>z\<in>ball 0 1 - {0}. g z \<noteq> 0 \<and> g z \<noteq> 1)}"
 | |
| 1555 | apply clarsimp | |
| 1556 | apply (intro conjI holomorphic_intros holomorphic_on_compose_gen [unfolded o_def, OF _ holh] holomorphic_on_compose) | |
| 1557 | using h01 apply auto | |
| 1558 | done | |
| 1559 |       show "connected (ball 0 1 - {0::complex})"
 | |
| 1560 | by (simp add: connected_open_delete) | |
| 1561 | show "\<And>j. j \<in> range (\<lambda>n. inverse \<circ> h (r n)) \<Longrightarrow> cmod (j w) \<le> 1" | |
| 1562 | using r norm_inverse_le_norm by fastforce | |
| 1563 | qed (use r in auto) | |
| 1564 | have norm_if_le_B: "cmod(inverse (f z)) \<le> B" if "norm z = 1 / (2 * (1 + of_nat (r n)))" for z n | |
| 1565 | proof - | |
| 1566 | have *: "inverse (cmod((f (z / (1 + of_nat (r n)))))) \<le> B" if "norm z = 1/2" for z | |
| 1567 | using B [OF that] by (force simp: norm_inverse h_def) | |
| 1568 | have half: "norm (z * (1 + of_nat (r n))) = 1/2" | |
| 1569 | by (simp add: norm_mult divide_simps that) | |
| 1570 | show ?thesis | |
| 1571 | using * [OF half] by (simp add: norm_inverse) | |
| 1572 | qed | |
| 1573 |     have hol_if: "(inverse \<circ> f) holomorphic_on (ball 0 1 - {0})"
 | |
| 1574 | by (metis (no_types, lifting) holf comp_apply f01 holomorphic_on_inverse holomorphic_transform) | |
| 1575 |     obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < 1" and leB: "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> cmod((inverse \<circ> f) z) \<le> B"
 | |
| 1576 | proof (rule GPicard4 [OF zero_less_one hol_if, of B]) | |
| 1577 | fix e::real | |
| 1578 | assume "0 < e" "e < 1" | |
| 1579 | obtain n where "(1/e - 2) / 2 < real n" | |
| 1580 | using reals_Archimedean2 by blast | |
| 1581 | also have "... \<le> r n" | |
| 1582 | using \<open>subseq r\<close> by (simp add: seq_suble) | |
| 1583 | finally have "(1/e - 2) / 2 < real (r n)" . | |
| 1584 | with \<open>0 < e\<close> have e: "e > 1 / (2 + 2 * real (r n))" | |
| 1585 | by (simp add: field_simps) | |
| 1586 | show "\<exists>d>0. d < e \<and> (\<forall>z\<in>sphere 0 d. cmod ((inverse \<circ> f) z) \<le> B)" | |
| 1587 | apply (rule_tac x="1 / (2 * (1 + of_nat (r n)))" in exI) | |
| 1588 | using norm_if_le_B by (simp add: e) | |
| 1589 | qed blast | |
| 1590 | have \<epsilon>: "cmod (f z) \<ge> inverse B" and "B > 0" if "cmod z < \<epsilon>" "z \<noteq> 0" for z | |
| 1591 | proof - | |
| 1592 | have "inverse (cmod (f z)) \<le> B" | |
| 1593 | using leB that by (simp add: norm_inverse) | |
| 1594 | moreover | |
| 1595 | have "f z \<noteq> 0" | |
| 1596 | using \<open>\<epsilon> < 1\<close> f01 that by auto | |
| 1597 | ultimately show "cmod (f z) \<ge> inverse B" | |
| 1598 | by (simp add: norm_inverse inverse_le_imp_le) | |
| 1599 | show "B > 0" | |
| 1600 | using \<open>f z \<noteq> 0\<close> \<open>inverse (cmod (f z)) \<le> B\<close> not_le order.trans by fastforce | |
| 1601 | qed | |
| 1602 | then have "B > 0" | |
| 1603 | by (metis \<open>0 < \<epsilon>\<close> dense leI order.asym vector_choose_size) | |
| 1604 | then have "inverse B > 0" | |
| 1605 | by (simp add: divide_simps) | |
| 1606 | then show ?thesis | |
| 1607 | apply (rule that [OF \<open>0 < \<epsilon>\<close> \<open>\<epsilon> < 1\<close>]) | |
| 1608 | using \<epsilon> by auto | |
| 1609 | qed | |
| 1610 | qed | |
| 1611 | ||
| 1612 | ||
| 1613 | lemma GPicard6: | |
| 1614 |   assumes "open M" "z \<in> M" "a \<noteq> 0" and holf: "f holomorphic_on (M - {z})"
 | |
| 1615 |       and f0a: "\<And>w. w \<in> M - {z} \<Longrightarrow> f w \<noteq> 0 \<and> f w \<noteq> a"
 | |
| 1616 | obtains r where "0 < r" "ball z r \<subseteq> M" | |
| 1617 |                   "bounded(f ` (ball z r - {z})) \<or>
 | |
| 1618 |                    bounded((inverse \<circ> f) ` (ball z r - {z}))"
 | |
| 1619 | proof - | |
| 1620 | obtain r where "0 < r" and r: "ball z r \<subseteq> M" | |
| 1621 | using assms openE by blast | |
| 1622 | let ?g = "\<lambda>w. f (z + of_real r * w) / a" | |
| 1623 | obtain e B where "0 < e" "e < 1" "0 < B" | |
| 1624 |     and B: "(\<forall>z \<in> ball 0 e - {0}. norm(?g z) \<le> B) \<or> (\<forall>z \<in> ball 0 e - {0}. norm(?g z) \<ge> B)"
 | |
| 1625 | proof (rule GPicard5) | |
| 1626 |     show "?g holomorphic_on ball 0 1 - {0}"
 | |
| 1627 | apply (intro holomorphic_intros holomorphic_on_compose_gen [unfolded o_def, OF _ holf]) | |
| 1628 | using \<open>0 < r\<close> \<open>a \<noteq> 0\<close> r | |
| 1629 | by (auto simp: dist_norm norm_mult subset_eq) | |
| 1630 |     show "\<And>w. w \<in> ball 0 1 - {0} \<Longrightarrow> f (z + of_real r * w) / a \<noteq> 0 \<and> f (z + of_real r * w) / a \<noteq> 1"
 | |
| 1631 | apply (simp add: divide_simps \<open>a \<noteq> 0\<close>) | |
| 1632 | apply (rule f0a) | |
| 1633 | using \<open>0 < r\<close> r by (auto simp: dist_norm norm_mult subset_eq) | |
| 1634 | qed | |
| 1635 | show ?thesis | |
| 1636 | proof | |
| 1637 | show "0 < e*r" | |
| 1638 | by (simp add: \<open>0 < e\<close> \<open>0 < r\<close>) | |
| 1639 | have "ball z (e * r) \<subseteq> ball z r" | |
| 1640 | by (simp add: \<open>0 < r\<close> \<open>e < 1\<close> order.strict_implies_order subset_ball) | |
| 1641 | then show "ball z (e * r) \<subseteq> M" | |
| 1642 | using r by blast | |
| 1643 |     consider "\<And>z. z \<in> ball 0 e - {0} \<Longrightarrow> norm(?g z) \<le> B" | "\<And>z. z \<in> ball 0 e - {0} \<Longrightarrow> norm(?g z) \<ge> B"
 | |
| 1644 | using B by blast | |
| 1645 |     then show "bounded (f ` (ball z (e * r) - {z})) \<or>
 | |
| 1646 |           bounded ((inverse \<circ> f) ` (ball z (e * r) - {z}))"
 | |
| 1647 | proof cases | |
| 1648 | case 1 | |
| 1649 | have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> cmod (f w) \<le> B * norm a" for w | |
| 1650 | using \<open>a \<noteq> 0\<close> \<open>0 < r\<close> 1 [of "(w - z) / r"] | |
| 1651 | by (simp add: norm_divide dist_norm divide_simps) | |
| 1652 | then show ?thesis | |
| 1653 | by (force simp: intro!: boundedI) | |
| 1654 | next | |
| 1655 | case 2 | |
| 1656 | have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> cmod (f w) \<ge> B * norm a" for w | |
| 1657 | using \<open>a \<noteq> 0\<close> \<open>0 < r\<close> 2 [of "(w - z) / r"] | |
| 1658 | by (simp add: norm_divide dist_norm divide_simps) | |
| 1659 | then have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> inverse (cmod (f w)) \<le> inverse (B * norm a)" for w | |
| 1660 | by (metis \<open>0 < B\<close> \<open>a \<noteq> 0\<close> mult_pos_pos norm_inverse norm_inverse_le_norm zero_less_norm_iff) | |
| 1661 | then show ?thesis | |
| 1662 | by (force simp: norm_inverse intro!: boundedI) | |
| 1663 | qed | |
| 1664 | qed | |
| 1665 | qed | |
| 1666 | ||
| 1667 | ||
| 1668 | theorem great_Picard: | |
| 1669 |   assumes "open M" "z \<in> M" "a \<noteq> b" and holf: "f holomorphic_on (M - {z})"
 | |
| 1670 |       and fab: "\<And>w. w \<in> M - {z} \<Longrightarrow> f w \<noteq> a \<and> f w \<noteq> b"
 | |
| 1671 | obtains l where "(f \<longlongrightarrow> l) (at z) \<or> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" | |
| 1672 | proof - | |
| 1673 | obtain r where "0 < r" and zrM: "ball z r \<subseteq> M" | |
| 1674 |              and r: "bounded((\<lambda>z. f z - a) ` (ball z r - {z})) \<or>
 | |
| 1675 |                      bounded((inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}))"
 | |
| 1676 | proof (rule GPicard6 [OF \<open>open M\<close> \<open>z \<in> M\<close>]) | |
| 1677 | show "b - a \<noteq> 0" | |
| 1678 | using assms by auto | |
| 1679 |     show "(\<lambda>z. f z - a) holomorphic_on M - {z}"
 | |
| 1680 | by (intro holomorphic_intros holf) | |
| 1681 | qed (use fab in auto) | |
| 1682 |   have holfb: "f holomorphic_on ball z r - {z}"
 | |
| 1683 | apply (rule holomorphic_on_subset [OF holf]) | |
| 1684 | using zrM by auto | |
| 1685 |   have holfb_i: "(\<lambda>z. inverse(f z - a)) holomorphic_on ball z r - {z}"
 | |
| 1686 | apply (intro holomorphic_intros holfb) | |
| 1687 | using fab zrM by fastforce | |
| 1688 | show ?thesis | |
| 1689 | using r | |
| 1690 | proof | |
| 1691 |     assume "bounded ((\<lambda>z. f z - a) ` (ball z r - {z}))"
 | |
| 1692 |     then obtain B where B: "\<And>w. w \<in> (\<lambda>z. f z - a) ` (ball z r - {z}) \<Longrightarrow> norm w \<le> B"
 | |
| 1693 | by (force simp: bounded_iff) | |
| 1694 | have "\<forall>\<^sub>F w in at z. cmod (f w - a) \<le> B" | |
| 1695 | apply (simp add: eventually_at) | |
| 1696 | apply (rule_tac x=r in exI) | |
| 1697 | using \<open>0 < r\<close> by (auto simp: dist_commute intro!: B) | |
| 1698 | then have "\<exists>B. \<forall>\<^sub>F w in at z. cmod (f w) \<le> B" | |
| 1699 | apply (rule_tac x="B + norm a" in exI) | |
| 1700 | apply (erule eventually_mono) | |
| 1701 | by (metis add.commute add_le_cancel_right norm_triangle_sub order.trans) | |
| 1702 |     then obtain g where holg: "g holomorphic_on ball z r" and gf: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w = f w"
 | |
| 1703 | using \<open>0 < r\<close> holomorphic_on_extend_bounded [OF holfb] by auto | |
| 1704 | then have "g \<midarrow>z\<rightarrow> g z" | |
| 1705 | apply (simp add: continuous_at [symmetric]) | |
| 1706 | using \<open>0 < r\<close> centre_in_ball field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at by blast | |
| 1707 | then have "(f \<longlongrightarrow> g z) (at z)" | |
| 1708 | apply (rule Lim_transform_within_open [of g "g z" z UNIV "ball z r"]) | |
| 1709 | using \<open>0 < r\<close> by (auto simp: gf) | |
| 1710 | then show ?thesis | |
| 1711 | using that by blast | |
| 1712 | next | |
| 1713 |     assume "bounded((inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}))"
 | |
| 1714 |     then obtain B where B: "\<And>w. w \<in> (inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}) \<Longrightarrow> norm w \<le> B"
 | |
| 1715 | by (force simp: bounded_iff) | |
| 1716 | have "\<forall>\<^sub>F w in at z. cmod (inverse (f w - a)) \<le> B" | |
| 1717 | apply (simp add: eventually_at) | |
| 1718 | apply (rule_tac x=r in exI) | |
| 1719 | using \<open>0 < r\<close> by (auto simp: dist_commute intro!: B) | |
| 1720 | then have "\<exists>B. \<forall>\<^sub>F z in at z. cmod (inverse (f z - a)) \<le> B" | |
| 1721 | by blast | |
| 1722 |     then obtain g where holg: "g holomorphic_on ball z r" and gf: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w = inverse (f w - a)"
 | |
| 1723 | using \<open>0 < r\<close> holomorphic_on_extend_bounded [OF holfb_i] by auto | |
| 1724 | then have gz: "g \<midarrow>z\<rightarrow> g z" | |
| 1725 | apply (simp add: continuous_at [symmetric]) | |
| 1726 | using \<open>0 < r\<close> centre_in_ball field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at by blast | |
| 1727 |     have gnz: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w \<noteq> 0"
 | |
| 1728 | using gf fab zrM by fastforce | |
| 1729 | show ?thesis | |
| 1730 | proof (cases "g z = 0") | |
| 1731 | case True | |
| 1732 | have *: "\<lbrakk>g \<noteq> 0; inverse g = f - a\<rbrakk> \<Longrightarrow> g / (1 + a * g) = inverse f" for f g::complex | |
| 1733 | by (auto simp: field_simps) | |
| 1734 | have "(inverse \<circ> f) \<midarrow>z\<rightarrow> 0" | |
| 1735 | proof (rule Lim_transform_within_open [of "\<lambda>w. g w / (1 + a * g w)" _ _ UNIV "ball z r"]) | |
| 1736 | show "(\<lambda>w. g w / (1 + a * g w)) \<midarrow>z\<rightarrow> 0" | |
| 1737 | using True by (auto simp: intro!: tendsto_eq_intros gz) | |
| 1738 | show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> g x / (1 + a * g x) = (inverse \<circ> f) x" | |
| 1739 | using * gf gnz by simp | |
| 1740 | qed (use \<open>0 < r\<close> in auto) | |
| 1741 | with that show ?thesis by blast | |
| 1742 | next | |
| 1743 | case False | |
| 1744 | show ?thesis | |
| 1745 | proof (cases "1 + a * g z = 0") | |
| 1746 | case True | |
| 1747 | have "(f \<longlongrightarrow> 0) (at z)" | |
| 1748 | proof (rule Lim_transform_within_open [of "\<lambda>w. (1 + a * g w) / g w" _ _ _ "ball z r"]) | |
| 1749 | show "(\<lambda>w. (1 + a * g w) / g w) \<midarrow>z\<rightarrow> 0" | |
| 1750 | apply (rule tendsto_eq_intros refl gz \<open>g z \<noteq> 0\<close>)+ | |
| 1751 | by (simp add: True) | |
| 1752 | show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> (1 + a * g x) / g x = f x" | |
| 1753 | using fab fab zrM by (fastforce simp add: gf divide_simps) | |
| 1754 | qed (use \<open>0 < r\<close> in auto) | |
| 1755 | then show ?thesis | |
| 1756 | using that by blast | |
| 1757 | next | |
| 1758 | case False | |
| 1759 | have *: "\<lbrakk>g \<noteq> 0; inverse g = f - a\<rbrakk> \<Longrightarrow> g / (1 + a * g) = inverse f" for f g::complex | |
| 1760 | by (auto simp: field_simps) | |
| 1761 | have "(inverse \<circ> f) \<midarrow>z\<rightarrow> g z / (1 + a * g z)" | |
| 1762 | proof (rule Lim_transform_within_open [of "\<lambda>w. g w / (1 + a * g w)" _ _ UNIV "ball z r"]) | |
| 1763 | show "(\<lambda>w. g w / (1 + a * g w)) \<midarrow>z\<rightarrow> g z / (1 + a * g z)" | |
| 1764 | using False by (auto simp: False intro!: tendsto_eq_intros gz) | |
| 1765 | show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> g x / (1 + a * g x) = (inverse \<circ> f) x" | |
| 1766 | using * gf gnz by simp | |
| 1767 | qed (use \<open>0 < r\<close> in auto) | |
| 1768 | with that show ?thesis by blast | |
| 1769 | qed | |
| 1770 | qed | |
| 1771 | qed | |
| 1772 | qed | |
| 1773 | ||
| 1774 | ||
| 1775 | corollary great_Picard_alt: | |
| 1776 |   assumes M: "open M" "z \<in> M" and holf: "f holomorphic_on (M - {z})"
 | |
| 1777 | and non: "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" | |
| 1778 |   obtains a where "- {a} \<subseteq> f ` (M - {z})"
 | |
| 1779 | apply (simp add: subset_iff image_iff) | |
| 1780 | by (metis great_Picard [OF M _ holf] non) | |
| 1781 | ||
| 1782 | ||
| 1783 | corollary great_Picard_infinite: | |
| 1784 |   assumes M: "open M" "z \<in> M" and holf: "f holomorphic_on (M - {z})"
 | |
| 1785 | and non: "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" | |
| 1786 |   obtains a where "\<And>w. w \<noteq> a \<Longrightarrow> infinite {x. x \<in> M - {z} \<and> f x = w}"
 | |
| 1787 | proof - | |
| 1788 |   have False if "a \<noteq> b" and ab: "finite {x. x \<in> M - {z} \<and> f x = a}" "finite {x. x \<in> M - {z} \<and> f x = b}" for a b
 | |
| 1789 | proof - | |
| 1790 |     have finab: "finite {x. x \<in> M - {z} \<and> f x \<in> {a,b}}"
 | |
| 1791 | using finite_UnI [OF ab] unfolding mem_Collect_eq insert_iff empty_iff | |
| 1792 | by (simp add: conj_disj_distribL) | |
| 1793 |     obtain r where "0 < r" and zrM: "ball z r \<subseteq> M" and r: "\<And>x. \<lbrakk>x \<in> M - {z}; f x \<in> {a,b}\<rbrakk> \<Longrightarrow> x \<notin> ball z r"
 | |
| 1794 | proof - | |
| 1795 | obtain e where "e > 0" and e: "ball z e \<subseteq> M" | |
| 1796 | using assms openE by blast | |
| 1797 | show ?thesis | |
| 1798 |       proof (cases "{x \<in> M - {z}. f x \<in> {a, b}} = {}")
 | |
| 1799 | case True | |
| 1800 | then show ?thesis | |
| 1801 | apply (rule_tac r=e in that) | |
| 1802 | using e \<open>e > 0\<close> by auto | |
| 1803 | next | |
| 1804 | case False | |
| 1805 |         let ?r = "min e (Min (dist z ` {x \<in> M - {z}. f x \<in> {a,b}}))"
 | |
| 1806 | show ?thesis | |
| 1807 | proof | |
| 1808 | show "0 < ?r" | |
| 1809 | using min_less_iff_conj Min_gr_iff finab False \<open>0 < e\<close> by auto | |
| 1810 | have "ball z ?r \<subseteq> ball z e" | |
| 1811 | by (simp add: subset_ball) | |
| 1812 | with e show "ball z ?r \<subseteq> M" by blast | |
| 1813 |           show "\<And>x. \<lbrakk>x \<in> M - {z}; f x \<in> {a, b}\<rbrakk> \<Longrightarrow> x \<notin> ball z ?r"
 | |
| 1814 | using min_less_iff_conj Min_gr_iff finab False \<open>0 < e\<close> by auto | |
| 1815 | qed | |
| 1816 | qed | |
| 1817 | qed | |
| 1818 |     have holfb: "f holomorphic_on (ball z r - {z})"
 | |
| 1819 | apply (rule holomorphic_on_subset [OF holf]) | |
| 1820 | using zrM by auto | |
| 1821 | show ?thesis | |
| 1822 | apply (rule great_Picard [OF open_ball _ \<open>a \<noteq> b\<close> holfb]) | |
| 1823 | using non \<open>0 < r\<close> r zrM by auto | |
| 1824 | qed | |
| 1825 | with that show thesis | |
| 1826 | by meson | |
| 1827 | qed | |
| 1828 | ||
| 1829 | ||
| 1830 | corollary Casorati_Weierstrass: | |
| 1831 |   assumes "open M" "z \<in> M" "f holomorphic_on (M - {z})"
 | |
| 1832 | and "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" | |
| 1833 |   shows "closure(f ` (M - {z})) = UNIV"
 | |
| 1834 | proof - | |
| 1835 |   obtain a where a: "- {a} \<subseteq> f ` (M - {z})"
 | |
| 1836 | using great_Picard_alt [OF assms] . | |
| 1837 |   have "UNIV = closure(- {a})"
 | |
| 1838 | by (simp add: closure_interior) | |
| 1839 |   also have "... \<subseteq> closure(f ` (M - {z}))"
 | |
| 1840 | by (simp add: a closure_mono) | |
| 1841 | finally show ?thesis | |
| 1842 | by blast | |
| 1843 | qed | |
| 1844 | ||
| 1845 | end |