| author | bulwahn | 
| Mon, 13 Sep 2010 16:44:20 +0200 | |
| changeset 39313 | 41ce0b56d858 | 
| parent 39157 | b98909faaea8 | 
| child 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 39157 
b98909faaea8
more explicit HOL-Proofs sessions, including former ex/Hilbert_Classical.thy which works in parallel mode without the antiquotation option "margin" (which is still critical);
 wenzelm parents: 
36862diff
changeset | 1 | (* Title: HOL/Proofs/Lambda/ParRed.thy | 
| 1120 | 2 | Author: Tobias Nipkow | 
| 3 | Copyright 1995 TU Muenchen | |
| 4 | ||
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 5 | Properties of => and "cd", in particular the diamond property of => and | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 6 | confluence of beta. | 
| 1120 | 7 | *) | 
| 8 | ||
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 9 | header {* Parallel reduction and a complete developments *}
 | 
| 1120 | 10 | |
| 16417 | 11 | theory ParRed imports Lambda Commutation begin | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 12 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 13 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 14 | subsection {* Parallel reduction *}
 | 
| 1120 | 15 | |
| 23750 | 16 | inductive par_beta :: "[dB, dB] => bool" (infixl "=>" 50) | 
| 22271 | 17 | where | 
| 18 | var [simp, intro!]: "Var n => Var n" | |
| 19 | | abs [simp, intro!]: "s => t ==> Abs s => Abs t" | |
| 20 | | app [simp, intro!]: "[| s => s'; t => t' |] ==> s \<degree> t => s' \<degree> t'" | |
| 21 | | beta [simp, intro!]: "[| s => s'; t => t' |] ==> (Abs s) \<degree> t => s'[t'/0]" | |
| 1120 | 22 | |
| 23750 | 23 | inductive_cases par_beta_cases [elim!]: | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 24 | "Var n => t" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 25 | "Abs s => Abs t" | 
| 12011 | 26 | "(Abs s) \<degree> t => u" | 
| 27 | "s \<degree> t => u" | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 28 | "Abs s => t" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 29 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 30 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 31 | subsection {* Inclusions *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 32 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 33 | text {* @{text "beta \<subseteq> par_beta \<subseteq> beta^*"} \medskip *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 34 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 35 | lemma par_beta_varL [simp]: | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 36 | "(Var n => t) = (t = Var n)" | 
| 18241 | 37 | by blast | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 38 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 39 | lemma par_beta_refl [simp]: "t => t" (* par_beta_refl [intro!] causes search to blow up *) | 
| 18241 | 40 | by (induct t) simp_all | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 41 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 42 | lemma beta_subset_par_beta: "beta <= par_beta" | 
| 22271 | 43 | apply (rule predicate2I) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 44 | apply (erule beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 45 | apply (blast intro!: par_beta_refl)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 46 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 47 | |
| 22271 | 48 | lemma par_beta_subset_beta: "par_beta <= beta^**" | 
| 49 | apply (rule predicate2I) | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 50 | apply (erule par_beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 51 | apply blast | 
| 23750 | 52 | apply (blast del: rtranclp.rtrancl_refl intro: rtranclp.rtrancl_into_rtrancl)+ | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 53 |       -- {* @{thm[source] rtrancl_refl} complicates the proof by increasing the branching factor *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 54 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 55 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 56 | |
| 25972 | 57 | subsection {* Misc properties of @{text "par_beta"} *}
 | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 58 | |
| 18241 | 59 | lemma par_beta_lift [simp]: | 
| 60 | "t => t' \<Longrightarrow> lift t n => lift t' n" | |
| 20503 | 61 | by (induct t arbitrary: t' n) fastsimp+ | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 62 | |
| 18241 | 63 | lemma par_beta_subst: | 
| 64 | "s => s' \<Longrightarrow> t => t' \<Longrightarrow> t[s/n] => t'[s'/n]" | |
| 20503 | 65 | apply (induct t arbitrary: s s' t' n) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 66 | apply (simp add: subst_Var) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 67 | apply (erule par_beta_cases) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 68 | apply simp | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 69 | apply (simp add: subst_subst [symmetric]) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 70 | apply (fastsimp intro!: par_beta_lift) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 71 | apply fastsimp | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 72 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 73 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 74 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 75 | subsection {* Confluence (directly) *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 76 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 77 | lemma diamond_par_beta: "diamond par_beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 78 | apply (unfold diamond_def commute_def square_def) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 79 | apply (rule impI [THEN allI [THEN allI]]) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 80 | apply (erule par_beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 81 | apply (blast intro!: par_beta_subst)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 82 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 83 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 84 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 85 | subsection {* Complete developments *}
 | 
| 1120 | 86 | |
| 35440 | 87 | fun | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 88 | "cd" :: "dB => dB" | 
| 35440 | 89 | where | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 90 | "cd (Var n) = Var n" | 
| 35440 | 91 | | "cd (Var n \<degree> t) = Var n \<degree> cd t" | 
| 92 | | "cd ((s1 \<degree> s2) \<degree> t) = cd (s1 \<degree> s2) \<degree> cd t" | |
| 93 | | "cd (Abs u \<degree> t) = (cd u)[cd t/0]" | |
| 94 | | "cd (Abs s) = Abs (cd s)" | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 95 | |
| 18241 | 96 | lemma par_beta_cd: "s => t \<Longrightarrow> t => cd s" | 
| 20503 | 97 | apply (induct s arbitrary: t rule: cd.induct) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 98 | apply auto | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 99 | apply (fast intro!: par_beta_subst) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 100 | done | 
| 1120 | 101 | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 102 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 103 | subsection {* Confluence (via complete developments) *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 104 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 105 | lemma diamond_par_beta2: "diamond par_beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 106 | apply (unfold diamond_def commute_def square_def) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 107 | apply (blast intro: par_beta_cd) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 108 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 109 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 110 | theorem beta_confluent: "confluent beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 111 | apply (rule diamond_par_beta2 diamond_to_confluence | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 112 | par_beta_subset_beta beta_subset_par_beta)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 113 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 114 | |
| 11638 | 115 | end |