author | wenzelm |
Wed, 29 Aug 2007 11:10:28 +0200 | |
changeset 24470 | 41c81e23c08d |
parent 24093 | 5d0ecd0c8f3c |
child 25481 | aa16cd919dcc |
permissions | -rw-r--r-- |
23164 | 1 |
(* Title: HOL/NatBin.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1999 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
header {* Binary arithmetic for the natural numbers *} |
|
8 |
||
9 |
theory NatBin |
|
10 |
imports IntDiv |
|
11 |
begin |
|
12 |
||
13 |
text {* |
|
14 |
Arithmetic for naturals is reduced to that for the non-negative integers. |
|
15 |
*} |
|
16 |
||
17 |
instance nat :: number |
|
18 |
nat_number_of_def [code inline]: "number_of v == nat (number_of (v\<Colon>int))" .. |
|
19 |
||
20 |
abbreviation (xsymbols) |
|
21 |
square :: "'a::power => 'a" ("(_\<twosuperior>)" [1000] 999) where |
|
22 |
"x\<twosuperior> == x^2" |
|
23 |
||
24 |
notation (latex output) |
|
25 |
square ("(_\<twosuperior>)" [1000] 999) |
|
26 |
||
27 |
notation (HTML output) |
|
28 |
square ("(_\<twosuperior>)" [1000] 999) |
|
29 |
||
30 |
||
31 |
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*} |
|
32 |
||
33 |
declare nat_0 [simp] nat_1 [simp] |
|
34 |
||
35 |
lemma nat_number_of [simp]: "nat (number_of w) = number_of w" |
|
36 |
by (simp add: nat_number_of_def) |
|
37 |
||
38 |
lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)" |
|
39 |
by (simp add: nat_number_of_def) |
|
40 |
||
41 |
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)" |
|
42 |
by (simp add: nat_1 nat_number_of_def) |
|
43 |
||
44 |
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" |
|
45 |
by (simp add: nat_numeral_1_eq_1) |
|
46 |
||
47 |
lemma numeral_2_eq_2: "2 = Suc (Suc 0)" |
|
48 |
apply (unfold nat_number_of_def) |
|
49 |
apply (rule nat_2) |
|
50 |
done |
|
51 |
||
52 |
||
53 |
text{*Distributive laws for type @{text nat}. The others are in theory |
|
54 |
@{text IntArith}, but these require div and mod to be defined for type |
|
55 |
"int". They also need some of the lemmas proved above.*} |
|
56 |
||
57 |
lemma nat_div_distrib: "(0::int) <= z ==> nat (z div z') = nat z div nat z'" |
|
58 |
apply (case_tac "0 <= z'") |
|
59 |
apply (auto simp add: div_nonneg_neg_le0 DIVISION_BY_ZERO_DIV) |
|
60 |
apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) |
|
23365 | 61 |
apply (auto elim!: nonneg_eq_int) |
23164 | 62 |
apply (rename_tac m m') |
23365 | 63 |
apply (subgoal_tac "0 <= int m div int m'") |
23164 | 64 |
prefer 2 apply (simp add: nat_numeral_0_eq_0 pos_imp_zdiv_nonneg_iff) |
23307
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
65 |
apply (rule of_nat_eq_iff [where 'a=int, THEN iffD1], simp) |
23365 | 66 |
apply (rule_tac r = "int (m mod m') " in quorem_div) |
23164 | 67 |
prefer 2 apply force |
23365 | 68 |
apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 |
23307
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
69 |
of_nat_add [symmetric] of_nat_mult [symmetric] |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
70 |
del: of_nat_add of_nat_mult) |
23164 | 71 |
done |
72 |
||
73 |
(*Fails if z'<0: the LHS collapses to (nat z) but the RHS doesn't*) |
|
74 |
lemma nat_mod_distrib: |
|
75 |
"[| (0::int) <= z; 0 <= z' |] ==> nat (z mod z') = nat z mod nat z'" |
|
76 |
apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) |
|
23365 | 77 |
apply (auto elim!: nonneg_eq_int) |
23164 | 78 |
apply (rename_tac m m') |
23365 | 79 |
apply (subgoal_tac "0 <= int m mod int m'") |
80 |
prefer 2 apply (simp add: nat_less_iff nat_numeral_0_eq_0 pos_mod_sign) |
|
81 |
apply (rule int_int_eq [THEN iffD1], simp) |
|
82 |
apply (rule_tac q = "int (m div m') " in quorem_mod) |
|
23164 | 83 |
prefer 2 apply force |
23365 | 84 |
apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 |
23307
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
85 |
of_nat_add [symmetric] of_nat_mult [symmetric] |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
86 |
del: of_nat_add of_nat_mult) |
23164 | 87 |
done |
88 |
||
89 |
text{*Suggested by Matthias Daum*} |
|
90 |
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)" |
|
91 |
apply (subgoal_tac "nat x div nat k < nat x") |
|
92 |
apply (simp (asm_lr) add: nat_div_distrib [symmetric]) |
|
93 |
apply (rule Divides.div_less_dividend, simp_all) |
|
94 |
done |
|
95 |
||
96 |
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*} |
|
97 |
||
98 |
(*"neg" is used in rewrite rules for binary comparisons*) |
|
99 |
lemma int_nat_number_of [simp]: |
|
23365 | 100 |
"int (number_of v) = |
23307
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
101 |
(if neg (number_of v :: int) then 0 |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
102 |
else (number_of v :: int))" |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
103 |
by (simp del: nat_number_of |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
104 |
add: neg_nat nat_number_of_def not_neg_nat add_assoc) |
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
huffman
parents:
23294
diff
changeset
|
105 |
|
23164 | 106 |
|
107 |
subsubsection{*Successor *} |
|
108 |
||
109 |
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" |
|
110 |
apply (rule sym) |
|
111 |
apply (simp add: nat_eq_iff int_Suc) |
|
112 |
done |
|
113 |
||
114 |
lemma Suc_nat_number_of_add: |
|
115 |
"Suc (number_of v + n) = |
|
116 |
(if neg (number_of v :: int) then 1+n else number_of (Numeral.succ v) + n)" |
|
117 |
by (simp del: nat_number_of |
|
118 |
add: nat_number_of_def neg_nat |
|
119 |
Suc_nat_eq_nat_zadd1 number_of_succ) |
|
120 |
||
121 |
lemma Suc_nat_number_of [simp]: |
|
122 |
"Suc (number_of v) = |
|
123 |
(if neg (number_of v :: int) then 1 else number_of (Numeral.succ v))" |
|
124 |
apply (cut_tac n = 0 in Suc_nat_number_of_add) |
|
125 |
apply (simp cong del: if_weak_cong) |
|
126 |
done |
|
127 |
||
128 |
||
129 |
subsubsection{*Addition *} |
|
130 |
||
131 |
(*"neg" is used in rewrite rules for binary comparisons*) |
|
132 |
lemma add_nat_number_of [simp]: |
|
133 |
"(number_of v :: nat) + number_of v' = |
|
134 |
(if neg (number_of v :: int) then number_of v' |
|
135 |
else if neg (number_of v' :: int) then number_of v |
|
136 |
else number_of (v + v'))" |
|
137 |
by (force dest!: neg_nat |
|
138 |
simp del: nat_number_of |
|
139 |
simp add: nat_number_of_def nat_add_distrib [symmetric]) |
|
140 |
||
141 |
||
142 |
subsubsection{*Subtraction *} |
|
143 |
||
144 |
lemma diff_nat_eq_if: |
|
145 |
"nat z - nat z' = |
|
146 |
(if neg z' then nat z |
|
147 |
else let d = z-z' in |
|
148 |
if neg d then 0 else nat d)" |
|
149 |
apply (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0) |
|
150 |
done |
|
151 |
||
152 |
lemma diff_nat_number_of [simp]: |
|
153 |
"(number_of v :: nat) - number_of v' = |
|
154 |
(if neg (number_of v' :: int) then number_of v |
|
155 |
else let d = number_of (v + uminus v') in |
|
156 |
if neg d then 0 else nat d)" |
|
157 |
by (simp del: nat_number_of add: diff_nat_eq_if nat_number_of_def) |
|
158 |
||
159 |
||
160 |
||
161 |
subsubsection{*Multiplication *} |
|
162 |
||
163 |
lemma mult_nat_number_of [simp]: |
|
164 |
"(number_of v :: nat) * number_of v' = |
|
165 |
(if neg (number_of v :: int) then 0 else number_of (v * v'))" |
|
166 |
by (force dest!: neg_nat |
|
167 |
simp del: nat_number_of |
|
168 |
simp add: nat_number_of_def nat_mult_distrib [symmetric]) |
|
169 |
||
170 |
||
171 |
||
172 |
subsubsection{*Quotient *} |
|
173 |
||
174 |
lemma div_nat_number_of [simp]: |
|
175 |
"(number_of v :: nat) div number_of v' = |
|
176 |
(if neg (number_of v :: int) then 0 |
|
177 |
else nat (number_of v div number_of v'))" |
|
178 |
by (force dest!: neg_nat |
|
179 |
simp del: nat_number_of |
|
180 |
simp add: nat_number_of_def nat_div_distrib [symmetric]) |
|
181 |
||
182 |
lemma one_div_nat_number_of [simp]: |
|
183 |
"(Suc 0) div number_of v' = (nat (1 div number_of v'))" |
|
184 |
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) |
|
185 |
||
186 |
||
187 |
subsubsection{*Remainder *} |
|
188 |
||
189 |
lemma mod_nat_number_of [simp]: |
|
190 |
"(number_of v :: nat) mod number_of v' = |
|
191 |
(if neg (number_of v :: int) then 0 |
|
192 |
else if neg (number_of v' :: int) then number_of v |
|
193 |
else nat (number_of v mod number_of v'))" |
|
194 |
by (force dest!: neg_nat |
|
195 |
simp del: nat_number_of |
|
196 |
simp add: nat_number_of_def nat_mod_distrib [symmetric]) |
|
197 |
||
198 |
lemma one_mod_nat_number_of [simp]: |
|
199 |
"(Suc 0) mod number_of v' = |
|
200 |
(if neg (number_of v' :: int) then Suc 0 |
|
201 |
else nat (1 mod number_of v'))" |
|
202 |
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) |
|
203 |
||
204 |
||
205 |
subsubsection{* Divisibility *} |
|
206 |
||
207 |
lemmas dvd_eq_mod_eq_0_number_of = |
|
208 |
dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard] |
|
209 |
||
210 |
declare dvd_eq_mod_eq_0_number_of [simp] |
|
211 |
||
212 |
ML |
|
213 |
{* |
|
214 |
val nat_number_of_def = thm"nat_number_of_def"; |
|
215 |
||
216 |
val nat_number_of = thm"nat_number_of"; |
|
217 |
val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0"; |
|
218 |
val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1"; |
|
219 |
val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0"; |
|
220 |
val numeral_2_eq_2 = thm"numeral_2_eq_2"; |
|
221 |
val nat_div_distrib = thm"nat_div_distrib"; |
|
222 |
val nat_mod_distrib = thm"nat_mod_distrib"; |
|
223 |
val int_nat_number_of = thm"int_nat_number_of"; |
|
224 |
val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1"; |
|
225 |
val Suc_nat_number_of_add = thm"Suc_nat_number_of_add"; |
|
226 |
val Suc_nat_number_of = thm"Suc_nat_number_of"; |
|
227 |
val add_nat_number_of = thm"add_nat_number_of"; |
|
228 |
val diff_nat_eq_if = thm"diff_nat_eq_if"; |
|
229 |
val diff_nat_number_of = thm"diff_nat_number_of"; |
|
230 |
val mult_nat_number_of = thm"mult_nat_number_of"; |
|
231 |
val div_nat_number_of = thm"div_nat_number_of"; |
|
232 |
val mod_nat_number_of = thm"mod_nat_number_of"; |
|
233 |
*} |
|
234 |
||
235 |
||
236 |
subsection{*Comparisons*} |
|
237 |
||
238 |
subsubsection{*Equals (=) *} |
|
239 |
||
240 |
lemma eq_nat_nat_iff: |
|
241 |
"[| (0::int) <= z; 0 <= z' |] ==> (nat z = nat z') = (z=z')" |
|
242 |
by (auto elim!: nonneg_eq_int) |
|
243 |
||
244 |
(*"neg" is used in rewrite rules for binary comparisons*) |
|
245 |
lemma eq_nat_number_of [simp]: |
|
246 |
"((number_of v :: nat) = number_of v') = |
|
247 |
(if neg (number_of v :: int) then (iszero (number_of v' :: int) | neg (number_of v' :: int)) |
|
248 |
else if neg (number_of v' :: int) then iszero (number_of v :: int) |
|
249 |
else iszero (number_of (v + uminus v') :: int))" |
|
250 |
apply (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def |
|
251 |
eq_nat_nat_iff eq_number_of_eq nat_0 iszero_def |
|
252 |
split add: split_if cong add: imp_cong) |
|
253 |
apply (simp only: nat_eq_iff nat_eq_iff2) |
|
254 |
apply (simp add: not_neg_eq_ge_0 [symmetric]) |
|
255 |
done |
|
256 |
||
257 |
||
258 |
subsubsection{*Less-than (<) *} |
|
259 |
||
260 |
(*"neg" is used in rewrite rules for binary comparisons*) |
|
261 |
lemma less_nat_number_of [simp]: |
|
262 |
"((number_of v :: nat) < number_of v') = |
|
263 |
(if neg (number_of v :: int) then neg (number_of (uminus v') :: int) |
|
264 |
else neg (number_of (v + uminus v') :: int))" |
|
265 |
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def |
|
266 |
nat_less_eq_zless less_number_of_eq_neg zless_nat_eq_int_zless |
|
267 |
cong add: imp_cong, simp add: Pls_def) |
|
268 |
||
269 |
||
270 |
(*Maps #n to n for n = 0, 1, 2*) |
|
271 |
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2 |
|
272 |
||
273 |
||
274 |
subsection{*Powers with Numeric Exponents*} |
|
275 |
||
276 |
text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}. |
|
277 |
We cannot prove general results about the numeral @{term "-1"}, so we have to |
|
278 |
use @{term "- 1"} instead.*} |
|
279 |
||
23277 | 280 |
lemma power2_eq_square: "(a::'a::recpower)\<twosuperior> = a * a" |
23164 | 281 |
by (simp add: numeral_2_eq_2 Power.power_Suc) |
282 |
||
23277 | 283 |
lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\<twosuperior> = 0" |
23164 | 284 |
by (simp add: power2_eq_square) |
285 |
||
23277 | 286 |
lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\<twosuperior> = 1" |
23164 | 287 |
by (simp add: power2_eq_square) |
288 |
||
289 |
lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x" |
|
290 |
apply (subgoal_tac "3 = Suc (Suc (Suc 0))") |
|
291 |
apply (erule ssubst) |
|
292 |
apply (simp add: power_Suc mult_ac) |
|
293 |
apply (unfold nat_number_of_def) |
|
294 |
apply (subst nat_eq_iff) |
|
295 |
apply simp |
|
296 |
done |
|
297 |
||
298 |
text{*Squares of literal numerals will be evaluated.*} |
|
299 |
lemmas power2_eq_square_number_of = |
|
300 |
power2_eq_square [of "number_of w", standard] |
|
301 |
declare power2_eq_square_number_of [simp] |
|
302 |
||
303 |
||
304 |
lemma zero_le_power2[simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,recpower})" |
|
305 |
by (simp add: power2_eq_square) |
|
306 |
||
307 |
lemma zero_less_power2[simp]: |
|
308 |
"(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,recpower}))" |
|
309 |
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) |
|
310 |
||
311 |
lemma power2_less_0[simp]: |
|
312 |
fixes a :: "'a::{ordered_idom,recpower}" |
|
313 |
shows "~ (a\<twosuperior> < 0)" |
|
314 |
by (force simp add: power2_eq_square mult_less_0_iff) |
|
315 |
||
316 |
lemma zero_eq_power2[simp]: |
|
317 |
"(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,recpower}))" |
|
318 |
by (force simp add: power2_eq_square mult_eq_0_iff) |
|
319 |
||
320 |
lemma abs_power2[simp]: |
|
321 |
"abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,recpower})" |
|
322 |
by (simp add: power2_eq_square abs_mult abs_mult_self) |
|
323 |
||
324 |
lemma power2_abs[simp]: |
|
325 |
"(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,recpower})" |
|
326 |
by (simp add: power2_eq_square abs_mult_self) |
|
327 |
||
328 |
lemma power2_minus[simp]: |
|
329 |
"(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,recpower})" |
|
330 |
by (simp add: power2_eq_square) |
|
331 |
||
332 |
lemma power2_le_imp_le: |
|
333 |
fixes x y :: "'a::{ordered_semidom,recpower}" |
|
334 |
shows "\<lbrakk>x\<twosuperior> \<le> y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x \<le> y" |
|
335 |
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) |
|
336 |
||
337 |
lemma power2_less_imp_less: |
|
338 |
fixes x y :: "'a::{ordered_semidom,recpower}" |
|
339 |
shows "\<lbrakk>x\<twosuperior> < y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x < y" |
|
340 |
by (rule power_less_imp_less_base) |
|
341 |
||
342 |
lemma power2_eq_imp_eq: |
|
343 |
fixes x y :: "'a::{ordered_semidom,recpower}" |
|
344 |
shows "\<lbrakk>x\<twosuperior> = y\<twosuperior>; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> x = y" |
|
345 |
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp) |
|
346 |
||
347 |
lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})" |
|
348 |
apply (induct "n") |
|
349 |
apply (auto simp add: power_Suc power_add) |
|
350 |
done |
|
351 |
||
352 |
lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2" |
|
353 |
by (subst mult_commute) (simp add: power_mult) |
|
354 |
||
355 |
lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2" |
|
356 |
by (simp add: power_even_eq) |
|
357 |
||
358 |
lemma power_minus_even [simp]: |
|
359 |
"(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)" |
|
360 |
by (simp add: power_minus1_even power_minus [of a]) |
|
361 |
||
362 |
lemma zero_le_even_power'[simp]: |
|
363 |
"0 \<le> (a::'a::{ordered_idom,recpower}) ^ (2*n)" |
|
364 |
proof (induct "n") |
|
365 |
case 0 |
|
366 |
show ?case by (simp add: zero_le_one) |
|
367 |
next |
|
368 |
case (Suc n) |
|
369 |
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" |
|
370 |
by (simp add: mult_ac power_add power2_eq_square) |
|
371 |
thus ?case |
|
372 |
by (simp add: prems zero_le_mult_iff) |
|
373 |
qed |
|
374 |
||
375 |
lemma odd_power_less_zero: |
|
376 |
"(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0" |
|
377 |
proof (induct "n") |
|
378 |
case 0 |
|
23389 | 379 |
then show ?case by (simp add: Power.power_Suc) |
23164 | 380 |
next |
381 |
case (Suc n) |
|
23389 | 382 |
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" |
383 |
by (simp add: mult_ac power_add power2_eq_square Power.power_Suc) |
|
384 |
thus ?case |
|
385 |
by (simp add: prems mult_less_0_iff mult_neg_neg) |
|
23164 | 386 |
qed |
387 |
||
388 |
lemma odd_0_le_power_imp_0_le: |
|
389 |
"0 \<le> a ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,recpower})" |
|
390 |
apply (insert odd_power_less_zero [of a n]) |
|
391 |
apply (force simp add: linorder_not_less [symmetric]) |
|
392 |
done |
|
393 |
||
394 |
text{*Simprules for comparisons where common factors can be cancelled.*} |
|
395 |
lemmas zero_compare_simps = |
|
396 |
add_strict_increasing add_strict_increasing2 add_increasing |
|
397 |
zero_le_mult_iff zero_le_divide_iff |
|
398 |
zero_less_mult_iff zero_less_divide_iff |
|
399 |
mult_le_0_iff divide_le_0_iff |
|
400 |
mult_less_0_iff divide_less_0_iff |
|
401 |
zero_le_power2 power2_less_0 |
|
402 |
||
403 |
subsubsection{*Nat *} |
|
404 |
||
405 |
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)" |
|
406 |
by (simp add: numerals) |
|
407 |
||
408 |
(*Expresses a natural number constant as the Suc of another one. |
|
409 |
NOT suitable for rewriting because n recurs in the condition.*) |
|
410 |
lemmas expand_Suc = Suc_pred' [of "number_of v", standard] |
|
411 |
||
412 |
subsubsection{*Arith *} |
|
413 |
||
414 |
lemma Suc_eq_add_numeral_1: "Suc n = n + 1" |
|
415 |
by (simp add: numerals) |
|
416 |
||
417 |
lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n" |
|
418 |
by (simp add: numerals) |
|
419 |
||
420 |
(* These two can be useful when m = number_of... *) |
|
421 |
||
422 |
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))" |
|
423 |
apply (case_tac "m") |
|
424 |
apply (simp_all add: numerals) |
|
425 |
done |
|
426 |
||
427 |
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))" |
|
428 |
apply (case_tac "m") |
|
429 |
apply (simp_all add: numerals) |
|
430 |
done |
|
431 |
||
432 |
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))" |
|
433 |
apply (case_tac "m") |
|
434 |
apply (simp_all add: numerals) |
|
435 |
done |
|
436 |
||
437 |
||
438 |
subsection{*Comparisons involving (0::nat) *} |
|
439 |
||
440 |
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*} |
|
441 |
||
442 |
lemma eq_number_of_0 [simp]: |
|
443 |
"(number_of v = (0::nat)) = |
|
444 |
(if neg (number_of v :: int) then True else iszero (number_of v :: int))" |
|
445 |
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) |
|
446 |
||
447 |
lemma eq_0_number_of [simp]: |
|
448 |
"((0::nat) = number_of v) = |
|
449 |
(if neg (number_of v :: int) then True else iszero (number_of v :: int))" |
|
450 |
by (rule trans [OF eq_sym_conv eq_number_of_0]) |
|
451 |
||
452 |
lemma less_0_number_of [simp]: |
|
453 |
"((0::nat) < number_of v) = neg (number_of (uminus v) :: int)" |
|
454 |
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] Pls_def) |
|
455 |
||
456 |
||
457 |
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)" |
|
458 |
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) |
|
459 |
||
460 |
||
461 |
||
462 |
subsection{*Comparisons involving @{term Suc} *} |
|
463 |
||
464 |
lemma eq_number_of_Suc [simp]: |
|
465 |
"(number_of v = Suc n) = |
|
466 |
(let pv = number_of (Numeral.pred v) in |
|
467 |
if neg pv then False else nat pv = n)" |
|
468 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less |
|
469 |
number_of_pred nat_number_of_def |
|
470 |
split add: split_if) |
|
471 |
apply (rule_tac x = "number_of v" in spec) |
|
472 |
apply (auto simp add: nat_eq_iff) |
|
473 |
done |
|
474 |
||
475 |
lemma Suc_eq_number_of [simp]: |
|
476 |
"(Suc n = number_of v) = |
|
477 |
(let pv = number_of (Numeral.pred v) in |
|
478 |
if neg pv then False else nat pv = n)" |
|
479 |
by (rule trans [OF eq_sym_conv eq_number_of_Suc]) |
|
480 |
||
481 |
lemma less_number_of_Suc [simp]: |
|
482 |
"(number_of v < Suc n) = |
|
483 |
(let pv = number_of (Numeral.pred v) in |
|
484 |
if neg pv then True else nat pv < n)" |
|
485 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less |
|
486 |
number_of_pred nat_number_of_def |
|
487 |
split add: split_if) |
|
488 |
apply (rule_tac x = "number_of v" in spec) |
|
489 |
apply (auto simp add: nat_less_iff) |
|
490 |
done |
|
491 |
||
492 |
lemma less_Suc_number_of [simp]: |
|
493 |
"(Suc n < number_of v) = |
|
494 |
(let pv = number_of (Numeral.pred v) in |
|
495 |
if neg pv then False else n < nat pv)" |
|
496 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less |
|
497 |
number_of_pred nat_number_of_def |
|
498 |
split add: split_if) |
|
499 |
apply (rule_tac x = "number_of v" in spec) |
|
500 |
apply (auto simp add: zless_nat_eq_int_zless) |
|
501 |
done |
|
502 |
||
503 |
lemma le_number_of_Suc [simp]: |
|
504 |
"(number_of v <= Suc n) = |
|
505 |
(let pv = number_of (Numeral.pred v) in |
|
506 |
if neg pv then True else nat pv <= n)" |
|
507 |
by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric]) |
|
508 |
||
509 |
lemma le_Suc_number_of [simp]: |
|
510 |
"(Suc n <= number_of v) = |
|
511 |
(let pv = number_of (Numeral.pred v) in |
|
512 |
if neg pv then False else n <= nat pv)" |
|
513 |
by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric]) |
|
514 |
||
515 |
||
516 |
lemma lemma1: "(m+m = n+n) = (m = (n::int))" |
|
517 |
by auto |
|
518 |
||
519 |
lemma lemma2: "m+m ~= (1::int) + (n + n)" |
|
520 |
apply auto |
|
521 |
apply (drule_tac f = "%x. x mod 2" in arg_cong) |
|
522 |
apply (simp add: zmod_zadd1_eq) |
|
523 |
done |
|
524 |
||
525 |
lemma eq_number_of_BIT_BIT: |
|
526 |
"((number_of (v BIT x) ::int) = number_of (w BIT y)) = |
|
527 |
(x=y & (((number_of v) ::int) = number_of w))" |
|
528 |
apply (simp only: number_of_BIT lemma1 lemma2 eq_commute |
|
529 |
OrderedGroup.add_left_cancel add_assoc OrderedGroup.add_0_left |
|
530 |
split add: bit.split) |
|
531 |
apply simp |
|
532 |
done |
|
533 |
||
534 |
lemma eq_number_of_BIT_Pls: |
|
535 |
"((number_of (v BIT x) ::int) = Numeral0) = |
|
536 |
(x=bit.B0 & (((number_of v) ::int) = Numeral0))" |
|
537 |
apply (simp only: simp_thms add: number_of_BIT number_of_Pls eq_commute |
|
538 |
split add: bit.split cong: imp_cong) |
|
539 |
apply (rule_tac x = "number_of v" in spec, safe) |
|
540 |
apply (simp_all (no_asm_use)) |
|
541 |
apply (drule_tac f = "%x. x mod 2" in arg_cong) |
|
542 |
apply (simp add: zmod_zadd1_eq) |
|
543 |
done |
|
544 |
||
545 |
lemma eq_number_of_BIT_Min: |
|
546 |
"((number_of (v BIT x) ::int) = number_of Numeral.Min) = |
|
547 |
(x=bit.B1 & (((number_of v) ::int) = number_of Numeral.Min))" |
|
548 |
apply (simp only: simp_thms add: number_of_BIT number_of_Min eq_commute |
|
549 |
split add: bit.split cong: imp_cong) |
|
550 |
apply (rule_tac x = "number_of v" in spec, auto) |
|
551 |
apply (drule_tac f = "%x. x mod 2" in arg_cong, auto) |
|
552 |
done |
|
553 |
||
554 |
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Numeral.Min" |
|
555 |
by auto |
|
556 |
||
557 |
||
558 |
||
559 |
subsection{*Max and Min Combined with @{term Suc} *} |
|
560 |
||
561 |
lemma max_number_of_Suc [simp]: |
|
562 |
"max (Suc n) (number_of v) = |
|
563 |
(let pv = number_of (Numeral.pred v) in |
|
564 |
if neg pv then Suc n else Suc(max n (nat pv)))" |
|
565 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def |
|
566 |
split add: split_if nat.split) |
|
567 |
apply (rule_tac x = "number_of v" in spec) |
|
568 |
apply auto |
|
569 |
done |
|
570 |
||
571 |
lemma max_Suc_number_of [simp]: |
|
572 |
"max (number_of v) (Suc n) = |
|
573 |
(let pv = number_of (Numeral.pred v) in |
|
574 |
if neg pv then Suc n else Suc(max (nat pv) n))" |
|
575 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def |
|
576 |
split add: split_if nat.split) |
|
577 |
apply (rule_tac x = "number_of v" in spec) |
|
578 |
apply auto |
|
579 |
done |
|
580 |
||
581 |
lemma min_number_of_Suc [simp]: |
|
582 |
"min (Suc n) (number_of v) = |
|
583 |
(let pv = number_of (Numeral.pred v) in |
|
584 |
if neg pv then 0 else Suc(min n (nat pv)))" |
|
585 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def |
|
586 |
split add: split_if nat.split) |
|
587 |
apply (rule_tac x = "number_of v" in spec) |
|
588 |
apply auto |
|
589 |
done |
|
590 |
||
591 |
lemma min_Suc_number_of [simp]: |
|
592 |
"min (number_of v) (Suc n) = |
|
593 |
(let pv = number_of (Numeral.pred v) in |
|
594 |
if neg pv then 0 else Suc(min (nat pv) n))" |
|
595 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def |
|
596 |
split add: split_if nat.split) |
|
597 |
apply (rule_tac x = "number_of v" in spec) |
|
598 |
apply auto |
|
599 |
done |
|
600 |
||
601 |
subsection{*Literal arithmetic involving powers*} |
|
602 |
||
603 |
lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n" |
|
604 |
apply (induct "n") |
|
605 |
apply (simp_all (no_asm_simp) add: nat_mult_distrib) |
|
606 |
done |
|
607 |
||
608 |
lemma power_nat_number_of: |
|
609 |
"(number_of v :: nat) ^ n = |
|
610 |
(if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))" |
|
611 |
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq |
|
612 |
split add: split_if cong: imp_cong) |
|
613 |
||
614 |
||
615 |
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard] |
|
616 |
declare power_nat_number_of_number_of [simp] |
|
617 |
||
618 |
||
619 |
||
23294 | 620 |
text{*For arbitrary rings*} |
23164 | 621 |
|
23294 | 622 |
lemma power_number_of_even: |
623 |
fixes z :: "'a::{number_ring,recpower}" |
|
624 |
shows "z ^ number_of (w BIT bit.B0) = (let w = z ^ (number_of w) in w * w)" |
|
23164 | 625 |
unfolding Let_def nat_number_of_def number_of_BIT bit.cases |
626 |
apply (rule_tac x = "number_of w" in spec, clarify) |
|
627 |
apply (case_tac " (0::int) <= x") |
|
628 |
apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square) |
|
629 |
done |
|
630 |
||
23294 | 631 |
lemma power_number_of_odd: |
632 |
fixes z :: "'a::{number_ring,recpower}" |
|
633 |
shows "z ^ number_of (w BIT bit.B1) = (if (0::int) <= number_of w |
|
23164 | 634 |
then (let w = z ^ (number_of w) in z * w * w) else 1)" |
635 |
unfolding Let_def nat_number_of_def number_of_BIT bit.cases |
|
636 |
apply (rule_tac x = "number_of w" in spec, auto) |
|
637 |
apply (simp only: nat_add_distrib nat_mult_distrib) |
|
638 |
apply simp |
|
23294 | 639 |
apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc) |
23164 | 640 |
done |
641 |
||
23294 | 642 |
lemmas zpower_number_of_even = power_number_of_even [where 'a=int] |
643 |
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int] |
|
23164 | 644 |
|
23294 | 645 |
lemmas power_number_of_even_number_of [simp] = |
646 |
power_number_of_even [of "number_of v", standard] |
|
23164 | 647 |
|
23294 | 648 |
lemmas power_number_of_odd_number_of [simp] = |
649 |
power_number_of_odd [of "number_of v", standard] |
|
23164 | 650 |
|
651 |
||
652 |
||
653 |
ML |
|
654 |
{* |
|
655 |
val numerals = thms"numerals"; |
|
656 |
val numeral_ss = simpset() addsimps numerals; |
|
657 |
||
658 |
val nat_bin_arith_setup = |
|
24093 | 659 |
LinArith.map_data |
23164 | 660 |
(fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} => |
661 |
{add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms, |
|
662 |
inj_thms = inj_thms, |
|
663 |
lessD = lessD, neqE = neqE, |
|
664 |
simpset = simpset addsimps [Suc_nat_number_of, int_nat_number_of, |
|
665 |
not_neg_number_of_Pls, |
|
666 |
neg_number_of_Min,neg_number_of_BIT]}) |
|
667 |
*} |
|
668 |
||
24075 | 669 |
declaration {* K nat_bin_arith_setup *} |
23164 | 670 |
|
671 |
(* Enable arith to deal with div/mod k where k is a numeral: *) |
|
672 |
declare split_div[of _ _ "number_of k", standard, arith_split] |
|
673 |
declare split_mod[of _ _ "number_of k", standard, arith_split] |
|
674 |
||
675 |
lemma nat_number_of_Pls: "Numeral0 = (0::nat)" |
|
676 |
by (simp add: number_of_Pls nat_number_of_def) |
|
677 |
||
678 |
lemma nat_number_of_Min: "number_of Numeral.Min = (0::nat)" |
|
679 |
apply (simp only: number_of_Min nat_number_of_def nat_zminus_int) |
|
680 |
done |
|
681 |
||
682 |
lemma nat_number_of_BIT_1: |
|
683 |
"number_of (w BIT bit.B1) = |
|
684 |
(if neg (number_of w :: int) then 0 |
|
685 |
else let n = number_of w in Suc (n + n))" |
|
686 |
apply (simp only: nat_number_of_def Let_def split: split_if) |
|
687 |
apply (intro conjI impI) |
|
688 |
apply (simp add: neg_nat neg_number_of_BIT) |
|
689 |
apply (rule int_int_eq [THEN iffD1]) |
|
690 |
apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms) |
|
691 |
apply (simp only: number_of_BIT zadd_assoc split: bit.split) |
|
692 |
apply simp |
|
693 |
done |
|
694 |
||
695 |
lemma nat_number_of_BIT_0: |
|
696 |
"number_of (w BIT bit.B0) = (let n::nat = number_of w in n + n)" |
|
697 |
apply (simp only: nat_number_of_def Let_def) |
|
698 |
apply (cases "neg (number_of w :: int)") |
|
699 |
apply (simp add: neg_nat neg_number_of_BIT) |
|
700 |
apply (rule int_int_eq [THEN iffD1]) |
|
701 |
apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms) |
|
702 |
apply (simp only: number_of_BIT zadd_assoc) |
|
703 |
apply simp |
|
704 |
done |
|
705 |
||
706 |
lemmas nat_number = |
|
707 |
nat_number_of_Pls nat_number_of_Min |
|
708 |
nat_number_of_BIT_1 nat_number_of_BIT_0 |
|
709 |
||
710 |
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)" |
|
711 |
by (simp add: Let_def) |
|
712 |
||
713 |
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})" |
|
23294 | 714 |
by (simp add: power_mult power_Suc); |
23164 | 715 |
|
716 |
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})" |
|
717 |
by (simp add: power_mult power_Suc); |
|
718 |
||
719 |
||
720 |
subsection{*Literal arithmetic and @{term of_nat}*} |
|
721 |
||
722 |
lemma of_nat_double: |
|
723 |
"0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)" |
|
724 |
by (simp only: mult_2 nat_add_distrib of_nat_add) |
|
725 |
||
726 |
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)" |
|
727 |
by (simp only: nat_number_of_def) |
|
728 |
||
729 |
lemma of_nat_number_of_lemma: |
|
730 |
"of_nat (number_of v :: nat) = |
|
731 |
(if 0 \<le> (number_of v :: int) |
|
732 |
then (number_of v :: 'a :: number_ring) |
|
733 |
else 0)" |
|
734 |
by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat); |
|
735 |
||
736 |
lemma of_nat_number_of_eq [simp]: |
|
737 |
"of_nat (number_of v :: nat) = |
|
738 |
(if neg (number_of v :: int) then 0 |
|
739 |
else (number_of v :: 'a :: number_ring))" |
|
740 |
by (simp only: of_nat_number_of_lemma neg_def, simp) |
|
741 |
||
742 |
||
743 |
subsection {*Lemmas for the Combination and Cancellation Simprocs*} |
|
744 |
||
745 |
lemma nat_number_of_add_left: |
|
746 |
"number_of v + (number_of v' + (k::nat)) = |
|
747 |
(if neg (number_of v :: int) then number_of v' + k |
|
748 |
else if neg (number_of v' :: int) then number_of v + k |
|
749 |
else number_of (v + v') + k)" |
|
750 |
by simp |
|
751 |
||
752 |
lemma nat_number_of_mult_left: |
|
753 |
"number_of v * (number_of v' * (k::nat)) = |
|
754 |
(if neg (number_of v :: int) then 0 |
|
755 |
else number_of (v * v') * k)" |
|
756 |
by simp |
|
757 |
||
758 |
||
759 |
subsubsection{*For @{text combine_numerals}*} |
|
760 |
||
761 |
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)" |
|
762 |
by (simp add: add_mult_distrib) |
|
763 |
||
764 |
||
765 |
subsubsection{*For @{text cancel_numerals}*} |
|
766 |
||
767 |
lemma nat_diff_add_eq1: |
|
768 |
"j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)" |
|
769 |
by (simp split add: nat_diff_split add: add_mult_distrib) |
|
770 |
||
771 |
lemma nat_diff_add_eq2: |
|
772 |
"i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))" |
|
773 |
by (simp split add: nat_diff_split add: add_mult_distrib) |
|
774 |
||
775 |
lemma nat_eq_add_iff1: |
|
776 |
"j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)" |
|
777 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
778 |
||
779 |
lemma nat_eq_add_iff2: |
|
780 |
"i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)" |
|
781 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
782 |
||
783 |
lemma nat_less_add_iff1: |
|
784 |
"j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)" |
|
785 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
786 |
||
787 |
lemma nat_less_add_iff2: |
|
788 |
"i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)" |
|
789 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
790 |
||
791 |
lemma nat_le_add_iff1: |
|
792 |
"j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)" |
|
793 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
794 |
||
795 |
lemma nat_le_add_iff2: |
|
796 |
"i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)" |
|
797 |
by (auto split add: nat_diff_split simp add: add_mult_distrib) |
|
798 |
||
799 |
||
800 |
subsubsection{*For @{text cancel_numeral_factors} *} |
|
801 |
||
802 |
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)" |
|
803 |
by auto |
|
804 |
||
805 |
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)" |
|
806 |
by auto |
|
807 |
||
808 |
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)" |
|
809 |
by auto |
|
810 |
||
811 |
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)" |
|
812 |
by auto |
|
813 |
||
23969 | 814 |
lemma nat_mult_dvd_cancel_disj[simp]: |
815 |
"(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))" |
|
816 |
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric]) |
|
817 |
||
818 |
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)" |
|
819 |
by(auto) |
|
820 |
||
23164 | 821 |
|
822 |
subsubsection{*For @{text cancel_factor} *} |
|
823 |
||
824 |
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)" |
|
825 |
by auto |
|
826 |
||
827 |
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)" |
|
828 |
by auto |
|
829 |
||
830 |
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)" |
|
831 |
by auto |
|
832 |
||
23969 | 833 |
lemma nat_mult_div_cancel_disj[simp]: |
23164 | 834 |
"(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)" |
835 |
by (simp add: nat_mult_div_cancel1) |
|
836 |
||
837 |
||
838 |
subsection {* legacy ML bindings *} |
|
839 |
||
840 |
ML |
|
841 |
{* |
|
842 |
val eq_nat_nat_iff = thm"eq_nat_nat_iff"; |
|
843 |
val eq_nat_number_of = thm"eq_nat_number_of"; |
|
844 |
val less_nat_number_of = thm"less_nat_number_of"; |
|
845 |
val power2_eq_square = thm "power2_eq_square"; |
|
846 |
val zero_le_power2 = thm "zero_le_power2"; |
|
847 |
val zero_less_power2 = thm "zero_less_power2"; |
|
848 |
val zero_eq_power2 = thm "zero_eq_power2"; |
|
849 |
val abs_power2 = thm "abs_power2"; |
|
850 |
val power2_abs = thm "power2_abs"; |
|
851 |
val power2_minus = thm "power2_minus"; |
|
852 |
val power_minus1_even = thm "power_minus1_even"; |
|
853 |
val power_minus_even = thm "power_minus_even"; |
|
854 |
val odd_power_less_zero = thm "odd_power_less_zero"; |
|
855 |
val odd_0_le_power_imp_0_le = thm "odd_0_le_power_imp_0_le"; |
|
856 |
||
857 |
val Suc_pred' = thm"Suc_pred'"; |
|
858 |
val expand_Suc = thm"expand_Suc"; |
|
859 |
val Suc_eq_add_numeral_1 = thm"Suc_eq_add_numeral_1"; |
|
860 |
val Suc_eq_add_numeral_1_left = thm"Suc_eq_add_numeral_1_left"; |
|
861 |
val add_eq_if = thm"add_eq_if"; |
|
862 |
val mult_eq_if = thm"mult_eq_if"; |
|
863 |
val power_eq_if = thm"power_eq_if"; |
|
864 |
val eq_number_of_0 = thm"eq_number_of_0"; |
|
865 |
val eq_0_number_of = thm"eq_0_number_of"; |
|
866 |
val less_0_number_of = thm"less_0_number_of"; |
|
867 |
val neg_imp_number_of_eq_0 = thm"neg_imp_number_of_eq_0"; |
|
868 |
val eq_number_of_Suc = thm"eq_number_of_Suc"; |
|
869 |
val Suc_eq_number_of = thm"Suc_eq_number_of"; |
|
870 |
val less_number_of_Suc = thm"less_number_of_Suc"; |
|
871 |
val less_Suc_number_of = thm"less_Suc_number_of"; |
|
872 |
val le_number_of_Suc = thm"le_number_of_Suc"; |
|
873 |
val le_Suc_number_of = thm"le_Suc_number_of"; |
|
874 |
val eq_number_of_BIT_BIT = thm"eq_number_of_BIT_BIT"; |
|
875 |
val eq_number_of_BIT_Pls = thm"eq_number_of_BIT_Pls"; |
|
876 |
val eq_number_of_BIT_Min = thm"eq_number_of_BIT_Min"; |
|
877 |
val eq_number_of_Pls_Min = thm"eq_number_of_Pls_Min"; |
|
878 |
val of_nat_number_of_eq = thm"of_nat_number_of_eq"; |
|
879 |
val nat_power_eq = thm"nat_power_eq"; |
|
880 |
val power_nat_number_of = thm"power_nat_number_of"; |
|
881 |
val zpower_number_of_even = thm"zpower_number_of_even"; |
|
882 |
val zpower_number_of_odd = thm"zpower_number_of_odd"; |
|
883 |
val nat_number_of_Pls = thm"nat_number_of_Pls"; |
|
884 |
val nat_number_of_Min = thm"nat_number_of_Min"; |
|
885 |
val Let_Suc = thm"Let_Suc"; |
|
886 |
||
887 |
val nat_number = thms"nat_number"; |
|
888 |
||
889 |
val nat_number_of_add_left = thm"nat_number_of_add_left"; |
|
890 |
val nat_number_of_mult_left = thm"nat_number_of_mult_left"; |
|
891 |
val left_add_mult_distrib = thm"left_add_mult_distrib"; |
|
892 |
val nat_diff_add_eq1 = thm"nat_diff_add_eq1"; |
|
893 |
val nat_diff_add_eq2 = thm"nat_diff_add_eq2"; |
|
894 |
val nat_eq_add_iff1 = thm"nat_eq_add_iff1"; |
|
895 |
val nat_eq_add_iff2 = thm"nat_eq_add_iff2"; |
|
896 |
val nat_less_add_iff1 = thm"nat_less_add_iff1"; |
|
897 |
val nat_less_add_iff2 = thm"nat_less_add_iff2"; |
|
898 |
val nat_le_add_iff1 = thm"nat_le_add_iff1"; |
|
899 |
val nat_le_add_iff2 = thm"nat_le_add_iff2"; |
|
900 |
val nat_mult_le_cancel1 = thm"nat_mult_le_cancel1"; |
|
901 |
val nat_mult_less_cancel1 = thm"nat_mult_less_cancel1"; |
|
902 |
val nat_mult_eq_cancel1 = thm"nat_mult_eq_cancel1"; |
|
903 |
val nat_mult_div_cancel1 = thm"nat_mult_div_cancel1"; |
|
904 |
val nat_mult_le_cancel_disj = thm"nat_mult_le_cancel_disj"; |
|
905 |
val nat_mult_less_cancel_disj = thm"nat_mult_less_cancel_disj"; |
|
906 |
val nat_mult_eq_cancel_disj = thm"nat_mult_eq_cancel_disj"; |
|
907 |
val nat_mult_div_cancel_disj = thm"nat_mult_div_cancel_disj"; |
|
908 |
||
909 |
val power_minus_even = thm"power_minus_even"; |
|
910 |
*} |
|
911 |
||
912 |
end |