| author | wenzelm |
| Thu, 19 Nov 1998 11:47:22 +0100 | |
| changeset 5936 | 406eb27fe53c |
| parent 5865 | 2303f5a3036d |
| child 6171 | cd237a10cbf8 |
| permissions | -rw-r--r-- |
| 1465 | 1 |
(* Title: HOL/Fun |
| 923 | 2 |
ID: $Id$ |
| 1465 | 3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
| 923 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
Lemmas about functions. |
|
7 |
*) |
|
8 |
||
| 4656 | 9 |
|
| 5069 | 10 |
Goal "(f = g) = (!x. f(x)=g(x))"; |
| 923 | 11 |
by (rtac iffI 1); |
| 1264 | 12 |
by (Asm_simp_tac 1); |
13 |
by (rtac ext 1 THEN Asm_simp_tac 1); |
|
| 923 | 14 |
qed "expand_fun_eq"; |
15 |
||
| 5316 | 16 |
val prems = Goal |
| 923 | 17 |
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)"; |
18 |
by (rtac (arg_cong RS box_equals) 1); |
|
19 |
by (REPEAT (resolve_tac (prems@[refl]) 1)); |
|
20 |
qed "apply_inverse"; |
|
21 |
||
22 |
||
| 4656 | 23 |
(** "Axiom" of Choice, proved using the description operator **) |
24 |
||
| 5316 | 25 |
Goal "!!Q. ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"; |
| 4656 | 26 |
by (fast_tac (claset() addEs [selectI]) 1); |
27 |
qed "choice"; |
|
28 |
||
| 5316 | 29 |
Goal "!!S. ALL x:S. EX y. Q x y ==> EX f. ALL x:S. Q x (f x)"; |
| 4656 | 30 |
by (fast_tac (claset() addEs [selectI]) 1); |
31 |
qed "bchoice"; |
|
32 |
||
33 |
||
| 5608 | 34 |
section "id"; |
| 5441 | 35 |
|
| 5608 | 36 |
qed_goalw "id_apply" thy [id_def] "id x = x" (K [rtac refl 1]); |
37 |
Addsimps [id_apply]; |
|
| 5441 | 38 |
|
39 |
||
| 5306 | 40 |
section "o"; |
41 |
||
42 |
qed_goalw "o_apply" thy [o_def] "(f o g) x = f (g x)" |
|
43 |
(K [rtac refl 1]); |
|
44 |
Addsimps [o_apply]; |
|
45 |
||
46 |
qed_goalw "o_assoc" thy [o_def] "f o (g o h) = f o g o h" |
|
47 |
(K [rtac ext 1, rtac refl 1]); |
|
48 |
||
| 5608 | 49 |
qed_goalw "id_o" thy [id_def] "id o g = g" |
| 5306 | 50 |
(K [rtac ext 1, Simp_tac 1]); |
| 5608 | 51 |
Addsimps [id_o]; |
| 5306 | 52 |
|
| 5608 | 53 |
qed_goalw "o_id" thy [id_def] "f o id = f" |
| 5306 | 54 |
(K [rtac ext 1, Simp_tac 1]); |
| 5608 | 55 |
Addsimps [o_id]; |
| 5306 | 56 |
|
57 |
Goalw [o_def] "(f o g)``r = f``(g``r)"; |
|
58 |
by (Blast_tac 1); |
|
59 |
qed "image_compose"; |
|
60 |
||
| 5852 | 61 |
Goalw [o_def] "UNION A (g o f) = UNION (f``A) g"; |
62 |
by (Blast_tac 1); |
|
63 |
qed "UNION_o"; |
|
64 |
||
| 5306 | 65 |
|
66 |
section "inj"; |
|
67 |
||
| 923 | 68 |
(*** inj(f): f is a one-to-one function ***) |
69 |
||
| 5316 | 70 |
val prems = Goalw [inj_def] |
| 923 | 71 |
"[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)"; |
| 4089 | 72 |
by (blast_tac (claset() addIs prems) 1); |
| 923 | 73 |
qed "injI"; |
74 |
||
| 5316 | 75 |
val [major] = Goal "(!!x. g(f(x)) = x) ==> inj(f)"; |
| 923 | 76 |
by (rtac injI 1); |
77 |
by (etac (arg_cong RS box_equals) 1); |
|
78 |
by (rtac major 1); |
|
79 |
by (rtac major 1); |
|
80 |
qed "inj_inverseI"; |
|
81 |
||
| 5316 | 82 |
Goalw [inj_def] "[| inj(f); f(x) = f(y) |] ==> x=y"; |
83 |
by (Blast_tac 1); |
|
| 923 | 84 |
qed "injD"; |
85 |
||
86 |
(*Useful with the simplifier*) |
|
| 5316 | 87 |
Goal "inj(f) ==> (f(x) = f(y)) = (x=y)"; |
| 923 | 88 |
by (rtac iffI 1); |
| 5316 | 89 |
by (etac arg_cong 2); |
90 |
by (etac injD 1); |
|
| 5318 | 91 |
by (assume_tac 1); |
| 923 | 92 |
qed "inj_eq"; |
93 |
||
| 5316 | 94 |
Goal "inj(f) ==> (@x. f(x)=f(y)) = y"; |
95 |
by (etac injD 1); |
|
| 923 | 96 |
by (rtac selectI 1); |
97 |
by (rtac refl 1); |
|
98 |
qed "inj_select"; |
|
99 |
||
100 |
(*A one-to-one function has an inverse (given using select).*) |
|
| 5316 | 101 |
Goalw [inv_def] "inj(f) ==> inv f (f x) = x"; |
102 |
by (etac inj_select 1); |
|
| 2912 | 103 |
qed "inv_f_f"; |
| 923 | 104 |
|
105 |
(* Useful??? *) |
|
| 5316 | 106 |
val [oneone,minor] = Goal |
| 2912 | 107 |
"[| inj(f); !!y. y: range(f) ==> P(inv f y) |] ==> P(x)"; |
108 |
by (res_inst_tac [("t", "x")] (oneone RS (inv_f_f RS subst)) 1);
|
|
| 923 | 109 |
by (rtac (rangeI RS minor) 1); |
110 |
qed "inj_transfer"; |
|
111 |
||
112 |
||
| 4830 | 113 |
(*** inj_on f A: f is one-to-one over A ***) |
| 923 | 114 |
|
| 5316 | 115 |
val prems = Goalw [inj_on_def] |
| 4830 | 116 |
"(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_on f A"; |
| 4089 | 117 |
by (blast_tac (claset() addIs prems) 1); |
| 4830 | 118 |
qed "inj_onI"; |
| 923 | 119 |
|
| 5316 | 120 |
val [major] = Goal |
| 4830 | 121 |
"(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"; |
122 |
by (rtac inj_onI 1); |
|
| 923 | 123 |
by (etac (apply_inverse RS trans) 1); |
124 |
by (REPEAT (eresolve_tac [asm_rl,major] 1)); |
|
| 4830 | 125 |
qed "inj_on_inverseI"; |
| 923 | 126 |
|
| 5316 | 127 |
Goalw [inj_on_def] "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y"; |
128 |
by (Blast_tac 1); |
|
| 4830 | 129 |
qed "inj_onD"; |
| 923 | 130 |
|
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
131 |
Goal "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"; |
| 4830 | 132 |
by (blast_tac (claset() addSDs [inj_onD]) 1); |
133 |
qed "inj_on_iff"; |
|
| 923 | 134 |
|
| 5316 | 135 |
Goalw [inj_on_def] "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)"; |
136 |
by (Blast_tac 1); |
|
| 4830 | 137 |
qed "inj_on_contraD"; |
| 923 | 138 |
|
| 5316 | 139 |
Goalw [inj_on_def] "[| A<=B; inj_on f B |] ==> inj_on f A"; |
| 3341 | 140 |
by (Blast_tac 1); |
| 4830 | 141 |
qed "subset_inj_on"; |
| 3341 | 142 |
|
| 923 | 143 |
|
144 |
(*** Lemmas about inj ***) |
|
145 |
||
| 5316 | 146 |
Goalw [o_def] "[| inj(f); inj_on g (range f) |] ==> inj(g o f)"; |
| 4830 | 147 |
by (fast_tac (claset() addIs [injI] addEs [injD, inj_onD]) 1); |
| 923 | 148 |
qed "comp_inj"; |
149 |
||
| 5316 | 150 |
Goal "inj(f) ==> inj_on f A"; |
151 |
by (blast_tac (claset() addIs [injD, inj_onI]) 1); |
|
| 923 | 152 |
qed "inj_imp"; |
153 |
||
| 5316 | 154 |
Goalw [inv_def] "y : range(f) ==> f(inv f y) = y"; |
155 |
by (fast_tac (claset() addIs [selectI]) 1); |
|
| 2912 | 156 |
qed "f_inv_f"; |
| 923 | 157 |
|
| 5316 | 158 |
Goal "[| inv f x=inv f y; x: range(f); y: range(f) |] ==> x=y"; |
| 2912 | 159 |
by (rtac (arg_cong RS box_equals) 1); |
| 5316 | 160 |
by (REPEAT (ares_tac [f_inv_f] 1)); |
| 2912 | 161 |
qed "inv_injective"; |
162 |
||
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
163 |
Goal "[| inj(f); A<=range(f) |] ==> inj_on (inv f) A"; |
| 4830 | 164 |
by (fast_tac (claset() addIs [inj_onI] |
| 2912 | 165 |
addEs [inv_injective,injD]) 1); |
| 4830 | 166 |
qed "inj_on_inv"; |
| 923 | 167 |
|
| 5069 | 168 |
Goalw [inj_on_def] |
|
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
169 |
"[| inj_on f C; A<=C; B<=C |] ==> f``(A Int B) = f``A Int f``B"; |
| 4059 | 170 |
by (Blast_tac 1); |
| 4830 | 171 |
qed "inj_on_image_Int"; |
| 4059 | 172 |
|
| 5069 | 173 |
Goalw [inj_on_def] |
|
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
174 |
"[| inj_on f C; A<=C; B<=C |] ==> f``(A-B) = f``A - f``B"; |
| 4059 | 175 |
by (Blast_tac 1); |
| 4830 | 176 |
qed "inj_on_image_set_diff"; |
| 4059 | 177 |
|
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
178 |
Goalw [inj_def] "inj f ==> f``(A Int B) = f``A Int f``B"; |
| 4059 | 179 |
by (Blast_tac 1); |
180 |
qed "image_Int"; |
|
181 |
||
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
182 |
Goalw [inj_def] "inj f ==> f``(A-B) = f``A - f``B"; |
| 4059 | 183 |
by (Blast_tac 1); |
184 |
qed "image_set_diff"; |
|
185 |
||
| 923 | 186 |
|
| 5847 | 187 |
|
188 |
val [major] = Goalw [surj_def] "(!! x. g(f x) = x) ==> surj g"; |
|
189 |
by (blast_tac (claset() addIs [major RS sym]) 1); |
|
190 |
qed "surjI"; |
|
191 |
||
192 |
||
| 4089 | 193 |
val set_cs = claset() delrules [equalityI]; |
| 5305 | 194 |
|
195 |
||
196 |
section "fun_upd"; |
|
197 |
||
198 |
Goalw [fun_upd_def] "(f(x:=y) = f) = (f x = y)"; |
|
199 |
by Safe_tac; |
|
200 |
by (etac subst 1); |
|
201 |
by (rtac ext 2); |
|
202 |
by Auto_tac; |
|
203 |
qed "fun_upd_idem_iff"; |
|
204 |
||
205 |
(* f x = y ==> f(x:=y) = f *) |
|
206 |
bind_thm("fun_upd_idem", fun_upd_idem_iff RS iffD2);
|
|
207 |
||
208 |
(* f(x := f x) = f *) |
|
209 |
AddIffs [refl RS fun_upd_idem]; |
|
210 |
||
211 |
Goal "(f(x:=y))z = (if z=x then y else f z)"; |
|
212 |
by (simp_tac (simpset() addsimps [fun_upd_def]) 1); |
|
213 |
qed "fun_upd_apply"; |
|
214 |
Addsimps [fun_upd_apply]; |
|
215 |
||
216 |
qed_goal "fun_upd_same" thy "(f(x:=y)) x = y" |
|
217 |
(K [Simp_tac 1]); |
|
| 5306 | 218 |
qed_goal "fun_upd_other" thy "!!X. z~=x ==> (f(x:=y)) z = f z" |
| 5305 | 219 |
(K [Asm_simp_tac 1]); |
220 |
(*Addsimps [fun_upd_same, fun_upd_other];*) |
|
221 |
||
222 |
Goal "a ~= c ==> m(a:=b)(c:=d) = m(c:=d)(a:=b)"; |
|
223 |
by (rtac ext 1); |
|
224 |
by (Auto_tac); |
|
225 |
qed "fun_upd_twist"; |
|
| 5852 | 226 |
|
227 |
||
228 |
(*** -> and Pi, by Florian Kammueller and LCP ***) |
|
229 |
||
230 |
val prems = Goalw [Pi_def] |
|
231 |
"[| !!x. x: A ==> f x: B x; !!x. x ~: A ==> f(x) = (@ y. True)|] \ |
|
232 |
\ ==> f: Pi A B"; |
|
233 |
by (auto_tac (claset(), simpset() addsimps prems)); |
|
234 |
qed "Pi_I"; |
|
235 |
||
236 |
val prems = Goal |
|
237 |
"[| !!x. x: A ==> f x: B; !!x. x ~: A ==> f(x) = (@ y. True)|] ==> f: A funcset B"; |
|
238 |
by (blast_tac (claset() addIs Pi_I::prems) 1); |
|
239 |
qed "funcsetI"; |
|
240 |
||
241 |
Goalw [Pi_def] "[|f: Pi A B; x: A|] ==> f x: B x"; |
|
242 |
by Auto_tac; |
|
243 |
qed "Pi_mem"; |
|
244 |
||
245 |
Goalw [Pi_def] "[|f: A funcset B; x: A|] ==> f x: B"; |
|
246 |
by Auto_tac; |
|
247 |
qed "funcset_mem"; |
|
248 |
||
249 |
Goalw [Pi_def] "[|f: Pi A B; x~: A|] ==> f x = (@ y. True)"; |
|
250 |
by Auto_tac; |
|
251 |
qed "apply_arb"; |
|
252 |
||
253 |
Goalw [Pi_def] "[| f: Pi A B; g: Pi A B; ! x: A. f x = g x |] ==> f = g"; |
|
254 |
by (rtac ext 1); |
|
255 |
by Auto_tac; |
|
256 |
val Pi_extensionality = ballI RSN (3, result()); |
|
257 |
||
258 |
(*** compose ***) |
|
259 |
||
260 |
Goalw [Pi_def, compose_def, restrict_def] |
|
261 |
"[| f: A funcset B; g: B funcset C |]==> compose A g f: A funcset C"; |
|
262 |
by Auto_tac; |
|
263 |
qed "funcset_compose"; |
|
264 |
||
265 |
Goal "[| f: A funcset B; g: B funcset C; h: C funcset D |]\ |
|
266 |
\ ==> compose A h (compose A g f) = compose A (compose B h g) f"; |
|
267 |
by (res_inst_tac [("A","A")] Pi_extensionality 1);
|
|
268 |
by (blast_tac (claset() addIs [funcset_compose]) 1); |
|
269 |
by (blast_tac (claset() addIs [funcset_compose]) 1); |
|
270 |
by (rewrite_goals_tac [Pi_def, compose_def, restrict_def]); |
|
271 |
by Auto_tac; |
|
272 |
qed "compose_assoc"; |
|
273 |
||
274 |
Goal "[| f: A funcset B; g: B funcset C; x: A |]==> compose A g f x = g(f(x))"; |
|
275 |
by (asm_full_simp_tac (simpset() addsimps [compose_def, restrict_def]) 1); |
|
276 |
qed "compose_eq"; |
|
277 |
||
278 |
Goal "[| f : A funcset B; f `` A = B; g: B funcset C; g `` B = C |]\ |
|
279 |
\ ==> compose A g f `` A = C"; |
|
280 |
by (auto_tac (claset(), |
|
281 |
simpset() addsimps [image_def, compose_eq])); |
|
282 |
qed "surj_compose"; |
|
283 |
||
284 |
||
285 |
Goal "[| f : A funcset B; g: B funcset C; f `` A = B; inj_on f A; inj_on g B |]\ |
|
286 |
\ ==> inj_on (compose A g f) A"; |
|
287 |
by (auto_tac (claset(), |
|
288 |
simpset() addsimps [inj_on_def, compose_eq])); |
|
289 |
qed "inj_on_compose"; |
|
290 |
||
291 |
||
292 |
(*** restrict / lam ***) |
|
293 |
Goal "[| f `` A <= B |] ==> (lam x: A. f x) : A funcset B"; |
|
294 |
by (auto_tac (claset(), |
|
295 |
simpset() addsimps [restrict_def, Pi_def])); |
|
296 |
qed "restrict_in_funcset"; |
|
297 |
||
298 |
val prems = Goalw [restrict_def, Pi_def] |
|
299 |
"(!!x. x: A ==> f x: B x) ==> (lam x: A. f x) : Pi A B"; |
|
300 |
by (asm_simp_tac (simpset() addsimps prems) 1); |
|
301 |
qed "restrictI"; |
|
302 |
||
303 |
||
304 |
Goal "x: A ==> (lam y: A. f y) x = f x"; |
|
305 |
by (asm_simp_tac (simpset() addsimps [restrict_def]) 1); |
|
306 |
qed "restrict_apply1"; |
|
307 |
||
308 |
Goal "[| x: A; f : A funcset B |] ==> (lam y: A. f y) x : B"; |
|
309 |
by (asm_full_simp_tac (simpset() addsimps [restrict_apply1,Pi_def]) 1); |
|
310 |
qed "restrict_apply1_mem"; |
|
311 |
||
312 |
Goal "x ~: A ==> (lam y: A. f y) x = (@ y. True)"; |
|
313 |
by (asm_simp_tac (simpset() addsimps [restrict_def]) 1); |
|
314 |
qed "restrict_apply2"; |
|
315 |
||
316 |
||
317 |
val prems = Goal |
|
318 |
"(!!x. x: A ==> f x = g x) ==> (lam x: A. f x) = (lam x: A. g x)"; |
|
319 |
by (rtac ext 1); |
|
320 |
by (auto_tac (claset(), |
|
321 |
simpset() addsimps prems@[restrict_def, Pi_def])); |
|
322 |
qed "restrict_ext"; |
|
323 |
||
324 |
||
325 |
(*** Inverse ***) |
|
326 |
||
327 |
Goal "[|f `` A = B; x: B |] ==> ? y: A. f y = x"; |
|
328 |
by (Blast_tac 1); |
|
329 |
qed "surj_image"; |
|
330 |
||
331 |
Goalw [Inv_def] "[| f `` A = B; f : A funcset B |] \ |
|
332 |
\ ==> (lam x: B. (Inv A f) x) : B funcset A"; |
|
333 |
by (fast_tac (claset() addIs [restrict_in_funcset, selectI2]) 1); |
|
334 |
qed "Inv_funcset"; |
|
335 |
||
336 |
||
337 |
Goal "[| f: A funcset B; inj_on f A; f `` A = B; x: A |] \ |
|
338 |
\ ==> (lam y: B. (Inv A f) y) (f x) = x"; |
|
339 |
by (asm_simp_tac (simpset() addsimps [restrict_apply1, funcset_mem]) 1); |
|
340 |
by (asm_full_simp_tac (simpset() addsimps [Inv_def, inj_on_def]) 1); |
|
341 |
by (rtac selectI2 1); |
|
342 |
by Auto_tac; |
|
343 |
qed "Inv_f_f"; |
|
344 |
||
345 |
Goal "[| f: A funcset B; f `` A = B; x: B |] \ |
|
346 |
\ ==> f ((lam y: B. (Inv A f y)) x) = x"; |
|
347 |
by (asm_simp_tac (simpset() addsimps [Inv_def, restrict_apply1]) 1); |
|
348 |
by (fast_tac (claset() addIs [selectI2]) 1); |
|
349 |
qed "f_Inv_f"; |
|
350 |
||
351 |
Goal "[| f: A funcset B; inj_on f A; f `` A = B |]\ |
|
352 |
\ ==> compose A (lam y:B. (Inv A f) y) f = (lam x: A. x)"; |
|
353 |
by (rtac Pi_extensionality 1); |
|
354 |
by (blast_tac (claset() addIs [funcset_compose, Inv_funcset]) 1); |
|
355 |
by (blast_tac (claset() addIs [restrict_in_funcset]) 1); |
|
356 |
by (asm_simp_tac |
|
357 |
(simpset() addsimps [restrict_apply1, compose_def, Inv_f_f]) 1); |
|
358 |
qed "compose_Inv_id"; |
|
359 |
||
360 |
||
361 |
(*** Pi and Applyall ***) |
|
362 |
||
363 |
Goalw [Pi_def] "[| B(x) = {}; x: A |] ==> (PI x: A. B x) = {}";
|
|
364 |
by Auto_tac; |
|
365 |
qed "Pi_eq_empty"; |
|
366 |
||
367 |
Goal "[| (PI x: A. B x) ~= {}; x: A |] ==> B(x) ~= {}";
|
|
368 |
by (blast_tac (HOL_cs addIs [Pi_eq_empty]) 1); |
|
369 |
qed "Pi_total1"; |
|
370 |
||
371 |
Goal "[| a : A; Pi A B ~= {} |] ==> Applyall (Pi A B) a = B a";
|
|
372 |
by (auto_tac (claset(), simpset() addsimps [Applyall_def, Pi_def])); |
|
373 |
by (rename_tac "g z" 1); |
|
374 |
by (res_inst_tac [("x","%y. if (y = a) then z else g y")] exI 1);
|
|
375 |
by (auto_tac (claset(), simpset() addsimps [split_if_mem1, split_if_eq1])); |
|
376 |
qed "Applyall_beta"; |
|
377 |
||
|
5865
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
378 |
Goal "Pi {} B = { (%x. @ y. True) }";
|
|
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
379 |
by (auto_tac (claset() addIs [ext], simpset() addsimps [Pi_def])); |
|
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
380 |
qed "Pi_empty"; |
| 5852 | 381 |
|
|
5865
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
382 |
val [major] = Goalw [Pi_def] "(!!x. x: A ==> B x <= C x) ==> Pi A B <= Pi A C"; |
|
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
383 |
by (auto_tac (claset(), |
|
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
384 |
simpset() addsimps [impOfSubs major])); |
|
2303f5a3036d
moved some facts about Pi from ex/PiSets to Fun.ML
paulson
parents:
5852
diff
changeset
|
385 |
qed "Pi_mono"; |