| author | hoelzl | 
| Thu, 25 Apr 2013 11:59:21 +0200 | |
| changeset 51775 | 408d937c9486 | 
| parent 48891 | c0eafbd55de3 | 
| child 56511 | 265816f87386 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/Domain_Aux.thy  | 
| 35652 | 2  | 
Author: Brian Huffman  | 
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Domain package support *}
 | 
|
6  | 
||
7  | 
theory Domain_Aux  | 
|
| 
40502
 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 
huffman 
parents: 
40327 
diff
changeset
 | 
8  | 
imports Map_Functions Fixrec  | 
| 35652 | 9  | 
begin  | 
10  | 
||
| 35653 | 11  | 
subsection {* Continuous isomorphisms *}
 | 
12  | 
||
13  | 
text {* A locale for continuous isomorphisms *}
 | 
|
14  | 
||
15  | 
locale iso =  | 
|
16  | 
fixes abs :: "'a \<rightarrow> 'b"  | 
|
17  | 
fixes rep :: "'b \<rightarrow> 'a"  | 
|
18  | 
assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x"  | 
|
19  | 
assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y"  | 
|
20  | 
begin  | 
|
21  | 
||
22  | 
lemma swap: "iso rep abs"  | 
|
23  | 
by (rule iso.intro [OF rep_iso abs_iso])  | 
|
24  | 
||
25  | 
lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)"  | 
|
26  | 
proof  | 
|
27  | 
assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y"  | 
|
28  | 
then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg)  | 
|
29  | 
then show "x \<sqsubseteq> y" by simp  | 
|
30  | 
next  | 
|
31  | 
assume "x \<sqsubseteq> y"  | 
|
32  | 
then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg)  | 
|
33  | 
qed  | 
|
34  | 
||
35  | 
lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)"  | 
|
36  | 
by (rule iso.abs_below [OF swap])  | 
|
37  | 
||
38  | 
lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)"  | 
|
39  | 
by (simp add: po_eq_conv abs_below)  | 
|
40  | 
||
41  | 
lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)"  | 
|
42  | 
by (rule iso.abs_eq [OF swap])  | 
|
43  | 
||
44  | 
lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>"  | 
|
45  | 
proof -  | 
|
46  | 
have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" ..  | 
|
47  | 
then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg)  | 
|
48  | 
then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp  | 
|
| 
41430
 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 
huffman 
parents: 
41182 
diff
changeset
 | 
49  | 
then show ?thesis by (rule bottomI)  | 
| 35653 | 50  | 
qed  | 
51  | 
||
52  | 
lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>"  | 
|
53  | 
by (rule iso.abs_strict [OF swap])  | 
|
54  | 
||
55  | 
lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>"  | 
|
56  | 
proof -  | 
|
57  | 
have "x = rep\<cdot>(abs\<cdot>x)" by simp  | 
|
58  | 
also assume "abs\<cdot>x = \<bottom>"  | 
|
59  | 
also note rep_strict  | 
|
60  | 
finally show "x = \<bottom>" .  | 
|
61  | 
qed  | 
|
62  | 
||
63  | 
lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>"  | 
|
64  | 
by (rule iso.abs_defin' [OF swap])  | 
|
65  | 
||
66  | 
lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>"  | 
|
67  | 
by (erule contrapos_nn, erule abs_defin')  | 
|
68  | 
||
69  | 
lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>"  | 
|
70  | 
by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms)  | 
|
71  | 
||
| 
40321
 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 
huffman 
parents: 
40216 
diff
changeset
 | 
72  | 
lemma abs_bottom_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)"  | 
| 35653 | 73  | 
by (auto elim: abs_defin' intro: abs_strict)  | 
74  | 
||
| 
40321
 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 
huffman 
parents: 
40216 
diff
changeset
 | 
75  | 
lemma rep_bottom_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)"  | 
| 
 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 
huffman 
parents: 
40216 
diff
changeset
 | 
76  | 
by (rule iso.abs_bottom_iff [OF iso.swap]) (rule iso_axioms)  | 
| 35653 | 77  | 
|
78  | 
lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P"  | 
|
| 
40321
 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 
huffman 
parents: 
40216 
diff
changeset
 | 
79  | 
by (simp add: rep_bottom_iff)  | 
| 35653 | 80  | 
|
81  | 
lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"  | 
|
82  | 
proof (unfold compact_def)  | 
|
| 41182 | 83  | 
assume "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> y)"  | 
| 40327 | 84  | 
with cont_Rep_cfun2  | 
| 41182 | 85  | 
have "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> abs\<cdot>y)" by (rule adm_subst)  | 
86  | 
then show "adm (\<lambda>y. x \<notsqsubseteq> y)" using abs_below by simp  | 
|
| 35653 | 87  | 
qed  | 
88  | 
||
89  | 
lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x"  | 
|
90  | 
by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms)  | 
|
91  | 
||
92  | 
lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)"  | 
|
93  | 
by (rule compact_rep_rev) simp  | 
|
94  | 
||
95  | 
lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)"  | 
|
96  | 
by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms)  | 
|
97  | 
||
98  | 
lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)"  | 
|
99  | 
proof  | 
|
100  | 
assume "x = abs\<cdot>y"  | 
|
101  | 
then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp  | 
|
102  | 
then show "rep\<cdot>x = y" by simp  | 
|
103  | 
next  | 
|
104  | 
assume "rep\<cdot>x = y"  | 
|
105  | 
then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp  | 
|
106  | 
then show "x = abs\<cdot>y" by simp  | 
|
107  | 
qed  | 
|
108  | 
||
109  | 
end  | 
|
110  | 
||
| 35652 | 111  | 
subsection {* Proofs about take functions *}
 | 
112  | 
||
113  | 
text {*
 | 
|
114  | 
This section contains lemmas that are used in a module that supports  | 
|
115  | 
the domain isomorphism package; the module contains proofs related  | 
|
116  | 
to take functions and the finiteness predicate.  | 
|
117  | 
*}  | 
|
118  | 
||
119  | 
lemma deflation_abs_rep:  | 
|
120  | 
fixes abs and rep and d  | 
|
121  | 
assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"  | 
|
122  | 
assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"  | 
|
123  | 
shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"  | 
|
124  | 
by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)  | 
|
125  | 
||
126  | 
lemma deflation_chain_min:  | 
|
127  | 
assumes chain: "chain d"  | 
|
128  | 
assumes defl: "\<And>n. deflation (d n)"  | 
|
129  | 
shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x"  | 
|
130  | 
proof (rule linorder_le_cases)  | 
|
131  | 
assume "m \<le> n"  | 
|
132  | 
with chain have "d m \<sqsubseteq> d n" by (rule chain_mono)  | 
|
133  | 
then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x"  | 
|
134  | 
by (rule deflation_below_comp1 [OF defl defl])  | 
|
135  | 
moreover from `m \<le> n` have "min m n = m" by simp  | 
|
136  | 
ultimately show ?thesis by simp  | 
|
137  | 
next  | 
|
138  | 
assume "n \<le> m"  | 
|
139  | 
with chain have "d n \<sqsubseteq> d m" by (rule chain_mono)  | 
|
140  | 
then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x"  | 
|
141  | 
by (rule deflation_below_comp2 [OF defl defl])  | 
|
142  | 
moreover from `n \<le> m` have "min m n = n" by simp  | 
|
143  | 
ultimately show ?thesis by simp  | 
|
144  | 
qed  | 
|
145  | 
||
| 35653 | 146  | 
lemma lub_ID_take_lemma:  | 
147  | 
assumes "chain t" and "(\<Squnion>n. t n) = ID"  | 
|
148  | 
assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y"  | 
|
149  | 
proof -  | 
|
150  | 
have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)"  | 
|
151  | 
using assms(3) by simp  | 
|
152  | 
then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y"  | 
|
153  | 
using assms(1) by (simp add: lub_distribs)  | 
|
154  | 
then show "x = y"  | 
|
155  | 
using assms(2) by simp  | 
|
156  | 
qed  | 
|
157  | 
||
158  | 
lemma lub_ID_reach:  | 
|
159  | 
assumes "chain t" and "(\<Squnion>n. t n) = ID"  | 
|
160  | 
shows "(\<Squnion>n. t n\<cdot>x) = x"  | 
|
161  | 
using assms by (simp add: lub_distribs)  | 
|
162  | 
||
| 35655 | 163  | 
lemma lub_ID_take_induct:  | 
164  | 
assumes "chain t" and "(\<Squnion>n. t n) = ID"  | 
|
165  | 
assumes "adm P" and "\<And>n. P (t n\<cdot>x)" shows "P x"  | 
|
166  | 
proof -  | 
|
167  | 
from `chain t` have "chain (\<lambda>n. t n\<cdot>x)" by simp  | 
|
168  | 
from `adm P` this `\<And>n. P (t n\<cdot>x)` have "P (\<Squnion>n. t n\<cdot>x)" by (rule admD)  | 
|
169  | 
with `chain t` `(\<Squnion>n. t n) = ID` show "P x" by (simp add: lub_distribs)  | 
|
170  | 
qed  | 
|
171  | 
||
| 35653 | 172  | 
subsection {* Finiteness *}
 | 
173  | 
||
174  | 
text {*
 | 
|
175  | 
Let a ``decisive'' function be a deflation that maps every input to  | 
|
176  | 
either itself or bottom. Then if a domain's take functions are all  | 
|
177  | 
decisive, then all values in the domain are finite.  | 
|
178  | 
*}  | 
|
179  | 
||
180  | 
definition  | 
|
181  | 
  decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool"
 | 
|
182  | 
where  | 
|
183  | 
"decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)"  | 
|
184  | 
||
185  | 
lemma decisiveI: "(\<And>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>) \<Longrightarrow> decisive d"  | 
|
186  | 
unfolding decisive_def by simp  | 
|
187  | 
||
188  | 
lemma decisive_cases:  | 
|
189  | 
assumes "decisive d" obtains "d\<cdot>x = x" | "d\<cdot>x = \<bottom>"  | 
|
190  | 
using assms unfolding decisive_def by auto  | 
|
191  | 
||
192  | 
lemma decisive_bottom: "decisive \<bottom>"  | 
|
193  | 
unfolding decisive_def by simp  | 
|
194  | 
||
195  | 
lemma decisive_ID: "decisive ID"  | 
|
196  | 
unfolding decisive_def by simp  | 
|
197  | 
||
198  | 
lemma decisive_ssum_map:  | 
|
199  | 
assumes f: "decisive f"  | 
|
200  | 
assumes g: "decisive g"  | 
|
201  | 
shows "decisive (ssum_map\<cdot>f\<cdot>g)"  | 
|
202  | 
apply (rule decisiveI, rename_tac s)  | 
|
203  | 
apply (case_tac s, simp_all)  | 
|
204  | 
apply (rule_tac x=x in decisive_cases [OF f], simp_all)  | 
|
205  | 
apply (rule_tac x=y in decisive_cases [OF g], simp_all)  | 
|
206  | 
done  | 
|
207  | 
||
208  | 
lemma decisive_sprod_map:  | 
|
209  | 
assumes f: "decisive f"  | 
|
210  | 
assumes g: "decisive g"  | 
|
211  | 
shows "decisive (sprod_map\<cdot>f\<cdot>g)"  | 
|
212  | 
apply (rule decisiveI, rename_tac s)  | 
|
213  | 
apply (case_tac s, simp_all)  | 
|
214  | 
apply (rule_tac x=x in decisive_cases [OF f], simp_all)  | 
|
215  | 
apply (rule_tac x=y in decisive_cases [OF g], simp_all)  | 
|
216  | 
done  | 
|
217  | 
||
218  | 
lemma decisive_abs_rep:  | 
|
219  | 
fixes abs rep  | 
|
220  | 
assumes iso: "iso abs rep"  | 
|
221  | 
assumes d: "decisive d"  | 
|
222  | 
shows "decisive (abs oo d oo rep)"  | 
|
223  | 
apply (rule decisiveI)  | 
|
224  | 
apply (rule_tac x="rep\<cdot>x" in decisive_cases [OF d])  | 
|
225  | 
apply (simp add: iso.rep_iso [OF iso])  | 
|
226  | 
apply (simp add: iso.abs_strict [OF iso])  | 
|
227  | 
done  | 
|
228  | 
||
229  | 
lemma lub_ID_finite:  | 
|
230  | 
assumes chain: "chain d"  | 
|
231  | 
assumes lub: "(\<Squnion>n. d n) = ID"  | 
|
232  | 
assumes decisive: "\<And>n. decisive (d n)"  | 
|
233  | 
shows "\<exists>n. d n\<cdot>x = x"  | 
|
234  | 
proof -  | 
|
235  | 
have 1: "chain (\<lambda>n. d n\<cdot>x)" using chain by simp  | 
|
236  | 
have 2: "(\<Squnion>n. d n\<cdot>x) = x" using chain lub by (rule lub_ID_reach)  | 
|
237  | 
have "\<forall>n. d n\<cdot>x = x \<or> d n\<cdot>x = \<bottom>"  | 
|
238  | 
using decisive unfolding decisive_def by simp  | 
|
239  | 
  hence "range (\<lambda>n. d n\<cdot>x) \<subseteq> {x, \<bottom>}"
 | 
|
240  | 
by auto  | 
|
241  | 
hence "finite (range (\<lambda>n. d n\<cdot>x))"  | 
|
242  | 
by (rule finite_subset, simp)  | 
|
243  | 
with 1 have "finite_chain (\<lambda>n. d n\<cdot>x)"  | 
|
244  | 
by (rule finite_range_imp_finch)  | 
|
245  | 
then have "\<exists>n. (\<Squnion>n. d n\<cdot>x) = d n\<cdot>x"  | 
|
246  | 
unfolding finite_chain_def by (auto simp add: maxinch_is_thelub)  | 
|
247  | 
with 2 show "\<exists>n. d n\<cdot>x = x" by (auto elim: sym)  | 
|
248  | 
qed  | 
|
249  | 
||
| 35655 | 250  | 
lemma lub_ID_finite_take_induct:  | 
251  | 
assumes "chain d" and "(\<Squnion>n. d n) = ID" and "\<And>n. decisive (d n)"  | 
|
252  | 
shows "(\<And>n. P (d n\<cdot>x)) \<Longrightarrow> P x"  | 
|
253  | 
using lub_ID_finite [OF assms] by metis  | 
|
254  | 
||
| 40503 | 255  | 
subsection {* Proofs about constructor functions *}
 | 
256  | 
||
257  | 
text {* Lemmas for proving nchotomy rule: *}
 | 
|
258  | 
||
259  | 
lemma ex_one_bottom_iff:  | 
|
260  | 
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE"  | 
|
261  | 
by simp  | 
|
262  | 
||
263  | 
lemma ex_up_bottom_iff:  | 
|
264  | 
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))"  | 
|
265  | 
by (safe, case_tac x, auto)  | 
|
266  | 
||
267  | 
lemma ex_sprod_bottom_iff:  | 
|
268  | 
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =  | 
|
269  | 
(\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)"  | 
|
270  | 
by (safe, case_tac y, auto)  | 
|
271  | 
||
272  | 
lemma ex_sprod_up_bottom_iff:  | 
|
273  | 
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =  | 
|
274  | 
(\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)"  | 
|
275  | 
by (safe, case_tac y, simp, case_tac x, auto)  | 
|
276  | 
||
277  | 
lemma ex_ssum_bottom_iff:  | 
|
278  | 
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) =  | 
|
279  | 
((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or>  | 
|
280  | 
(\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))"  | 
|
281  | 
by (safe, case_tac x, auto)  | 
|
282  | 
||
283  | 
lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)"  | 
|
284  | 
by auto  | 
|
285  | 
||
286  | 
lemmas ex_bottom_iffs =  | 
|
287  | 
ex_ssum_bottom_iff  | 
|
288  | 
ex_sprod_up_bottom_iff  | 
|
289  | 
ex_sprod_bottom_iff  | 
|
290  | 
ex_up_bottom_iff  | 
|
291  | 
ex_one_bottom_iff  | 
|
292  | 
||
293  | 
text {* Rules for turning nchotomy into exhaust: *}
 | 
|
294  | 
||
295  | 
lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *)  | 
|
296  | 
by auto  | 
|
297  | 
||
298  | 
lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)"  | 
|
299  | 
by rule auto  | 
|
300  | 
||
301  | 
lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)"  | 
|
302  | 
by rule auto  | 
|
303  | 
||
304  | 
lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)"  | 
|
305  | 
by rule auto  | 
|
306  | 
||
307  | 
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3  | 
|
308  | 
||
309  | 
text {* Rules for proving constructor properties *}
 | 
|
310  | 
||
311  | 
lemmas con_strict_rules =  | 
|
312  | 
sinl_strict sinr_strict spair_strict1 spair_strict2  | 
|
313  | 
||
314  | 
lemmas con_bottom_iff_rules =  | 
|
315  | 
sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined  | 
|
316  | 
||
317  | 
lemmas con_below_iff_rules =  | 
|
318  | 
sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules  | 
|
319  | 
||
320  | 
lemmas con_eq_iff_rules =  | 
|
321  | 
sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules  | 
|
322  | 
||
323  | 
lemmas sel_strict_rules =  | 
|
324  | 
cfcomp2 sscase1 sfst_strict ssnd_strict fup1  | 
|
325  | 
||
326  | 
lemma sel_app_extra_rules:  | 
|
327  | 
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>"  | 
|
328  | 
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x"  | 
|
329  | 
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>"  | 
|
330  | 
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x"  | 
|
331  | 
"fup\<cdot>ID\<cdot>(up\<cdot>x) = x"  | 
|
332  | 
by (cases "x = \<bottom>", simp, simp)+  | 
|
333  | 
||
334  | 
lemmas sel_app_rules =  | 
|
335  | 
sel_strict_rules sel_app_extra_rules  | 
|
336  | 
ssnd_spair sfst_spair up_defined spair_defined  | 
|
337  | 
||
338  | 
lemmas sel_bottom_iff_rules =  | 
|
339  | 
cfcomp2 sfst_bottom_iff ssnd_bottom_iff  | 
|
340  | 
||
341  | 
lemmas take_con_rules =  | 
|
342  | 
ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up  | 
|
343  | 
deflation_strict deflation_ID ID1 cfcomp2  | 
|
344  | 
||
| 35653 | 345  | 
subsection {* ML setup *}
 | 
346  | 
||
| 48891 | 347  | 
ML_file "Tools/Domain/domain_take_proofs.ML"  | 
348  | 
ML_file "Tools/cont_consts.ML"  | 
|
349  | 
ML_file "Tools/cont_proc.ML"  | 
|
350  | 
ML_file "Tools/Domain/domain_constructors.ML"  | 
|
351  | 
ML_file "Tools/Domain/domain_induction.ML"  | 
|
| 35652 | 352  | 
|
| 
40216
 
366309dfaf60
use Named_Thms instead of Theory_Data for some domain package theorems
 
huffman 
parents: 
35655 
diff
changeset
 | 
353  | 
setup Domain_Take_Proofs.setup  | 
| 
 
366309dfaf60
use Named_Thms instead of Theory_Data for some domain package theorems
 
huffman 
parents: 
35655 
diff
changeset
 | 
354  | 
|
| 35652 | 355  | 
end  |