35762
|
1 |
(* Title: ZF/Fixedpt.thy
|
1478
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
0
|
3 |
Copyright 1992 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
60770
|
6 |
section\<open>Least and Greatest Fixed Points; the Knaster-Tarski Theorem\<close>
|
13356
|
7 |
|
16417
|
8 |
theory Fixedpt imports equalities begin
|
13218
|
9 |
|
24893
|
10 |
definition
|
13218
|
11 |
(*monotone operator from Pow(D) to itself*)
|
24893
|
12 |
bnd_mono :: "[i,i=>i]=>o" where
|
46820
|
13 |
"bnd_mono(D,h) == h(D)<=D & (\<forall>W X. W<=X \<longrightarrow> X<=D \<longrightarrow> h(W) \<subseteq> h(X))"
|
13218
|
14 |
|
24893
|
15 |
definition
|
|
16 |
lfp :: "[i,i=>i]=>i" where
|
46820
|
17 |
"lfp(D,h) == \<Inter>({X: Pow(D). h(X) \<subseteq> X})"
|
13218
|
18 |
|
24893
|
19 |
definition
|
|
20 |
gfp :: "[i,i=>i]=>i" where
|
46820
|
21 |
"gfp(D,h) == \<Union>({X: Pow(D). X \<subseteq> h(X)})"
|
13218
|
22 |
|
69593
|
23 |
text\<open>The theorem is proved in the lattice of subsets of \<^term>\<open>D\<close>,
|
|
24 |
namely \<^term>\<open>Pow(D)\<close>, with Inter as the greatest lower bound.\<close>
|
13218
|
25 |
|
60770
|
26 |
subsection\<open>Monotone Operators\<close>
|
13218
|
27 |
|
|
28 |
lemma bnd_monoI:
|
|
29 |
"[| h(D)<=D;
|
46820
|
30 |
!!W X. [| W<=D; X<=D; W<=X |] ==> h(W) \<subseteq> h(X)
|
13218
|
31 |
|] ==> bnd_mono(D,h)"
|
|
32 |
by (unfold bnd_mono_def, clarify, blast)
|
|
33 |
|
46820
|
34 |
lemma bnd_monoD1: "bnd_mono(D,h) ==> h(D) \<subseteq> D"
|
13218
|
35 |
apply (unfold bnd_mono_def)
|
|
36 |
apply (erule conjunct1)
|
|
37 |
done
|
|
38 |
|
46820
|
39 |
lemma bnd_monoD2: "[| bnd_mono(D,h); W<=X; X<=D |] ==> h(W) \<subseteq> h(X)"
|
13218
|
40 |
by (unfold bnd_mono_def, blast)
|
|
41 |
|
|
42 |
lemma bnd_mono_subset:
|
46820
|
43 |
"[| bnd_mono(D,h); X<=D |] ==> h(X) \<subseteq> D"
|
13218
|
44 |
by (unfold bnd_mono_def, clarify, blast)
|
|
45 |
|
|
46 |
lemma bnd_mono_Un:
|
46820
|
47 |
"[| bnd_mono(D,h); A \<subseteq> D; B \<subseteq> D |] ==> h(A) \<union> h(B) \<subseteq> h(A \<union> B)"
|
13218
|
48 |
apply (unfold bnd_mono_def)
|
|
49 |
apply (rule Un_least, blast+)
|
|
50 |
done
|
|
51 |
|
13220
|
52 |
(*unused*)
|
|
53 |
lemma bnd_mono_UN:
|
46820
|
54 |
"[| bnd_mono(D,h); \<forall>i\<in>I. A(i) \<subseteq> D |]
|
|
55 |
==> (\<Union>i\<in>I. h(A(i))) \<subseteq> h((\<Union>i\<in>I. A(i)))"
|
13220
|
56 |
apply (unfold bnd_mono_def)
|
|
57 |
apply (rule UN_least)
|
|
58 |
apply (elim conjE)
|
|
59 |
apply (drule_tac x="A(i)" in spec)
|
|
60 |
apply (drule_tac x="(\<Union>i\<in>I. A(i))" in spec)
|
|
61 |
apply blast
|
|
62 |
done
|
|
63 |
|
13218
|
64 |
(*Useful??*)
|
|
65 |
lemma bnd_mono_Int:
|
46820
|
66 |
"[| bnd_mono(D,h); A \<subseteq> D; B \<subseteq> D |] ==> h(A \<inter> B) \<subseteq> h(A) \<inter> h(B)"
|
13218
|
67 |
apply (rule Int_greatest)
|
|
68 |
apply (erule bnd_monoD2, rule Int_lower1, assumption)
|
|
69 |
apply (erule bnd_monoD2, rule Int_lower2, assumption)
|
|
70 |
done
|
|
71 |
|
69593
|
72 |
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>lfp\<close>\<close>
|
13218
|
73 |
|
|
74 |
(*lfp is contained in each pre-fixedpoint*)
|
|
75 |
lemma lfp_lowerbound:
|
46820
|
76 |
"[| h(A) \<subseteq> A; A<=D |] ==> lfp(D,h) \<subseteq> A"
|
13218
|
77 |
by (unfold lfp_def, blast)
|
|
78 |
|
|
79 |
(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
|
46820
|
80 |
lemma lfp_subset: "lfp(D,h) \<subseteq> D"
|
13218
|
81 |
by (unfold lfp_def Inter_def, blast)
|
|
82 |
|
|
83 |
(*Used in datatype package*)
|
46820
|
84 |
lemma def_lfp_subset: "A == lfp(D,h) ==> A \<subseteq> D"
|
13218
|
85 |
apply simp
|
|
86 |
apply (rule lfp_subset)
|
|
87 |
done
|
|
88 |
|
|
89 |
lemma lfp_greatest:
|
46820
|
90 |
"[| h(D) \<subseteq> D; !!X. [| h(X) \<subseteq> X; X<=D |] ==> A<=X |] ==> A \<subseteq> lfp(D,h)"
|
13218
|
91 |
by (unfold lfp_def, blast)
|
|
92 |
|
|
93 |
lemma lfp_lemma1:
|
46820
|
94 |
"[| bnd_mono(D,h); h(A)<=A; A<=D |] ==> h(lfp(D,h)) \<subseteq> A"
|
13218
|
95 |
apply (erule bnd_monoD2 [THEN subset_trans])
|
|
96 |
apply (rule lfp_lowerbound, assumption+)
|
|
97 |
done
|
3923
|
98 |
|
46820
|
99 |
lemma lfp_lemma2: "bnd_mono(D,h) ==> h(lfp(D,h)) \<subseteq> lfp(D,h)"
|
13218
|
100 |
apply (rule bnd_monoD1 [THEN lfp_greatest])
|
|
101 |
apply (rule_tac [2] lfp_lemma1)
|
|
102 |
apply (assumption+)
|
|
103 |
done
|
|
104 |
|
|
105 |
lemma lfp_lemma3:
|
46820
|
106 |
"bnd_mono(D,h) ==> lfp(D,h) \<subseteq> h(lfp(D,h))"
|
13218
|
107 |
apply (rule lfp_lowerbound)
|
|
108 |
apply (rule bnd_monoD2, assumption)
|
|
109 |
apply (rule lfp_lemma2, assumption)
|
|
110 |
apply (erule_tac [2] bnd_mono_subset)
|
|
111 |
apply (rule lfp_subset)+
|
|
112 |
done
|
|
113 |
|
|
114 |
lemma lfp_unfold: "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))"
|
|
115 |
apply (rule equalityI)
|
|
116 |
apply (erule lfp_lemma3)
|
|
117 |
apply (erule lfp_lemma2)
|
|
118 |
done
|
|
119 |
|
|
120 |
(*Definition form, to control unfolding*)
|
|
121 |
lemma def_lfp_unfold:
|
|
122 |
"[| A==lfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"
|
|
123 |
apply simp
|
|
124 |
apply (erule lfp_unfold)
|
|
125 |
done
|
|
126 |
|
60770
|
127 |
subsection\<open>General Induction Rule for Least Fixedpoints\<close>
|
13218
|
128 |
|
|
129 |
lemma Collect_is_pre_fixedpt:
|
46820
|
130 |
"[| bnd_mono(D,h); !!x. x \<in> h(Collect(lfp(D,h),P)) ==> P(x) |]
|
|
131 |
==> h(Collect(lfp(D,h),P)) \<subseteq> Collect(lfp(D,h),P)"
|
13218
|
132 |
by (blast intro: lfp_lemma2 [THEN subsetD] bnd_monoD2 [THEN subsetD]
|
|
133 |
lfp_subset [THEN subsetD])
|
|
134 |
|
|
135 |
(*This rule yields an induction hypothesis in which the components of a
|
|
136 |
data structure may be assumed to be elements of lfp(D,h)*)
|
|
137 |
lemma induct:
|
46820
|
138 |
"[| bnd_mono(D,h); a \<in> lfp(D,h);
|
|
139 |
!!x. x \<in> h(Collect(lfp(D,h),P)) ==> P(x)
|
13218
|
140 |
|] ==> P(a)"
|
|
141 |
apply (rule Collect_is_pre_fixedpt
|
|
142 |
[THEN lfp_lowerbound, THEN subsetD, THEN CollectD2])
|
|
143 |
apply (rule_tac [3] lfp_subset [THEN Collect_subset [THEN subset_trans]],
|
|
144 |
blast+)
|
|
145 |
done
|
|
146 |
|
|
147 |
(*Definition form, to control unfolding*)
|
|
148 |
lemma def_induct:
|
|
149 |
"[| A == lfp(D,h); bnd_mono(D,h); a:A;
|
46820
|
150 |
!!x. x \<in> h(Collect(A,P)) ==> P(x)
|
13218
|
151 |
|] ==> P(a)"
|
|
152 |
by (rule induct, blast+)
|
|
153 |
|
|
154 |
(*This version is useful when "A" is not a subset of D
|
46820
|
155 |
second premise could simply be h(D \<inter> A) \<subseteq> D or !!X. X<=D ==> h(X)<=D *)
|
13218
|
156 |
lemma lfp_Int_lowerbound:
|
46820
|
157 |
"[| h(D \<inter> A) \<subseteq> A; bnd_mono(D,h) |] ==> lfp(D,h) \<subseteq> A"
|
13218
|
158 |
apply (rule lfp_lowerbound [THEN subset_trans])
|
|
159 |
apply (erule bnd_mono_subset [THEN Int_greatest], blast+)
|
|
160 |
done
|
|
161 |
|
|
162 |
(*Monotonicity of lfp, where h precedes i under a domain-like partial order
|
|
163 |
monotonicity of h is not strictly necessary; h must be bounded by D*)
|
|
164 |
lemma lfp_mono:
|
|
165 |
assumes hmono: "bnd_mono(D,h)"
|
|
166 |
and imono: "bnd_mono(E,i)"
|
46820
|
167 |
and subhi: "!!X. X<=D ==> h(X) \<subseteq> i(X)"
|
|
168 |
shows "lfp(D,h) \<subseteq> lfp(E,i)"
|
13218
|
169 |
apply (rule bnd_monoD1 [THEN lfp_greatest])
|
|
170 |
apply (rule imono)
|
|
171 |
apply (rule hmono [THEN [2] lfp_Int_lowerbound])
|
|
172 |
apply (rule Int_lower1 [THEN subhi, THEN subset_trans])
|
|
173 |
apply (rule imono [THEN bnd_monoD2, THEN subset_trans], auto)
|
|
174 |
done
|
0
|
175 |
|
13218
|
176 |
(*This (unused) version illustrates that monotonicity is not really needed,
|
|
177 |
but both lfp's must be over the SAME set D; Inter is anti-monotonic!*)
|
|
178 |
lemma lfp_mono2:
|
46820
|
179 |
"[| i(D) \<subseteq> D; !!X. X<=D ==> h(X) \<subseteq> i(X) |] ==> lfp(D,h) \<subseteq> lfp(D,i)"
|
13218
|
180 |
apply (rule lfp_greatest, assumption)
|
|
181 |
apply (rule lfp_lowerbound, blast, assumption)
|
|
182 |
done
|
|
183 |
|
14046
|
184 |
lemma lfp_cong:
|
46820
|
185 |
"[|D=D'; !!X. X \<subseteq> D' ==> h(X) = h'(X)|] ==> lfp(D,h) = lfp(D',h')"
|
14046
|
186 |
apply (simp add: lfp_def)
|
|
187 |
apply (rule_tac t=Inter in subst_context)
|
|
188 |
apply (rule Collect_cong, simp_all)
|
|
189 |
done
|
13218
|
190 |
|
14046
|
191 |
|
69593
|
192 |
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>gfp\<close>\<close>
|
13218
|
193 |
|
|
194 |
(*gfp contains each post-fixedpoint that is contained in D*)
|
46820
|
195 |
lemma gfp_upperbound: "[| A \<subseteq> h(A); A<=D |] ==> A \<subseteq> gfp(D,h)"
|
13218
|
196 |
apply (unfold gfp_def)
|
|
197 |
apply (rule PowI [THEN CollectI, THEN Union_upper])
|
|
198 |
apply (assumption+)
|
|
199 |
done
|
|
200 |
|
46820
|
201 |
lemma gfp_subset: "gfp(D,h) \<subseteq> D"
|
13218
|
202 |
by (unfold gfp_def, blast)
|
|
203 |
|
|
204 |
(*Used in datatype package*)
|
46820
|
205 |
lemma def_gfp_subset: "A==gfp(D,h) ==> A \<subseteq> D"
|
13218
|
206 |
apply simp
|
|
207 |
apply (rule gfp_subset)
|
|
208 |
done
|
|
209 |
|
|
210 |
lemma gfp_least:
|
46820
|
211 |
"[| bnd_mono(D,h); !!X. [| X \<subseteq> h(X); X<=D |] ==> X<=A |] ==>
|
|
212 |
gfp(D,h) \<subseteq> A"
|
13218
|
213 |
apply (unfold gfp_def)
|
|
214 |
apply (blast dest: bnd_monoD1)
|
|
215 |
done
|
|
216 |
|
|
217 |
lemma gfp_lemma1:
|
46820
|
218 |
"[| bnd_mono(D,h); A<=h(A); A<=D |] ==> A \<subseteq> h(gfp(D,h))"
|
13218
|
219 |
apply (rule subset_trans, assumption)
|
|
220 |
apply (erule bnd_monoD2)
|
|
221 |
apply (rule_tac [2] gfp_subset)
|
|
222 |
apply (simp add: gfp_upperbound)
|
|
223 |
done
|
|
224 |
|
46820
|
225 |
lemma gfp_lemma2: "bnd_mono(D,h) ==> gfp(D,h) \<subseteq> h(gfp(D,h))"
|
13218
|
226 |
apply (rule gfp_least)
|
|
227 |
apply (rule_tac [2] gfp_lemma1)
|
|
228 |
apply (assumption+)
|
|
229 |
done
|
|
230 |
|
|
231 |
lemma gfp_lemma3:
|
46820
|
232 |
"bnd_mono(D,h) ==> h(gfp(D,h)) \<subseteq> gfp(D,h)"
|
13218
|
233 |
apply (rule gfp_upperbound)
|
|
234 |
apply (rule bnd_monoD2, assumption)
|
|
235 |
apply (rule gfp_lemma2, assumption)
|
|
236 |
apply (erule bnd_mono_subset, rule gfp_subset)+
|
|
237 |
done
|
|
238 |
|
|
239 |
lemma gfp_unfold: "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))"
|
|
240 |
apply (rule equalityI)
|
|
241 |
apply (erule gfp_lemma2)
|
|
242 |
apply (erule gfp_lemma3)
|
|
243 |
done
|
|
244 |
|
|
245 |
(*Definition form, to control unfolding*)
|
|
246 |
lemma def_gfp_unfold:
|
|
247 |
"[| A==gfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"
|
|
248 |
apply simp
|
|
249 |
apply (erule gfp_unfold)
|
|
250 |
done
|
|
251 |
|
|
252 |
|
60770
|
253 |
subsection\<open>Coinduction Rules for Greatest Fixed Points\<close>
|
13218
|
254 |
|
|
255 |
(*weak version*)
|
46820
|
256 |
lemma weak_coinduct: "[| a: X; X \<subseteq> h(X); X \<subseteq> D |] ==> a \<in> gfp(D,h)"
|
13218
|
257 |
by (blast intro: gfp_upperbound [THEN subsetD])
|
0
|
258 |
|
13218
|
259 |
lemma coinduct_lemma:
|
46820
|
260 |
"[| X \<subseteq> h(X \<union> gfp(D,h)); X \<subseteq> D; bnd_mono(D,h) |] ==>
|
|
261 |
X \<union> gfp(D,h) \<subseteq> h(X \<union> gfp(D,h))"
|
13218
|
262 |
apply (erule Un_least)
|
|
263 |
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
|
|
264 |
apply (rule Un_upper2 [THEN subset_trans])
|
|
265 |
apply (rule bnd_mono_Un, assumption+)
|
|
266 |
apply (rule gfp_subset)
|
|
267 |
done
|
|
268 |
|
|
269 |
(*strong version*)
|
|
270 |
lemma coinduct:
|
46820
|
271 |
"[| bnd_mono(D,h); a: X; X \<subseteq> h(X \<union> gfp(D,h)); X \<subseteq> D |]
|
|
272 |
==> a \<in> gfp(D,h)"
|
13218
|
273 |
apply (rule weak_coinduct)
|
|
274 |
apply (erule_tac [2] coinduct_lemma)
|
|
275 |
apply (simp_all add: gfp_subset Un_subset_iff)
|
|
276 |
done
|
|
277 |
|
|
278 |
(*Definition form, to control unfolding*)
|
|
279 |
lemma def_coinduct:
|
46820
|
280 |
"[| A == gfp(D,h); bnd_mono(D,h); a: X; X \<subseteq> h(X \<union> A); X \<subseteq> D |] ==>
|
|
281 |
a \<in> A"
|
13218
|
282 |
apply simp
|
|
283 |
apply (rule coinduct, assumption+)
|
|
284 |
done
|
|
285 |
|
|
286 |
(*The version used in the induction/coinduction package*)
|
|
287 |
lemma def_Collect_coinduct:
|
|
288 |
"[| A == gfp(D, %w. Collect(D,P(w))); bnd_mono(D, %w. Collect(D,P(w)));
|
46820
|
289 |
a: X; X \<subseteq> D; !!z. z: X ==> P(X \<union> A, z) |] ==>
|
|
290 |
a \<in> A"
|
13218
|
291 |
apply (rule def_coinduct, assumption+, blast+)
|
|
292 |
done
|
0
|
293 |
|
13218
|
294 |
(*Monotonicity of gfp!*)
|
|
295 |
lemma gfp_mono:
|
46820
|
296 |
"[| bnd_mono(D,h); D \<subseteq> E;
|
|
297 |
!!X. X<=D ==> h(X) \<subseteq> i(X) |] ==> gfp(D,h) \<subseteq> gfp(E,i)"
|
13218
|
298 |
apply (rule gfp_upperbound)
|
|
299 |
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
|
|
300 |
apply (blast del: subsetI intro: gfp_subset)
|
|
301 |
apply (blast del: subsetI intro: subset_trans gfp_subset)
|
|
302 |
done
|
|
303 |
|
0
|
304 |
end
|