| author | paulson | 
| Tue, 19 Jun 2018 23:11:14 +0100 | |
| changeset 68471 | 409ed528aad4 | 
| parent 63952 | 354808e9f44b | 
| child 68484 | 59793df7f853 | 
| permissions | -rw-r--r-- | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 1 | (* Title: HOL/Order_Relation.thy | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 2 | Author: Tobias Nipkow | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 3 | Author: Andrei Popescu, TU Muenchen | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 4 | *) | 
| 26273 | 5 | |
| 60758 | 6 | section \<open>Orders as Relations\<close> | 
| 26273 | 7 | |
| 8 | theory Order_Relation | |
| 55027 | 9 | imports Wfrec | 
| 26273 | 10 | begin | 
| 11 | ||
| 63572 | 12 | subsection \<open>Orders on a set\<close> | 
| 26295 | 13 | |
| 30198 | 14 | definition "preorder_on A r \<equiv> refl_on A r \<and> trans r" | 
| 26295 | 15 | |
| 16 | definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" | |
| 26273 | 17 | |
| 26295 | 18 | definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" | 
| 19 | ||
| 20 | definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" | |
| 21 | ||
| 22 | definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" | |
| 26273 | 23 | |
| 26295 | 24 | lemmas order_on_defs = | 
| 25 | preorder_on_def partial_order_on_def linear_order_on_def | |
| 26 | strict_linear_order_on_def well_order_on_def | |
| 27 | ||
| 26273 | 28 | |
| 26295 | 29 | lemma preorder_on_empty[simp]: "preorder_on {} {}"
 | 
| 63572 | 30 | by (simp add: preorder_on_def trans_def) | 
| 26295 | 31 | |
| 32 | lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
 | |
| 63572 | 33 | by (simp add: partial_order_on_def) | 
| 26273 | 34 | |
| 26295 | 35 | lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
 | 
| 63572 | 36 | by (simp add: linear_order_on_def) | 
| 26295 | 37 | |
| 38 | lemma well_order_on_empty[simp]: "well_order_on {} {}"
 | |
| 63572 | 39 | by (simp add: well_order_on_def) | 
| 26295 | 40 | |
| 26273 | 41 | |
| 63572 | 42 | lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r" | 
| 43 | by (simp add: preorder_on_def) | |
| 26295 | 44 | |
| 63572 | 45 | lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r" | 
| 46 | by (simp add: partial_order_on_def) | |
| 26273 | 47 | |
| 63572 | 48 | lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r" | 
| 49 | by (simp add: linear_order_on_def) | |
| 26295 | 50 | |
| 26273 | 51 | |
| 63572 | 52 | lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)" | 
| 53 | by (simp add: order_on_defs trans_diff_Id) | |
| 26295 | 54 | |
| 63563 
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
 Andreas Lochbihler parents: 
63561diff
changeset | 55 | lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}"
 | 
| 63572 | 56 | by (simp add: order_on_defs) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 57 | |
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 58 | lemma linear_order_on_acyclic: | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 59 | assumes "linear_order_on A r" | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 60 | shows "acyclic (r - Id)" | 
| 63572 | 61 | using strict_linear_order_on_diff_Id[OF assms] | 
| 62 | by (auto simp add: acyclic_irrefl strict_linear_order_on_def) | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 63 | |
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 64 | lemma linear_order_on_well_order_on: | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 65 | assumes "finite r" | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 66 | shows "linear_order_on A r \<longleftrightarrow> well_order_on A r" | 
| 63572 | 67 | unfolding well_order_on_def | 
| 68 | using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 69 | |
| 26295 | 70 | |
| 63572 | 71 | subsection \<open>Orders on the field\<close> | 
| 26273 | 72 | |
| 30198 | 73 | abbreviation "Refl r \<equiv> refl_on (Field r) r" | 
| 26295 | 74 | |
| 75 | abbreviation "Preorder r \<equiv> preorder_on (Field r) r" | |
| 76 | ||
| 77 | abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" | |
| 26273 | 78 | |
| 26295 | 79 | abbreviation "Total r \<equiv> total_on (Field r) r" | 
| 80 | ||
| 81 | abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" | |
| 82 | ||
| 83 | abbreviation "Well_order r \<equiv> well_order_on (Field r) r" | |
| 84 | ||
| 26273 | 85 | |
| 86 | lemma subset_Image_Image_iff: | |
| 63572 | 87 | "Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow> | 
| 88 | r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)" | |
| 89 | apply (simp add: preorder_on_def refl_on_def Image_def subset_eq) | |
| 90 | apply (simp only: trans_def) | |
| 91 | apply fast | |
| 92 | done | |
| 26273 | 93 | |
| 94 | lemma subset_Image1_Image1_iff: | |
| 63572 | 95 |   "Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r"
 | 
| 96 | by (simp add: subset_Image_Image_iff) | |
| 26273 | 97 | |
| 98 | lemma Refl_antisym_eq_Image1_Image1_iff: | |
| 63572 | 99 | assumes "Refl r" | 
| 100 | and as: "antisym r" | |
| 101 | and abf: "a \<in> Field r" "b \<in> Field r" | |
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 102 |   shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
 | 
| 63572 | 103 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 104 | proof | 
| 63572 | 105 | assume ?lhs | 
| 106 | then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" | |
| 107 | by (simp add: set_eq_iff) | |
| 108 | have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def) | |
| 109 | then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all | |
| 110 | then show ?rhs | |
| 111 | using \<open>antisym r\<close>[unfolded antisym_def] by blast | |
| 112 | next | |
| 113 | assume ?rhs | |
| 114 | then show ?lhs by fast | |
| 115 | qed | |
| 26273 | 116 | |
| 117 | lemma Partial_order_eq_Image1_Image1_iff: | |
| 63572 | 118 |   "Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b"
 | 
| 119 | by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff) | |
| 26295 | 120 | |
| 52182 | 121 | lemma Total_Id_Field: | 
| 63572 | 122 | assumes "Total r" | 
| 123 | and not_Id: "\<not> r \<subseteq> Id" | |
| 124 | shows "Field r = Field (r - Id)" | |
| 125 | using mono_Field[of "r - Id" r] Diff_subset[of r Id] | |
| 126 | proof auto | |
| 52182 | 127 | fix a assume *: "a \<in> Field r" | 
| 63572 | 128 |   from not_Id have "r \<noteq> {}" by fast
 | 
| 129 | with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto | |
| 130 |   then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def)
 | |
| 131 | with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto | |
| 132 | with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def) | |
| 133 | with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast | |
| 52182 | 134 | qed | 
| 135 | ||
| 26295 | 136 | |
| 63572 | 137 | subsection \<open>Orders on a type\<close> | 
| 26295 | 138 | |
| 139 | abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" | |
| 140 | ||
| 141 | abbreviation "linear_order \<equiv> linear_order_on UNIV" | |
| 142 | ||
| 54551 | 143 | abbreviation "well_order \<equiv> well_order_on UNIV" | 
| 26273 | 144 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 145 | |
| 60758 | 146 | subsection \<open>Order-like relations\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 147 | |
| 63572 | 148 | text \<open> | 
| 149 | In this subsection, we develop basic concepts and results pertaining | |
| 150 | to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or | |
| 151 | total relations. We also further define upper and lower bounds operators. | |
| 152 | \<close> | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 153 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 154 | |
| 60758 | 155 | subsubsection \<open>Auxiliaries\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 156 | |
| 63572 | 157 | lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" | 
| 158 | by (auto simp add: refl_on_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 159 | |
| 63572 | 160 | corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" | 
| 161 | by (auto simp add: refl_on_domain order_on_defs) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 162 | |
| 63572 | 163 | lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r" | 
| 164 | by (auto simp add: refl_on_def Field_def order_on_defs) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 165 | |
| 63572 | 166 | lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" | 
| 167 | using well_order_on_Field [of A] by auto | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 168 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 169 | lemma Total_subset_Id: | 
| 63572 | 170 | assumes "Total r" | 
| 171 | and "r \<subseteq> Id" | |
| 172 |   shows "r = {} \<or> (\<exists>a. r = {(a, a)})"
 | |
| 173 | proof - | |
| 174 |   have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}"
 | |
| 175 | proof - | |
| 176 | from that obtain a b where ab: "(a, b) \<in> r" by fast | |
| 177 | with \<open>r \<subseteq> Id\<close> have "a = b" by blast | |
| 178 | with ab have aa: "(a, a) \<in> r" by simp | |
| 179 | have "a = c \<and> a = d" if "(c, d) \<in> r" for c d | |
| 180 | proof - | |
| 181 |       from that have "{a, c, d} \<subseteq> Field r"
 | |
| 182 | using ab unfolding Field_def by blast | |
| 183 | then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)" | |
| 184 | using \<open>Total r\<close> unfolding total_on_def by blast | |
| 185 | with \<open>r \<subseteq> Id\<close> show ?thesis by blast | |
| 186 | qed | |
| 187 |     then have "r \<subseteq> {(a, a)}" by auto
 | |
| 188 | with aa show ?thesis by blast | |
| 189 | qed | |
| 190 | then show ?thesis by blast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 191 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 192 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 193 | lemma Linear_order_in_diff_Id: | 
| 63572 | 194 | assumes "Linear_order r" | 
| 195 | and "a \<in> Field r" | |
| 196 | and "b \<in> Field r" | |
| 197 | shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id" | |
| 198 | using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 199 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 200 | |
| 60758 | 201 | subsubsection \<open>The upper and lower bounds operators\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 202 | |
| 63572 | 203 | text \<open> | 
| 204 | Here we define upper (``above") and lower (``below") bounds operators. We | |
| 205 | think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of | |
| 206 | some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is | |
| 207 | the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of | |
| 208 | the first letter in the name reminds that the operator acts on sets, rather | |
| 209 | than on individual elements. | |
| 210 | \<close> | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 211 | |
| 63572 | 212 | definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 213 |   where "under r a \<equiv> {b. (b, a) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 214 | |
| 63572 | 215 | definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 216 |   where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 217 | |
| 63572 | 218 | definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 219 |   where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 220 | |
| 63572 | 221 | definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 222 |   where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 223 | |
| 63572 | 224 | definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 225 |   where "above r a \<equiv> {b. (a, b) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 226 | |
| 63572 | 227 | definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 228 |   where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 229 | |
| 63572 | 230 | definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 231 |   where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 232 | |
| 63572 | 233 | definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 234 |   where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}"
 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 235 | |
| 55173 | 236 | definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" | 
| 63572 | 237 | where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" | 
| 55173 | 238 | |
| 63572 | 239 | text \<open> | 
| 240 | Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded | |
| 241 | comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being | |
| 242 | empty. | |
| 243 | \<close> | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 244 | |
| 63572 | 245 | lemma underS_subset_under: "underS r a \<subseteq> under r a" | 
| 246 | by (auto simp add: underS_def under_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 247 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 248 | lemma underS_notIn: "a \<notin> underS r a" | 
| 63572 | 249 | by (simp add: underS_def) | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 250 | |
| 63572 | 251 | lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a" | 
| 252 | by (simp add: refl_on_def under_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 253 | |
| 63572 | 254 | lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}"
 | 
| 255 | by (auto simp add: AboveS_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 256 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 257 | lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" | 
| 63572 | 258 | by (auto simp add: AboveS_def underS_def) | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 259 | |
| 63572 | 260 | lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}"
 | 
| 261 | unfolding under_def underS_def | |
| 262 | using refl_on_def[of _ r] by fastforce | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 263 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 264 | lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}"
 | 
| 63572 | 265 | by (auto simp: Field_def underS_def) | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 266 | |
| 63572 | 267 | lemma under_Field: "under r a \<subseteq> Field r" | 
| 268 | by (auto simp: under_def Field_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 269 | |
| 63572 | 270 | lemma underS_Field: "underS r a \<subseteq> Field r" | 
| 271 | by (auto simp: underS_def Field_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 272 | |
| 63572 | 273 | lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r" | 
| 274 | using underS_notIn underS_Field by fast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 275 | |
| 63572 | 276 | lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r"
 | 
| 277 | by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 278 | |
| 63572 | 279 | lemma AboveS_Field: "AboveS r A \<subseteq> Field r" | 
| 280 | by (auto simp: AboveS_def Field_def) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 281 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 282 | lemma under_incr: | 
| 63572 | 283 | assumes "trans r" | 
| 284 | and "(a, b) \<in> r" | |
| 285 | shows "under r a \<subseteq> under r b" | |
| 286 | unfolding under_def | |
| 287 | proof auto | |
| 288 | fix x assume "(x, a) \<in> r" | |
| 289 | with assms trans_def[of r] show "(x, b) \<in> r" by blast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 290 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 291 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 292 | lemma underS_incr: | 
| 63572 | 293 | assumes "trans r" | 
| 294 | and "antisym r" | |
| 295 | and ab: "(a, b) \<in> r" | |
| 296 | shows "underS r a \<subseteq> underS r b" | |
| 297 | unfolding underS_def | |
| 298 | proof auto | |
| 299 | assume *: "b \<noteq> a" and **: "(b, a) \<in> r" | |
| 300 | with \<open>antisym r\<close> antisym_def[of r] ab show False | |
| 301 | by blast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 302 | next | 
| 63572 | 303 | fix x assume "x \<noteq> a" "(x, a) \<in> r" | 
| 304 | with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r" | |
| 305 | by blast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 306 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 307 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 308 | lemma underS_incl_iff: | 
| 63572 | 309 | assumes LO: "Linear_order r" | 
| 310 | and INa: "a \<in> Field r" | |
| 311 | and INb: "b \<in> Field r" | |
| 312 | shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r" | |
| 313 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 314 | proof | 
| 63572 | 315 | assume ?rhs | 
| 316 | with \<open>Linear_order r\<close> show ?lhs | |
| 317 | by (simp add: order_on_defs underS_incr) | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 318 | next | 
| 63572 | 319 | assume *: ?lhs | 
| 320 | have "(a, b) \<in> r" if "a = b" | |
| 321 | using assms that by (simp add: order_on_defs refl_on_def) | |
| 322 | moreover have False if "a \<noteq> b" "(b, a) \<in> r" | |
| 323 | proof - | |
| 324 | from that have "b \<in> underS r a" unfolding underS_def by blast | |
| 325 | with * have "b \<in> underS r b" by blast | |
| 326 | then show ?thesis by (simp add: underS_notIn) | |
| 327 | qed | |
| 328 | ultimately show "(a,b) \<in> r" | |
| 329 | using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 330 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 331 | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 332 | lemma finite_Linear_order_induct[consumes 3, case_names step]: | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 333 | assumes "Linear_order r" | 
| 63572 | 334 | and "x \<in> Field r" | 
| 335 | and "finite r" | |
| 336 | and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 337 | shows "P x" | 
| 63572 | 338 | using assms(2) | 
| 339 | proof (induct rule: wf_induct[of "r\<inverse> - Id"]) | |
| 340 | case 1 | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 341 | from assms(1,3) show "wf (r\<inverse> - Id)" | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 342 | using linear_order_on_well_order_on linear_order_on_converse | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 343 | unfolding well_order_on_def by blast | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 344 | next | 
| 63572 | 345 | case prems: (2 x) | 
| 346 | show ?case | |
| 347 | by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 348 | qed | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
61799diff
changeset | 349 | |
| 55027 | 350 | |
| 60758 | 351 | subsection \<open>Variations on Well-Founded Relations\<close> | 
| 55027 | 352 | |
| 60758 | 353 | text \<open> | 
| 63572 | 354 |   This subsection contains some variations of the results from @{theory Wellfounded}:
 | 
| 355 | \<^item> means for slightly more direct definitions by well-founded recursion; | |
| 356 | \<^item> variations of well-founded induction; | |
| 357 | \<^item> means for proving a linear order to be a well-order. | |
| 60758 | 358 | \<close> | 
| 55027 | 359 | |
| 360 | ||
| 60758 | 361 | subsubsection \<open>Characterizations of well-foundedness\<close> | 
| 55027 | 362 | |
| 63572 | 363 | text \<open> | 
| 364 | A transitive relation is well-founded iff it is ``locally'' well-founded, | |
| 365 | i.e., iff its restriction to the lower bounds of of any element is | |
| 366 | well-founded. | |
| 367 | \<close> | |
| 55027 | 368 | |
| 369 | lemma trans_wf_iff: | |
| 63572 | 370 | assumes "trans r" | 
| 371 |   shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))"
 | |
| 372 | proof - | |
| 373 |   define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a
 | |
| 374 | have "wf (R a)" if "wf r" for a | |
| 375 | using that R_def wf_subset[of r "R a"] by auto | |
| 55027 | 376 | moreover | 
| 63572 | 377 | have "wf r" if *: "\<forall>a. wf(R a)" | 
| 378 | unfolding wf_def | |
| 379 | proof clarify | |
| 380 | fix phi a | |
| 381 | assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" | |
| 382 | define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b | |
| 383 | with * have "wf (R a)" by auto | |
| 384 | then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" | |
| 385 | unfolding wf_def by blast | |
| 386 | also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" | |
| 387 | proof (auto simp add: chi_def R_def) | |
| 388 | fix b | |
| 389 | assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" | |
| 390 | then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" | |
| 391 | using assms trans_def[of r] by blast | |
| 392 | with ** show "phi b" by blast | |
| 393 | qed | |
| 394 | finally have "\<forall>b. chi b" . | |
| 395 | with ** chi_def show "phi a" by blast | |
| 396 | qed | |
| 397 | ultimately show ?thesis unfolding R_def by blast | |
| 55027 | 398 | qed | 
| 399 | ||
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 400 | text\<open>A transitive relation is well-founded if all initial segments are finite.\<close> | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 401 | corollary wf_finite_segments: | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 402 |   assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}"
 | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 403 | shows "wf (r)" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 404 | proof (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms) | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 405 | fix a | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 406 |   have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))"
 | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 407 | using assms unfolding trans_def Field_def by blast | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 408 |   then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})"
 | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 409 | using assms acyclic_def assms irrefl_def by fastforce | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 410 | qed | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63572diff
changeset | 411 | |
| 61799 | 412 | text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded, | 
| 63572 | 413 | allowing one to assume the set included in the field.\<close> | 
| 55027 | 414 | |
| 63572 | 415 | lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))"
 | 
| 55027 | 416 | proof- | 
| 63572 | 417 |   let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)"
 | 
| 418 | have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)" | |
| 419 | apply (auto simp: ex_in_conv [THEN sym]) | |
| 420 | apply (erule wfE_min) | |
| 421 | apply assumption | |
| 422 | apply blast | |
| 423 | apply (rule wfI_min) | |
| 424 | apply fast | |
| 425 | done | |
| 426 | also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)" | |
| 55027 | 427 | proof | 
| 428 | assume "\<forall>A. ?phi A" | |
| 63572 | 429 | then show "\<forall>B \<subseteq> Field r. ?phi B" by simp | 
| 55027 | 430 | next | 
| 63572 | 431 | assume *: "\<forall>B \<subseteq> Field r. ?phi B" | 
| 55027 | 432 | show "\<forall>A. ?phi A" | 
| 63572 | 433 | proof clarify | 
| 434 | fix A :: "'a set" | |
| 435 |       assume **: "A \<noteq> {}"
 | |
| 436 | define B where "B = A \<inter> Field r" | |
| 437 | show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r" | |
| 438 |       proof (cases "B = {}")
 | |
| 439 | case True | |
| 440 | with ** obtain a where a: "a \<in> A" "a \<notin> Field r" | |
| 441 | unfolding B_def by blast | |
| 442 | with a have "\<forall>a' \<in> A. (a',a) \<notin> r" | |
| 443 | unfolding Field_def by blast | |
| 444 | with a show ?thesis by blast | |
| 55027 | 445 | next | 
| 63572 | 446 | case False | 
| 447 | have "B \<subseteq> Field r" unfolding B_def by blast | |
| 448 | with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r" | |
| 449 | by blast | |
| 450 | have "(a', a) \<notin> r" if "a' \<in> A" for a' | |
| 451 | proof | |
| 452 | assume a'a: "(a', a) \<in> r" | |
| 453 | with that have "a' \<in> B" unfolding B_def Field_def by blast | |
| 454 | with a a'a show False by blast | |
| 55027 | 455 | qed | 
| 63572 | 456 | with a show ?thesis unfolding B_def by blast | 
| 55027 | 457 | qed | 
| 458 | qed | |
| 459 | qed | |
| 460 | finally show ?thesis by blast | |
| 461 | qed | |
| 462 | ||
| 463 | ||
| 60758 | 464 | subsubsection \<open>Characterizations of well-foundedness\<close> | 
| 55027 | 465 | |
| 63572 | 466 | text \<open> | 
| 467 | The next lemma and its corollary enable one to prove that a linear order is | |
| 468 | a well-order in a way which is more standard than via well-foundedness of | |
| 469 | the strict version of the relation. | |
| 470 | \<close> | |
| 55027 | 471 | |
| 472 | lemma Linear_order_wf_diff_Id: | |
| 63572 | 473 | assumes "Linear_order r" | 
| 474 |   shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
 | |
| 475 | proof (cases "r \<subseteq> Id") | |
| 476 | case True | |
| 477 |   then have *: "r - Id = {}" by blast
 | |
| 478 | have "wf (r - Id)" by (simp add: *) | |
| 479 | moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" | |
| 480 |     if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A
 | |
| 481 | proof - | |
| 482 | from \<open>Linear_order r\<close> True | |
| 483 |     obtain a where a: "r = {} \<or> r = {(a, a)}"
 | |
| 484 | unfolding order_on_defs using Total_subset_Id [of r] by blast | |
| 485 |     with * ** have "A = {a} \<and> r = {(a, a)}"
 | |
| 486 | unfolding Field_def by blast | |
| 487 | with a show ?thesis by blast | |
| 488 | qed | |
| 55027 | 489 | ultimately show ?thesis by blast | 
| 490 | next | |
| 63572 | 491 | case False | 
| 492 | with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)" | |
| 493 | unfolding order_on_defs using Total_Id_Field [of r] by blast | |
| 55027 | 494 | show ?thesis | 
| 495 | proof | |
| 63572 | 496 | assume *: "wf (r - Id)" | 
| 497 |     show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
 | |
| 498 | proof clarify | |
| 499 | fix A | |
| 500 |       assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}"
 | |
| 501 | then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" | |
| 502 | using Field * unfolding wf_eq_minimal2 by simp | |
| 503 | moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" | |
| 504 | using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast | |
| 505 | ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast | |
| 55027 | 506 | qed | 
| 507 | next | |
| 63572 | 508 |     assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)"
 | 
| 509 | show "wf (r - Id)" | |
| 510 | unfolding wf_eq_minimal2 | |
| 511 | proof clarify | |
| 512 | fix A | |
| 513 |       assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}"
 | |
| 514 | then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" | |
| 515 | using Field * by simp | |
| 516 | moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" | |
| 517 | using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast | |
| 518 | ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" | |
| 519 | by blast | |
| 55027 | 520 | qed | 
| 521 | qed | |
| 522 | qed | |
| 523 | ||
| 524 | corollary Linear_order_Well_order_iff: | |
| 63572 | 525 | "Linear_order r \<Longrightarrow> | 
| 526 |     Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))"
 | |
| 527 | unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast | |
| 55027 | 528 | |
| 26273 | 529 | end |