| author | paulson | 
| Tue, 19 Jun 2018 23:11:14 +0100 | |
| changeset 68471 | 409ed528aad4 | 
| parent 68389 | 1c84a8c513af | 
| child 69198 | 9218b7652839 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Parity.thy | 
| 2 | Author: Jeremy Avigad | |
| 3 | Author: Jacques D. Fleuriot | |
| 21256 | 4 | *) | 
| 5 | ||
| 60758 | 6 | section \<open>Parity in rings and semirings\<close> | 
| 21256 | 7 | |
| 8 | theory Parity | |
| 66815 | 9 | imports Euclidean_Division | 
| 21256 | 10 | begin | 
| 11 | ||
| 61799 | 12 | subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close> | 
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 13 | |
| 67905 | 14 | class semiring_parity = semidom + semiring_char_0 + unique_euclidean_semiring + | 
| 66815 | 15 | assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n" | 
| 66839 | 16 | and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1" | 
| 17 | and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a" | |
| 18 | begin | |
| 19 | ||
| 20 | lemma division_segment_eq_iff: | |
| 21 | "a = b" if "division_segment a = division_segment b" | |
| 22 | and "euclidean_size a = euclidean_size b" | |
| 23 | using that division_segment_euclidean_size [of a] by simp | |
| 24 | ||
| 25 | lemma euclidean_size_of_nat [simp]: | |
| 26 | "euclidean_size (of_nat n) = n" | |
| 27 | proof - | |
| 28 | have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n" | |
| 29 | by (fact division_segment_euclidean_size) | |
| 30 | then show ?thesis by simp | |
| 31 | qed | |
| 66815 | 32 | |
| 66839 | 33 | lemma of_nat_euclidean_size: | 
| 34 | "of_nat (euclidean_size a) = a div division_segment a" | |
| 35 | proof - | |
| 36 | have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a" | |
| 37 | by (subst nonzero_mult_div_cancel_left) simp_all | |
| 38 | also have "\<dots> = a div division_segment a" | |
| 39 | by simp | |
| 40 | finally show ?thesis . | |
| 41 | qed | |
| 42 | ||
| 43 | lemma division_segment_1 [simp]: | |
| 44 | "division_segment 1 = 1" | |
| 45 | using division_segment_of_nat [of 1] by simp | |
| 46 | ||
| 47 | lemma division_segment_numeral [simp]: | |
| 48 | "division_segment (numeral k) = 1" | |
| 49 | using division_segment_of_nat [of "numeral k"] by simp | |
| 50 | ||
| 51 | lemma euclidean_size_1 [simp]: | |
| 52 | "euclidean_size 1 = 1" | |
| 53 | using euclidean_size_of_nat [of 1] by simp | |
| 54 | ||
| 55 | lemma euclidean_size_numeral [simp]: | |
| 56 | "euclidean_size (numeral k) = numeral k" | |
| 57 | using euclidean_size_of_nat [of "numeral k"] by simp | |
| 21256 | 58 | |
| 66815 | 59 | lemma of_nat_dvd_iff: | 
| 60 | "of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q") | |
| 61 | proof (cases "m = 0") | |
| 62 | case True | |
| 63 | then show ?thesis | |
| 64 | by simp | |
| 65 | next | |
| 66 | case False | |
| 67 | show ?thesis | |
| 68 | proof | |
| 69 | assume ?Q | |
| 70 | then show ?P | |
| 71 | by (auto elim: dvd_class.dvdE) | |
| 72 | next | |
| 73 | assume ?P | |
| 74 | with False have "of_nat n = of_nat n div of_nat m * of_nat m" | |
| 75 | by simp | |
| 76 | then have "of_nat n = of_nat (n div m * m)" | |
| 77 | by (simp add: of_nat_div) | |
| 78 | then have "n = n div m * m" | |
| 79 | by (simp only: of_nat_eq_iff) | |
| 80 | then have "n = m * (n div m)" | |
| 81 | by (simp add: ac_simps) | |
| 82 | then show ?Q .. | |
| 83 | qed | |
| 84 | qed | |
| 85 | ||
| 86 | lemma of_nat_mod: | |
| 87 | "of_nat (m mod n) = of_nat m mod of_nat n" | |
| 88 | proof - | |
| 89 | have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m" | |
| 90 | by (simp add: div_mult_mod_eq) | |
| 91 | also have "of_nat m = of_nat (m div n * n + m mod n)" | |
| 92 | by simp | |
| 93 | finally show ?thesis | |
| 94 | by (simp only: of_nat_div of_nat_mult of_nat_add) simp | |
| 95 | qed | |
| 96 | ||
| 97 | lemma one_div_two_eq_zero [simp]: | |
| 98 | "1 div 2 = 0" | |
| 99 | proof - | |
| 100 | from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0" | |
| 101 | by (simp only:) simp | |
| 102 | then show ?thesis | |
| 103 | by simp | |
| 104 | qed | |
| 105 | ||
| 106 | lemma one_mod_two_eq_one [simp]: | |
| 107 | "1 mod 2 = 1" | |
| 108 | proof - | |
| 109 | from of_nat_mod [symmetric] have "of_nat 1 mod of_nat 2 = of_nat 1" | |
| 110 | by (simp only:) simp | |
| 111 | then show ?thesis | |
| 112 | by simp | |
| 113 | qed | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
58889diff
changeset | 114 | |
| 58740 | 115 | abbreviation even :: "'a \<Rightarrow> bool" | 
| 63654 | 116 | where "even a \<equiv> 2 dvd a" | 
| 54228 | 117 | |
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 118 | abbreviation odd :: "'a \<Rightarrow> bool" | 
| 63654 | 119 | where "odd a \<equiv> \<not> 2 dvd a" | 
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 120 | |
| 66815 | 121 | lemma even_iff_mod_2_eq_zero: | 
| 122 | "even a \<longleftrightarrow> a mod 2 = 0" | |
| 123 | by (fact dvd_eq_mod_eq_0) | |
| 124 | ||
| 125 | lemma odd_iff_mod_2_eq_one: | |
| 126 | "odd a \<longleftrightarrow> a mod 2 = 1" | |
| 66839 | 127 | proof | 
| 128 | assume "a mod 2 = 1" | |
| 129 | then show "odd a" | |
| 130 | by auto | |
| 131 | next | |
| 132 | assume "odd a" | |
| 133 | have eucl: "euclidean_size (a mod 2) = 1" | |
| 134 | proof (rule order_antisym) | |
| 135 | show "euclidean_size (a mod 2) \<le> 1" | |
| 136 | using mod_size_less [of 2 a] by simp | |
| 137 | show "1 \<le> euclidean_size (a mod 2)" | |
| 66840 | 138 | using \<open>odd a\<close> by (simp add: Suc_le_eq dvd_eq_mod_eq_0) | 
| 66839 | 139 | qed | 
| 140 | from \<open>odd a\<close> have "\<not> of_nat 2 dvd division_segment a * of_nat (euclidean_size a)" | |
| 141 | by simp | |
| 142 | then have "\<not> of_nat 2 dvd of_nat (euclidean_size a)" | |
| 143 | by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment) | |
| 144 | then have "\<not> 2 dvd euclidean_size a" | |
| 145 | using of_nat_dvd_iff [of 2] by simp | |
| 146 | then have "euclidean_size a mod 2 = 1" | |
| 147 | by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0) | |
| 148 | then have "of_nat (euclidean_size a mod 2) = of_nat 1" | |
| 149 | by simp | |
| 150 | then have "of_nat (euclidean_size a) mod 2 = 1" | |
| 151 | by (simp add: of_nat_mod) | |
| 152 | from \<open>odd a\<close> eucl | |
| 153 | show "a mod 2 = 1" | |
| 154 | by (auto intro: division_segment_eq_iff simp add: division_segment_mod) | |
| 155 | qed | |
| 58787 | 156 | |
| 66815 | 157 | lemma parity_cases [case_names even odd]: | 
| 158 | assumes "even a \<Longrightarrow> a mod 2 = 0 \<Longrightarrow> P" | |
| 159 | assumes "odd a \<Longrightarrow> a mod 2 = 1 \<Longrightarrow> P" | |
| 160 | shows P | |
| 161 | using assms by (cases "even a") (simp_all add: odd_iff_mod_2_eq_one) | |
| 162 | ||
| 163 | lemma not_mod_2_eq_1_eq_0 [simp]: | |
| 164 | "a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0" | |
| 165 | by (cases a rule: parity_cases) simp_all | |
| 166 | ||
| 167 | lemma not_mod_2_eq_0_eq_1 [simp]: | |
| 168 | "a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1" | |
| 169 | by (cases a rule: parity_cases) simp_all | |
| 58787 | 170 | |
| 58690 | 171 | lemma evenE [elim?]: | 
| 172 | assumes "even a" | |
| 173 | obtains b where "a = 2 * b" | |
| 58740 | 174 | using assms by (rule dvdE) | 
| 58690 | 175 | |
| 58681 | 176 | lemma oddE [elim?]: | 
| 58680 | 177 | assumes "odd a" | 
| 178 | obtains b where "a = 2 * b + 1" | |
| 58787 | 179 | proof - | 
| 66815 | 180 | have "a = 2 * (a div 2) + a mod 2" | 
| 181 | by (simp add: mult_div_mod_eq) | |
| 182 | with assms have "a = 2 * (a div 2) + 1" | |
| 183 | by (simp add: odd_iff_mod_2_eq_one) | |
| 184 | then show ?thesis .. | |
| 185 | qed | |
| 186 | ||
| 187 | lemma mod_2_eq_odd: | |
| 188 | "a mod 2 = of_bool (odd a)" | |
| 189 | by (auto elim: oddE) | |
| 190 | ||
| 67816 | 191 | lemma of_bool_odd_eq_mod_2: | 
| 192 | "of_bool (odd a) = a mod 2" | |
| 193 | by (simp add: mod_2_eq_odd) | |
| 194 | ||
| 66815 | 195 | lemma one_mod_2_pow_eq [simp]: | 
| 196 | "1 mod (2 ^ n) = of_bool (n > 0)" | |
| 197 | proof - | |
| 67083 | 198 | have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))" | 
| 199 | using of_nat_mod [of 1 "2 ^ n"] by simp | |
| 200 | also have "\<dots> = of_bool (n > 0)" | |
| 66815 | 201 | by simp | 
| 67083 | 202 | finally show ?thesis . | 
| 66815 | 203 | qed | 
| 204 | ||
| 67816 | 205 | lemma one_div_2_pow_eq [simp]: | 
| 206 | "1 div (2 ^ n) = of_bool (n = 0)" | |
| 207 | using div_mult_mod_eq [of 1 "2 ^ n"] by auto | |
| 208 | ||
| 66815 | 209 | lemma even_of_nat [simp]: | 
| 210 | "even (of_nat a) \<longleftrightarrow> even a" | |
| 211 | proof - | |
| 212 | have "even (of_nat a) \<longleftrightarrow> of_nat 2 dvd of_nat a" | |
| 213 | by simp | |
| 214 | also have "\<dots> \<longleftrightarrow> even a" | |
| 215 | by (simp only: of_nat_dvd_iff) | |
| 216 | finally show ?thesis . | |
| 217 | qed | |
| 218 | ||
| 219 | lemma even_zero [simp]: | |
| 220 | "even 0" | |
| 221 | by (fact dvd_0_right) | |
| 222 | ||
| 223 | lemma odd_one [simp]: | |
| 224 | "odd 1" | |
| 225 | proof - | |
| 226 | have "\<not> (2 :: nat) dvd 1" | |
| 227 | by simp | |
| 228 | then have "\<not> of_nat 2 dvd of_nat 1" | |
| 229 | unfolding of_nat_dvd_iff by simp | |
| 230 | then show ?thesis | |
| 231 | by simp | |
| 58787 | 232 | qed | 
| 63654 | 233 | |
| 66815 | 234 | lemma odd_even_add: | 
| 235 | "even (a + b)" if "odd a" and "odd b" | |
| 236 | proof - | |
| 237 | from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1" | |
| 238 | by (blast elim: oddE) | |
| 239 | then have "a + b = 2 * c + 2 * d + (1 + 1)" | |
| 240 | by (simp only: ac_simps) | |
| 241 | also have "\<dots> = 2 * (c + d + 1)" | |
| 242 | by (simp add: algebra_simps) | |
| 243 | finally show ?thesis .. | |
| 244 | qed | |
| 245 | ||
| 246 | lemma even_add [simp]: | |
| 247 | "even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)" | |
| 248 | by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) | |
| 249 | ||
| 250 | lemma odd_add [simp]: | |
| 251 | "odd (a + b) \<longleftrightarrow> \<not> (odd a \<longleftrightarrow> odd b)" | |
| 252 | by simp | |
| 253 | ||
| 254 | lemma even_plus_one_iff [simp]: | |
| 255 | "even (a + 1) \<longleftrightarrow> odd a" | |
| 256 | by (auto simp add: dvd_add_right_iff intro: odd_even_add) | |
| 257 | ||
| 258 | lemma even_mult_iff [simp]: | |
| 259 | "even (a * b) \<longleftrightarrow> even a \<or> even b" (is "?P \<longleftrightarrow> ?Q") | |
| 260 | proof | |
| 261 | assume ?Q | |
| 262 | then show ?P | |
| 263 | by auto | |
| 264 | next | |
| 265 | assume ?P | |
| 266 | show ?Q | |
| 267 | proof (rule ccontr) | |
| 268 | assume "\<not> (even a \<or> even b)" | |
| 269 | then have "odd a" and "odd b" | |
| 270 | by auto | |
| 271 | then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1" | |
| 272 | by (blast elim: oddE) | |
| 273 | then have "a * b = (2 * r + 1) * (2 * s + 1)" | |
| 274 | by simp | |
| 275 | also have "\<dots> = 2 * (2 * r * s + r + s) + 1" | |
| 276 | by (simp add: algebra_simps) | |
| 277 | finally have "odd (a * b)" | |
| 278 | by simp | |
| 279 | with \<open>?P\<close> show False | |
| 280 | by auto | |
| 281 | qed | |
| 282 | qed | |
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 283 | |
| 63654 | 284 | lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" | 
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 285 | proof - | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 286 | have "even (2 * numeral n)" | 
| 66815 | 287 | unfolding even_mult_iff by simp | 
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 288 | then have "even (numeral n + numeral n)" | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 289 | unfolding mult_2 . | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 290 | then show ?thesis | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 291 | unfolding numeral.simps . | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 292 | qed | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 293 | |
| 63654 | 294 | lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" | 
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 295 | proof | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 296 | assume "even (numeral (num.Bit1 n))" | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 297 | then have "even (numeral n + numeral n + 1)" | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 298 | unfolding numeral.simps . | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 299 | then have "even (2 * numeral n + 1)" | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 300 | unfolding mult_2 . | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 301 | then have "2 dvd numeral n * 2 + 1" | 
| 58740 | 302 | by (simp add: ac_simps) | 
| 63654 | 303 | then have "2 dvd 1" | 
| 304 | using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp | |
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 305 | then show False by simp | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 306 | qed | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 307 | |
| 63654 | 308 | lemma even_power [simp]: "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0" | 
| 58680 | 309 | by (induct n) auto | 
| 310 | ||
| 66815 | 311 | lemma even_succ_div_two [simp]: | 
| 312 | "even a \<Longrightarrow> (a + 1) div 2 = a div 2" | |
| 313 | by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) | |
| 314 | ||
| 315 | lemma odd_succ_div_two [simp]: | |
| 316 | "odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1" | |
| 317 | by (auto elim!: oddE simp add: add.assoc) | |
| 318 | ||
| 319 | lemma even_two_times_div_two: | |
| 320 | "even a \<Longrightarrow> 2 * (a div 2) = a" | |
| 321 | by (fact dvd_mult_div_cancel) | |
| 322 | ||
| 323 | lemma odd_two_times_div_two_succ [simp]: | |
| 324 | "odd a \<Longrightarrow> 2 * (a div 2) + 1 = a" | |
| 325 | using mult_div_mod_eq [of 2 a] | |
| 326 | by (simp add: even_iff_mod_2_eq_zero) | |
| 327 | ||
| 67051 | 328 | lemma coprime_left_2_iff_odd [simp]: | 
| 329 | "coprime 2 a \<longleftrightarrow> odd a" | |
| 330 | proof | |
| 331 | assume "odd a" | |
| 332 | show "coprime 2 a" | |
| 333 | proof (rule coprimeI) | |
| 334 | fix b | |
| 335 | assume "b dvd 2" "b dvd a" | |
| 336 | then have "b dvd a mod 2" | |
| 337 | by (auto intro: dvd_mod) | |
| 338 | with \<open>odd a\<close> show "is_unit b" | |
| 339 | by (simp add: mod_2_eq_odd) | |
| 340 | qed | |
| 341 | next | |
| 342 | assume "coprime 2 a" | |
| 343 | show "odd a" | |
| 344 | proof (rule notI) | |
| 345 | assume "even a" | |
| 346 | then obtain b where "a = 2 * b" .. | |
| 347 | with \<open>coprime 2 a\<close> have "coprime 2 (2 * b)" | |
| 348 | by simp | |
| 349 | moreover have "\<not> coprime 2 (2 * b)" | |
| 350 | by (rule not_coprimeI [of 2]) simp_all | |
| 351 | ultimately show False | |
| 352 | by blast | |
| 353 | qed | |
| 354 | qed | |
| 355 | ||
| 356 | lemma coprime_right_2_iff_odd [simp]: | |
| 357 | "coprime a 2 \<longleftrightarrow> odd a" | |
| 358 | using coprime_left_2_iff_odd [of a] by (simp add: ac_simps) | |
| 359 | ||
| 67828 | 360 | lemma div_mult2_eq': | 
| 361 | "a div (of_nat m * of_nat n) = a div of_nat m div of_nat n" | |
| 362 | proof (cases a "of_nat m * of_nat n" rule: divmod_cases) | |
| 363 | case (divides q) | |
| 364 | then show ?thesis | |
| 365 | using nonzero_mult_div_cancel_right [of "of_nat m" "q * of_nat n"] | |
| 366 | by (simp add: ac_simps) | |
| 367 | next | |
| 368 | case (remainder q r) | |
| 369 | then have "division_segment r = 1" | |
| 370 | using division_segment_of_nat [of "m * n"] by simp | |
| 371 | with division_segment_euclidean_size [of r] | |
| 372 | have "of_nat (euclidean_size r) = r" | |
| 373 | by simp | |
| 67908 | 374 | have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0" | 
| 375 | by simp | |
| 376 | with remainder(6) have "r div (of_nat m * of_nat n) = 0" | |
| 67828 | 377 | by simp | 
| 67908 | 378 | with \<open>of_nat (euclidean_size r) = r\<close> | 
| 379 | have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0" | |
| 380 | by simp | |
| 381 | then have "of_nat (euclidean_size r div (m * n)) = 0" | |
| 67828 | 382 | by (simp add: of_nat_div) | 
| 67908 | 383 | then have "of_nat (euclidean_size r div m div n) = 0" | 
| 384 | by (simp add: div_mult2_eq) | |
| 385 | with \<open>of_nat (euclidean_size r) = r\<close> have "r div of_nat m div of_nat n = 0" | |
| 386 | by (simp add: of_nat_div) | |
| 67828 | 387 | with remainder(1) | 
| 388 | have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n" | |
| 389 | by simp | |
| 67908 | 390 | with remainder(5) remainder(7) show ?thesis | 
| 67828 | 391 | using div_plus_div_distrib_dvd_right [of "of_nat m" "q * (of_nat m * of_nat n)" r] | 
| 392 | by (simp add: ac_simps) | |
| 393 | next | |
| 394 | case by0 | |
| 395 | then show ?thesis | |
| 396 | by auto | |
| 397 | qed | |
| 398 | ||
| 399 | lemma mod_mult2_eq': | |
| 400 | "a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m" | |
| 401 | proof - | |
| 402 | have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)" | |
| 403 | by (simp add: combine_common_factor div_mult_mod_eq) | |
| 404 | moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)" | |
| 405 | by (simp add: ac_simps) | |
| 406 | ultimately show ?thesis | |
| 407 | by (simp add: div_mult2_eq' mult_commute) | |
| 408 | qed | |
| 409 | ||
| 68028 | 410 | lemma div_mult2_numeral_eq: | 
| 411 | "a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B") | |
| 412 | proof - | |
| 413 | have "?A = a div of_nat (numeral k) div of_nat (numeral l)" | |
| 414 | by simp | |
| 415 | also have "\<dots> = a div (of_nat (numeral k) * of_nat (numeral l))" | |
| 416 | by (fact div_mult2_eq' [symmetric]) | |
| 417 | also have "\<dots> = ?B" | |
| 418 | by simp | |
| 419 | finally show ?thesis . | |
| 420 | qed | |
| 421 | ||
| 58678 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 422 | end | 
| 
398e05aa84d4
purely algebraic characterization of even and odd
 haftmann parents: 
58645diff
changeset | 423 | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
58889diff
changeset | 424 | class ring_parity = ring + semiring_parity | 
| 58679 | 425 | begin | 
| 426 | ||
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
58889diff
changeset | 427 | subclass comm_ring_1 .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
58889diff
changeset | 428 | |
| 67816 | 429 | lemma even_minus: | 
| 66815 | 430 | "even (- a) \<longleftrightarrow> even a" | 
| 58740 | 431 | by (fact dvd_minus_iff) | 
| 58679 | 432 | |
| 66815 | 433 | lemma even_diff [simp]: | 
| 434 | "even (a - b) \<longleftrightarrow> even (a + b)" | |
| 58680 | 435 | using even_add [of a "- b"] by simp | 
| 436 | ||
| 67906 | 437 | lemma minus_1_mod_2_eq [simp]: | 
| 438 | "- 1 mod 2 = 1" | |
| 439 | by (simp add: mod_2_eq_odd) | |
| 440 | ||
| 441 | lemma minus_1_div_2_eq [simp]: | |
| 442 | "- 1 div 2 = - 1" | |
| 443 | proof - | |
| 444 | from div_mult_mod_eq [of "- 1" 2] | |
| 445 | have "- 1 div 2 * 2 = - 1 * 2" | |
| 446 | using local.add_implies_diff by fastforce | |
| 447 | then show ?thesis | |
| 448 | using mult_right_cancel [of 2 "- 1 div 2" "- 1"] by simp | |
| 449 | qed | |
| 450 | ||
| 58679 | 451 | end | 
| 452 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66582diff
changeset | 453 | |
| 66815 | 454 | subsection \<open>Instance for @{typ nat}\<close>
 | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66582diff
changeset | 455 | |
| 66815 | 456 | instance nat :: semiring_parity | 
| 457 | by standard (simp_all add: dvd_eq_mod_eq_0) | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66582diff
changeset | 458 | |
| 66815 | 459 | lemma even_Suc_Suc_iff [simp]: | 
| 460 | "even (Suc (Suc n)) \<longleftrightarrow> even n" | |
| 58787 | 461 | using dvd_add_triv_right_iff [of 2 n] by simp | 
| 58687 | 462 | |
| 66815 | 463 | lemma even_Suc [simp]: "even (Suc n) \<longleftrightarrow> odd n" | 
| 464 | using even_plus_one_iff [of n] by simp | |
| 58787 | 465 | |
| 66815 | 466 | lemma even_diff_nat [simp]: | 
| 467 | "even (m - n) \<longleftrightarrow> m < n \<or> even (m + n)" for m n :: nat | |
| 58787 | 468 | proof (cases "n \<le> m") | 
| 469 | case True | |
| 470 | then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) | |
| 66815 | 471 | moreover have "even (m - n) \<longleftrightarrow> even (m - n + n * 2)" by simp | 
| 472 | ultimately have "even (m - n) \<longleftrightarrow> even (m + n)" by (simp only:) | |
| 58787 | 473 | then show ?thesis by auto | 
| 474 | next | |
| 475 | case False | |
| 476 | then show ?thesis by simp | |
| 63654 | 477 | qed | 
| 478 | ||
| 66815 | 479 | lemma odd_pos: | 
| 480 | "odd n \<Longrightarrow> 0 < n" for n :: nat | |
| 58690 | 481 | by (auto elim: oddE) | 
| 60343 
063698416239
correct sort constraints for abbreviations in type classes
 haftmann parents: 
59816diff
changeset | 482 | |
| 66815 | 483 | lemma Suc_double_not_eq_double: | 
| 484 | "Suc (2 * m) \<noteq> 2 * n" | |
| 62597 | 485 | proof | 
| 486 | assume "Suc (2 * m) = 2 * n" | |
| 487 | moreover have "odd (Suc (2 * m))" and "even (2 * n)" | |
| 488 | by simp_all | |
| 489 | ultimately show False by simp | |
| 490 | qed | |
| 491 | ||
| 66815 | 492 | lemma double_not_eq_Suc_double: | 
| 493 | "2 * m \<noteq> Suc (2 * n)" | |
| 62597 | 494 | using Suc_double_not_eq_double [of n m] by simp | 
| 495 | ||
| 66815 | 496 | lemma odd_Suc_minus_one [simp]: "odd n \<Longrightarrow> Suc (n - Suc 0) = n" | 
| 497 | by (auto elim: oddE) | |
| 60343 
063698416239
correct sort constraints for abbreviations in type classes
 haftmann parents: 
59816diff
changeset | 498 | |
| 66815 | 499 | lemma even_Suc_div_two [simp]: | 
| 500 | "even n \<Longrightarrow> Suc n div 2 = n div 2" | |
| 501 | using even_succ_div_two [of n] by simp | |
| 60343 
063698416239
correct sort constraints for abbreviations in type classes
 haftmann parents: 
59816diff
changeset | 502 | |
| 66815 | 503 | lemma odd_Suc_div_two [simp]: | 
| 504 | "odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)" | |
| 505 | using odd_succ_div_two [of n] by simp | |
| 60343 
063698416239
correct sort constraints for abbreviations in type classes
 haftmann parents: 
59816diff
changeset | 506 | |
| 66815 | 507 | lemma odd_two_times_div_two_nat [simp]: | 
| 508 | assumes "odd n" | |
| 509 | shows "2 * (n div 2) = n - (1 :: nat)" | |
| 510 | proof - | |
| 511 | from assms have "2 * (n div 2) + 1 = n" | |
| 512 | by (rule odd_two_times_div_two_succ) | |
| 513 | then have "Suc (2 * (n div 2)) - 1 = n - 1" | |
| 58787 | 514 | by simp | 
| 66815 | 515 | then show ?thesis | 
| 516 | by simp | |
| 58787 | 517 | qed | 
| 58680 | 518 | |
| 66815 | 519 | lemma parity_induct [case_names zero even odd]: | 
| 520 | assumes zero: "P 0" | |
| 521 | assumes even: "\<And>n. P n \<Longrightarrow> P (2 * n)" | |
| 522 | assumes odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))" | |
| 523 | shows "P n" | |
| 524 | proof (induct n rule: less_induct) | |
| 525 | case (less n) | |
| 526 | show "P n" | |
| 527 | proof (cases "n = 0") | |
| 528 | case True with zero show ?thesis by simp | |
| 529 | next | |
| 530 | case False | |
| 531 | with less have hyp: "P (n div 2)" by simp | |
| 532 | show ?thesis | |
| 533 | proof (cases "even n") | |
| 534 | case True | |
| 535 | with hyp even [of "n div 2"] show ?thesis | |
| 536 | by simp | |
| 537 | next | |
| 538 | case False | |
| 539 | with hyp odd [of "n div 2"] show ?thesis | |
| 540 | by simp | |
| 541 | qed | |
| 542 | qed | |
| 543 | qed | |
| 58687 | 544 | |
| 68157 | 545 | lemma not_mod2_eq_Suc_0_eq_0 [simp]: | 
| 546 | "n mod 2 \<noteq> Suc 0 \<longleftrightarrow> n mod 2 = 0" | |
| 547 | using not_mod_2_eq_1_eq_0 [of n] by simp | |
| 548 | ||
| 58687 | 549 | |
| 60758 | 550 | subsection \<open>Parity and powers\<close> | 
| 58689 | 551 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
60867diff
changeset | 552 | context ring_1 | 
| 58689 | 553 | begin | 
| 554 | ||
| 63654 | 555 | lemma power_minus_even [simp]: "even n \<Longrightarrow> (- a) ^ n = a ^ n" | 
| 58690 | 556 | by (auto elim: evenE) | 
| 58689 | 557 | |
| 63654 | 558 | lemma power_minus_odd [simp]: "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)" | 
| 58690 | 559 | by (auto elim: oddE) | 
| 560 | ||
| 66815 | 561 | lemma uminus_power_if: | 
| 562 | "(- a) ^ n = (if even n then a ^ n else - (a ^ n))" | |
| 563 | by auto | |
| 564 | ||
| 63654 | 565 | lemma neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" | 
| 58690 | 566 | by simp | 
| 58689 | 567 | |
| 63654 | 568 | lemma neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" | 
| 58690 | 569 | by simp | 
| 58689 | 570 | |
| 66582 | 571 | lemma neg_one_power_add_eq_neg_one_power_diff: "k \<le> n \<Longrightarrow> (- 1) ^ (n + k) = (- 1) ^ (n - k)" | 
| 572 | by (cases "even (n + k)") auto | |
| 573 | ||
| 67371 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67083diff
changeset | 574 | lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67083diff
changeset | 575 | by (induct n) auto | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67083diff
changeset | 576 | |
| 63654 | 577 | end | 
| 58689 | 578 | |
| 579 | context linordered_idom | |
| 580 | begin | |
| 581 | ||
| 63654 | 582 | lemma zero_le_even_power: "even n \<Longrightarrow> 0 \<le> a ^ n" | 
| 58690 | 583 | by (auto elim: evenE) | 
| 58689 | 584 | |
| 63654 | 585 | lemma zero_le_odd_power: "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a" | 
| 58689 | 586 | by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) | 
| 587 | ||
| 63654 | 588 | lemma zero_le_power_eq: "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a" | 
| 58787 | 589 | by (auto simp add: zero_le_even_power zero_le_odd_power) | 
| 63654 | 590 | |
| 591 | lemma zero_less_power_eq: "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a" | |
| 58689 | 592 | proof - | 
| 593 | have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0" | |
| 58787 | 594 | unfolding power_eq_0_iff [of a n, symmetric] by blast | 
| 58689 | 595 | show ?thesis | 
| 63654 | 596 | unfolding less_le zero_le_power_eq by auto | 
| 58689 | 597 | qed | 
| 598 | ||
| 63654 | 599 | lemma power_less_zero_eq [simp]: "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0" | 
| 58689 | 600 | unfolding not_le [symmetric] zero_le_power_eq by auto | 
| 601 | ||
| 63654 | 602 | lemma power_le_zero_eq: "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)" | 
| 603 | unfolding not_less [symmetric] zero_less_power_eq by auto | |
| 604 | ||
| 605 | lemma power_even_abs: "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n" | |
| 58689 | 606 | using power_abs [of a n] by (simp add: zero_le_even_power) | 
| 607 | ||
| 608 | lemma power_mono_even: | |
| 609 | assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>" | |
| 610 | shows "a ^ n \<le> b ^ n" | |
| 611 | proof - | |
| 612 | have "0 \<le> \<bar>a\<bar>" by auto | |
| 63654 | 613 | with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close> have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n" | 
| 614 | by (rule power_mono) | |
| 615 | with \<open>even n\<close> show ?thesis | |
| 616 | by (simp add: power_even_abs) | |
| 58689 | 617 | qed | 
| 618 | ||
| 619 | lemma power_mono_odd: | |
| 620 | assumes "odd n" and "a \<le> b" | |
| 621 | shows "a ^ n \<le> b ^ n" | |
| 622 | proof (cases "b < 0") | |
| 63654 | 623 | case True | 
| 624 | with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto | |
| 625 | then have "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono) | |
| 60758 | 626 | with \<open>odd n\<close> show ?thesis by simp | 
| 58689 | 627 | next | 
| 63654 | 628 | case False | 
| 629 | then have "0 \<le> b" by auto | |
| 58689 | 630 | show ?thesis | 
| 631 | proof (cases "a < 0") | |
| 63654 | 632 | case True | 
| 633 | then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto | |
| 60758 | 634 | then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto | 
| 63654 | 635 | moreover from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto | 
| 58689 | 636 | ultimately show ?thesis by auto | 
| 637 | next | |
| 63654 | 638 | case False | 
| 639 | then have "0 \<le> a" by auto | |
| 640 | with \<open>a \<le> b\<close> show ?thesis | |
| 641 | using power_mono by auto | |
| 58689 | 642 | qed | 
| 643 | qed | |
| 62083 | 644 | |
| 60758 | 645 | text \<open>Simplify, when the exponent is a numeral\<close> | 
| 58689 | 646 | |
| 647 | lemma zero_le_power_eq_numeral [simp]: | |
| 648 | "0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a" | |
| 649 | by (fact zero_le_power_eq) | |
| 650 | ||
| 651 | lemma zero_less_power_eq_numeral [simp]: | |
| 63654 | 652 | "0 < a ^ numeral w \<longleftrightarrow> | 
| 653 | numeral w = (0 :: nat) \<or> | |
| 654 | even (numeral w :: nat) \<and> a \<noteq> 0 \<or> | |
| 655 | odd (numeral w :: nat) \<and> 0 < a" | |
| 58689 | 656 | by (fact zero_less_power_eq) | 
| 657 | ||
| 658 | lemma power_le_zero_eq_numeral [simp]: | |
| 63654 | 659 | "a ^ numeral w \<le> 0 \<longleftrightarrow> | 
| 660 | (0 :: nat) < numeral w \<and> | |
| 661 | (odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)" | |
| 58689 | 662 | by (fact power_le_zero_eq) | 
| 663 | ||
| 664 | lemma power_less_zero_eq_numeral [simp]: | |
| 665 | "a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0" | |
| 666 | by (fact power_less_zero_eq) | |
| 667 | ||
| 668 | lemma power_even_abs_numeral [simp]: | |
| 669 | "even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w" | |
| 670 | by (fact power_even_abs) | |
| 671 | ||
| 672 | end | |
| 673 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 674 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 675 | subsection \<open>Instance for @{typ int}\<close>
 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 676 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 677 | instance int :: ring_parity | 
| 66839 | 678 | by standard (simp_all add: dvd_eq_mod_eq_0 divide_int_def division_segment_int_def) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 679 | |
| 67816 | 680 | lemma even_diff_iff: | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 681 | "even (k - l) \<longleftrightarrow> even (k + l)" for k l :: int | 
| 67816 | 682 | by (fact even_diff) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 683 | |
| 67816 | 684 | lemma even_abs_add_iff: | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 685 | "even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)" for k l :: int | 
| 67816 | 686 | by simp | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 687 | |
| 67816 | 688 | lemma even_add_abs_iff: | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 689 | "even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)" for k l :: int | 
| 67816 | 690 | by simp | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 691 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 692 | lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 693 | by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric]) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66815diff
changeset | 694 | |
| 67816 | 695 | |
| 67828 | 696 | subsection \<open>Abstract bit operations\<close> | 
| 697 | ||
| 698 | context semiring_parity | |
| 67816 | 699 | begin | 
| 700 | ||
| 701 | text \<open>The primary purpose of the following operations is | |
| 702 |   to avoid ad-hoc simplification of concrete expressions @{term "2 ^ n"}\<close>
 | |
| 703 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 704 | definition push_bit :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 705 | where push_bit_eq_mult: "push_bit n a = a * 2 ^ n" | 
| 67816 | 706 | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 707 | definition take_bit :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 68010 | 708 | where take_bit_eq_mod: "take_bit n a = a mod 2 ^ n" | 
| 67816 | 709 | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 710 | definition drop_bit :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 68010 | 711 | where drop_bit_eq_div: "drop_bit n a = a div 2 ^ n" | 
| 67816 | 712 | |
| 713 | lemma bit_ident: | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 714 | "push_bit n (drop_bit n a) + take_bit n a = a" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 715 | using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div) | 
| 67816 | 716 | |
| 67960 | 717 | lemma push_bit_push_bit [simp]: | 
| 718 | "push_bit m (push_bit n a) = push_bit (m + n) a" | |
| 719 | by (simp add: push_bit_eq_mult power_add ac_simps) | |
| 720 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 721 | lemma take_bit_take_bit [simp]: | 
| 67960 | 722 | "take_bit m (take_bit n a) = take_bit (min m n) a" | 
| 723 | proof (cases "m \<le> n") | |
| 724 | case True | |
| 725 | then show ?thesis | |
| 726 | by (simp add: take_bit_eq_mod not_le min_def mod_mod_cancel le_imp_power_dvd) | |
| 727 | next | |
| 728 | case False | |
| 729 | then have "n < m" and "min m n = n" | |
| 730 | by simp_all | |
| 731 | then have "2 ^ m = of_nat (2 ^ n) * of_nat (2 ^ (m - n))" | |
| 732 | by (simp add: power_add [symmetric]) | |
| 733 | then have "a mod 2 ^ n mod 2 ^ m = a mod 2 ^ n mod (of_nat (2 ^ n) * of_nat (2 ^ (m - n)))" | |
| 734 | by simp | |
| 735 | also have "\<dots> = of_nat (2 ^ n) * (a mod 2 ^ n div of_nat (2 ^ n) mod of_nat (2 ^ (m - n))) + a mod 2 ^ n mod of_nat (2 ^ n)" | |
| 736 | by (simp only: mod_mult2_eq') | |
| 737 | finally show ?thesis | |
| 738 | using \<open>min m n = n\<close> by (simp add: take_bit_eq_mod) | |
| 739 | qed | |
| 740 | ||
| 741 | lemma drop_bit_drop_bit [simp]: | |
| 742 | "drop_bit m (drop_bit n a) = drop_bit (m + n) a" | |
| 743 | proof - | |
| 744 | have "a div (2 ^ m * 2 ^ n) = a div (of_nat (2 ^ n) * of_nat (2 ^ m))" | |
| 745 | by (simp add: ac_simps) | |
| 746 | also have "\<dots> = a div of_nat (2 ^ n) div of_nat (2 ^ m)" | |
| 747 | by (simp only: div_mult2_eq') | |
| 748 | finally show ?thesis | |
| 749 | by (simp add: drop_bit_eq_div power_add) | |
| 750 | qed | |
| 751 | ||
| 752 | lemma push_bit_take_bit: | |
| 753 | "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)" | |
| 754 | by (simp add: push_bit_eq_mult take_bit_eq_mod power_add mult_mod_right ac_simps) | |
| 755 | ||
| 756 | lemma take_bit_push_bit: | |
| 757 | "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)" | |
| 758 | proof (cases "m \<le> n") | |
| 759 | case True | |
| 760 | then show ?thesis | |
| 761 | by (simp_all add: push_bit_eq_mult take_bit_eq_mod mod_eq_0_iff_dvd dvd_power_le) | |
| 762 | next | |
| 763 | case False | |
| 764 | then show ?thesis | |
| 765 | using push_bit_take_bit [of n "m - n" a] | |
| 766 | by simp | |
| 767 | qed | |
| 768 | ||
| 769 | lemma take_bit_drop_bit: | |
| 770 | "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)" | |
| 771 | using mod_mult2_eq' [of a "2 ^ n" "2 ^ m"] | |
| 772 | by (simp add: drop_bit_eq_div take_bit_eq_mod power_add ac_simps) | |
| 773 | ||
| 774 | lemma drop_bit_take_bit: | |
| 775 | "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)" | |
| 776 | proof (cases "m \<le> n") | |
| 777 | case True | |
| 778 | then show ?thesis | |
| 779 | using take_bit_drop_bit [of "n - m" m a] by simp | |
| 780 | next | |
| 781 | case False | |
| 782 | then have "a mod 2 ^ n div 2 ^ m = a mod 2 ^ n div 2 ^ (n + (m - n))" | |
| 783 | by simp | |
| 784 | also have "\<dots> = a mod 2 ^ n div (2 ^ n * 2 ^ (m - n))" | |
| 785 | by (simp add: power_add) | |
| 786 | also have "\<dots> = a mod 2 ^ n div (of_nat (2 ^ n) * of_nat (2 ^ (m - n)))" | |
| 787 | by simp | |
| 788 | also have "\<dots> = a mod 2 ^ n div of_nat (2 ^ n) div of_nat (2 ^ (m - n))" | |
| 789 | by (simp only: div_mult2_eq') | |
| 790 | finally show ?thesis | |
| 791 | using False by (simp add: take_bit_eq_mod drop_bit_eq_div) | |
| 792 | qed | |
| 793 | ||
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 794 | lemma push_bit_0_id [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 795 | "push_bit 0 = id" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 796 | by (simp add: fun_eq_iff push_bit_eq_mult) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 797 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 798 | lemma push_bit_of_0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 799 | "push_bit n 0 = 0" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 800 | by (simp add: push_bit_eq_mult) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 801 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 802 | lemma push_bit_of_1: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 803 | "push_bit n 1 = 2 ^ n" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 804 | by (simp add: push_bit_eq_mult) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 805 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 806 | lemma push_bit_Suc [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 807 | "push_bit (Suc n) a = push_bit n (a * 2)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 808 | by (simp add: push_bit_eq_mult ac_simps) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 809 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 810 | lemma push_bit_double: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 811 | "push_bit n (a * 2) = push_bit n a * 2" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 812 | by (simp add: push_bit_eq_mult ac_simps) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 813 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 814 | lemma push_bit_eq_0_iff [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 815 | "push_bit n a = 0 \<longleftrightarrow> a = 0" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 816 | by (simp add: push_bit_eq_mult) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 817 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 818 | lemma push_bit_add: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 819 | "push_bit n (a + b) = push_bit n a + push_bit n b" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 820 | by (simp add: push_bit_eq_mult algebra_simps) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 821 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 822 | lemma push_bit_numeral [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 823 | "push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 824 | by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric]) (simp add: ac_simps) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 825 | |
| 68010 | 826 | lemma push_bit_of_nat: | 
| 827 | "push_bit n (of_nat m) = of_nat (push_bit n m)" | |
| 828 | by (simp add: push_bit_eq_mult Parity.push_bit_eq_mult) | |
| 829 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 830 | lemma take_bit_0 [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 831 | "take_bit 0 a = 0" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 832 | by (simp add: take_bit_eq_mod) | 
| 67816 | 833 | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 834 | lemma take_bit_Suc [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 835 | "take_bit (Suc n) a = take_bit n (a div 2) * 2 + of_bool (odd a)" | 
| 67816 | 836 | proof - | 
| 837 | have "1 + 2 * (a div 2) mod (2 * 2 ^ n) = (a div 2 * 2 + a mod 2) mod (2 * 2 ^ n)" | |
| 838 | if "odd a" | |
| 839 | using that mod_mult2_eq' [of "1 + 2 * (a div 2)" 2 "2 ^ n"] | |
| 840 | by (simp add: ac_simps odd_iff_mod_2_eq_one mult_mod_right) | |
| 841 | also have "\<dots> = a mod (2 * 2 ^ n)" | |
| 842 | by (simp only: div_mult_mod_eq) | |
| 843 | finally show ?thesis | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 844 | by (simp add: take_bit_eq_mod algebra_simps mult_mod_right) | 
| 67816 | 845 | qed | 
| 846 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 847 | lemma take_bit_of_0 [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 848 | "take_bit n 0 = 0" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 849 | by (simp add: take_bit_eq_mod) | 
| 67816 | 850 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 851 | lemma take_bit_of_1 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 852 | "take_bit n 1 = of_bool (n > 0)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 853 | by (simp add: take_bit_eq_mod) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 854 | |
| 67961 | 855 | lemma take_bit_add: | 
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 856 | "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 857 | by (simp add: take_bit_eq_mod mod_simps) | 
| 67816 | 858 | |
| 67961 | 859 | lemma take_bit_eq_0_iff: | 
| 860 | "take_bit n a = 0 \<longleftrightarrow> 2 ^ n dvd a" | |
| 861 | by (simp add: take_bit_eq_mod mod_eq_0_iff_dvd) | |
| 862 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 863 | lemma take_bit_of_1_eq_0_iff [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 864 | "take_bit n 1 = 0 \<longleftrightarrow> n = 0" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 865 | by (simp add: take_bit_eq_mod) | 
| 67816 | 866 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 867 | lemma even_take_bit_eq [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 868 | "even (take_bit n a) \<longleftrightarrow> n = 0 \<or> even a" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 869 | by (cases n) (simp_all add: take_bit_eq_mod dvd_mod_iff) | 
| 67816 | 870 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 871 | lemma take_bit_numeral_bit0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 872 | "take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 873 | by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric] take_bit_Suc | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 874 | ac_simps even_mult_iff nonzero_mult_div_cancel_right [OF numeral_neq_zero]) simp | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 875 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 876 | lemma take_bit_numeral_bit1 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 877 | "take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 878 | by (simp only: numeral_eq_Suc power_Suc numeral_Bit1 [of k] mult_2 [symmetric] take_bit_Suc | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 879 | ac_simps even_add even_mult_iff div_mult_self1 [OF numeral_neq_zero]) (simp add: ac_simps) | 
| 67961 | 880 | |
| 68010 | 881 | lemma take_bit_of_nat: | 
| 882 | "take_bit n (of_nat m) = of_nat (take_bit n m)" | |
| 883 | by (simp add: take_bit_eq_mod Parity.take_bit_eq_mod of_nat_mod [of m "2 ^ n"]) | |
| 884 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 885 | lemma drop_bit_0 [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 886 | "drop_bit 0 = id" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 887 | by (simp add: fun_eq_iff drop_bit_eq_div) | 
| 67816 | 888 | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 889 | lemma drop_bit_of_0 [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 890 | "drop_bit n 0 = 0" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 891 | by (simp add: drop_bit_eq_div) | 
| 67816 | 892 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 893 | lemma drop_bit_of_1 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 894 | "drop_bit n 1 = of_bool (n = 0)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 895 | by (simp add: drop_bit_eq_div) | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 896 | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 897 | lemma drop_bit_Suc [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 898 | "drop_bit (Suc n) a = drop_bit n (a div 2)" | 
| 67816 | 899 | proof (cases "even a") | 
| 900 | case True | |
| 901 | then obtain b where "a = 2 * b" .. | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 902 | moreover have "drop_bit (Suc n) (2 * b) = drop_bit n b" | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 903 | by (simp add: drop_bit_eq_div) | 
| 67816 | 904 | ultimately show ?thesis | 
| 905 | by simp | |
| 906 | next | |
| 907 | case False | |
| 908 | then obtain b where "a = 2 * b + 1" .. | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 909 | moreover have "drop_bit (Suc n) (2 * b + 1) = drop_bit n b" | 
| 67816 | 910 | using div_mult2_eq' [of "1 + b * 2" 2 "2 ^ n"] | 
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 911 | by (auto simp add: drop_bit_eq_div ac_simps) | 
| 67816 | 912 | ultimately show ?thesis | 
| 913 | by simp | |
| 914 | qed | |
| 915 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 916 | lemma drop_bit_half: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 917 | "drop_bit n (a div 2) = drop_bit n a div 2" | 
| 67816 | 918 | by (induction n arbitrary: a) simp_all | 
| 919 | ||
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 920 | lemma drop_bit_of_bool [simp]: | 
| 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67906diff
changeset | 921 | "drop_bit n (of_bool d) = of_bool (n = 0 \<and> d)" | 
| 67816 | 922 | by (cases n) simp_all | 
| 923 | ||
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 924 | lemma drop_bit_numeral_bit0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 925 | "drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 926 | by (simp only: numeral_eq_Suc power_Suc numeral_Bit0 [of k] mult_2 [symmetric] drop_bit_Suc | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 927 | nonzero_mult_div_cancel_left [OF numeral_neq_zero]) | 
| 67816 | 928 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 929 | lemma drop_bit_numeral_bit1 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 930 | "drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 931 | by (simp only: numeral_eq_Suc power_Suc numeral_Bit1 [of k] mult_2 [symmetric] drop_bit_Suc | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 932 | div_mult_self4 [OF numeral_neq_zero]) simp | 
| 67816 | 933 | |
| 68010 | 934 | lemma drop_bit_of_nat: | 
| 935 | "drop_bit n (of_nat m) = of_nat (drop_bit n m)" | |
| 68389 | 936 | by (simp add: drop_bit_eq_div Parity.drop_bit_eq_div of_nat_div [of m "2 ^ n"]) | 
| 68010 | 937 | |
| 58770 | 938 | end | 
| 67816 | 939 | |
| 67988 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 940 | lemma push_bit_of_Suc_0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 941 | "push_bit n (Suc 0) = 2 ^ n" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 942 | using push_bit_of_1 [where ?'a = nat] by simp | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 943 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 944 | lemma take_bit_of_Suc_0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 945 | "take_bit n (Suc 0) = of_bool (0 < n)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 946 | using take_bit_of_1 [where ?'a = nat] by simp | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 947 | |
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 948 | lemma drop_bit_of_Suc_0 [simp]: | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 949 | "drop_bit n (Suc 0) = of_bool (n = 0)" | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 950 | using drop_bit_of_1 [where ?'a = nat] by simp | 
| 
01c651412081
explicit simp rules for computing abstract bit operations
 haftmann parents: 
67961diff
changeset | 951 | |
| 67816 | 952 | end |