1461
|
1 |
(* Title: ZF/trancl.ML
|
0
|
2 |
ID: $Id$
|
1461
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
0
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
2929
|
6 |
Transitive closure of a relation
|
0
|
7 |
*)
|
|
8 |
|
5067
|
9 |
Goal "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
|
0
|
10 |
by (rtac bnd_monoI 1);
|
|
11 |
by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
|
2929
|
12 |
by (Blast_tac 1);
|
760
|
13 |
qed "rtrancl_bnd_mono";
|
0
|
14 |
|
5321
|
15 |
Goalw [rtrancl_def] "r<=s ==> r^* <= s^*";
|
0
|
16 |
by (rtac lfp_mono 1);
|
5321
|
17 |
by (REPEAT (ares_tac [rtrancl_bnd_mono, subset_refl, id_mono,
|
8318
|
18 |
comp_mono, Un_mono, field_mono, Sigma_mono] 1));
|
760
|
19 |
qed "rtrancl_mono";
|
0
|
20 |
|
|
21 |
(* r^* = id(field(r)) Un ( r O r^* ) *)
|
10216
|
22 |
bind_thm ("rtrancl_unfold", rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_unfold));
|
0
|
23 |
|
|
24 |
(** The relation rtrancl **)
|
|
25 |
|
8318
|
26 |
(* r^* <= field(r) * field(r) *)
|
|
27 |
bind_thm ("rtrancl_type", rtrancl_def RS def_lfp_subset);
|
0
|
28 |
|
|
29 |
(*Reflexivity of rtrancl*)
|
5321
|
30 |
Goal "[| a: field(r) |] ==> <a,a> : r^*";
|
0
|
31 |
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
|
5321
|
32 |
by (etac (idI RS UnI1) 1);
|
760
|
33 |
qed "rtrancl_refl";
|
0
|
34 |
|
|
35 |
(*Closure under composition with r *)
|
5321
|
36 |
Goal "[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^*";
|
0
|
37 |
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
|
|
38 |
by (rtac (compI RS UnI2) 1);
|
5321
|
39 |
by (assume_tac 1);
|
|
40 |
by (assume_tac 1);
|
760
|
41 |
qed "rtrancl_into_rtrancl";
|
0
|
42 |
|
|
43 |
(*rtrancl of r contains all pairs in r *)
|
5321
|
44 |
Goal "<a,b> : r ==> <a,b> : r^*";
|
0
|
45 |
by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
|
5321
|
46 |
by (REPEAT (ares_tac [fieldI1] 1));
|
760
|
47 |
qed "r_into_rtrancl";
|
0
|
48 |
|
|
49 |
(*The premise ensures that r consists entirely of pairs*)
|
5321
|
50 |
Goal "r <= Sigma(A,B) ==> r <= r^*";
|
4091
|
51 |
by (blast_tac (claset() addIs [r_into_rtrancl]) 1);
|
760
|
52 |
qed "r_subset_rtrancl";
|
0
|
53 |
|
5067
|
54 |
Goal "field(r^*) = field(r)";
|
4091
|
55 |
by (blast_tac (claset() addIs [r_into_rtrancl]
|
1461
|
56 |
addSDs [rtrancl_type RS subsetD]) 1);
|
760
|
57 |
qed "rtrancl_field";
|
0
|
58 |
|
|
59 |
|
|
60 |
(** standard induction rule **)
|
|
61 |
|
5321
|
62 |
val major::prems = Goal
|
0
|
63 |
"[| <a,b> : r^*; \
|
|
64 |
\ !!x. x: field(r) ==> P(<x,x>); \
|
|
65 |
\ !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |] \
|
|
66 |
\ ==> P(<a,b>)";
|
|
67 |
by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
|
4091
|
68 |
by (blast_tac (claset() addIs prems) 1);
|
760
|
69 |
qed "rtrancl_full_induct";
|
0
|
70 |
|
|
71 |
(*nice induction rule.
|
|
72 |
Tried adding the typing hypotheses y,z:field(r), but these
|
|
73 |
caused expensive case splits!*)
|
5321
|
74 |
val major::prems = Goal
|
1461
|
75 |
"[| <a,b> : r^*; \
|
|
76 |
\ P(a); \
|
|
77 |
\ !!y z.[| <a,y> : r^*; <y,z> : r; P(y) |] ==> P(z) \
|
0
|
78 |
\ |] ==> P(b)";
|
|
79 |
(*by induction on this formula*)
|
|
80 |
by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
|
|
81 |
(*now solve first subgoal: this formula is sufficient*)
|
|
82 |
by (EVERY1 [etac (spec RS mp), rtac refl]);
|
|
83 |
(*now do the induction*)
|
|
84 |
by (resolve_tac [major RS rtrancl_full_induct] 1);
|
4091
|
85 |
by (ALLGOALS (blast_tac (claset() addIs prems)));
|
760
|
86 |
qed "rtrancl_induct";
|
0
|
87 |
|
|
88 |
(*transitivity of transitive closure!! -- by induction.*)
|
5067
|
89 |
Goalw [trans_def] "trans(r^*)";
|
0
|
90 |
by (REPEAT (resolve_tac [allI,impI] 1));
|
|
91 |
by (eres_inst_tac [("b","z")] rtrancl_induct 1);
|
|
92 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
|
760
|
93 |
qed "trans_rtrancl";
|
0
|
94 |
|
8318
|
95 |
bind_thm ("rtrancl_trans", trans_rtrancl RS transD);
|
|
96 |
|
0
|
97 |
(*elimination of rtrancl -- by induction on a special formula*)
|
5321
|
98 |
val major::prems = Goal
|
1461
|
99 |
"[| <a,b> : r^*; (a=b) ==> P; \
|
|
100 |
\ !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |] \
|
0
|
101 |
\ ==> P";
|
|
102 |
by (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r)" 1);
|
|
103 |
(*see HOL/trancl*)
|
|
104 |
by (rtac (major RS rtrancl_induct) 2);
|
4091
|
105 |
by (ALLGOALS (fast_tac (claset() addSEs prems)));
|
760
|
106 |
qed "rtranclE";
|
0
|
107 |
|
|
108 |
|
|
109 |
(**** The relation trancl ****)
|
|
110 |
|
|
111 |
(*Transitivity of r^+ is proved by transitivity of r^* *)
|
5067
|
112 |
Goalw [trans_def,trancl_def] "trans(r^+)";
|
4091
|
113 |
by (blast_tac (claset() addIs [rtrancl_into_rtrancl RS
|
3016
|
114 |
(trans_rtrancl RS transD RS compI)]) 1);
|
760
|
115 |
qed "trans_trancl";
|
0
|
116 |
|
8318
|
117 |
bind_thm ("trancl_trans", trans_trancl RS transD);
|
|
118 |
|
0
|
119 |
(** Conversions between trancl and rtrancl **)
|
|
120 |
|
5137
|
121 |
Goalw [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
|
4091
|
122 |
by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
|
760
|
123 |
qed "trancl_into_rtrancl";
|
0
|
124 |
|
|
125 |
(*r^+ contains all pairs in r *)
|
5137
|
126 |
Goalw [trancl_def] "<a,b> : r ==> <a,b> : r^+";
|
4091
|
127 |
by (blast_tac (claset() addSIs [rtrancl_refl]) 1);
|
760
|
128 |
qed "r_into_trancl";
|
0
|
129 |
|
|
130 |
(*The premise ensures that r consists entirely of pairs*)
|
5137
|
131 |
Goal "r <= Sigma(A,B) ==> r <= r^+";
|
4091
|
132 |
by (blast_tac (claset() addIs [r_into_trancl]) 1);
|
760
|
133 |
qed "r_subset_trancl";
|
0
|
134 |
|
|
135 |
(*intro rule by definition: from r^* and r *)
|
9211
|
136 |
Goalw [trancl_def] "[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^+";
|
3016
|
137 |
by (Blast_tac 1);
|
760
|
138 |
qed "rtrancl_into_trancl1";
|
0
|
139 |
|
|
140 |
(*intro rule from r and r^* *)
|
9907
|
141 |
val prems = goal (the_context ())
|
0
|
142 |
"[| <a,b> : r; <b,c> : r^* |] ==> <a,c> : r^+";
|
|
143 |
by (resolve_tac (prems RL [rtrancl_induct]) 1);
|
|
144 |
by (resolve_tac (prems RL [r_into_trancl]) 1);
|
8318
|
145 |
by (etac trancl_trans 1);
|
0
|
146 |
by (etac r_into_trancl 1);
|
760
|
147 |
qed "rtrancl_into_trancl2";
|
0
|
148 |
|
|
149 |
(*Nice induction rule for trancl*)
|
5321
|
150 |
val major::prems = Goal
|
1461
|
151 |
"[| <a,b> : r^+; \
|
|
152 |
\ !!y. [| <a,y> : r |] ==> P(y); \
|
|
153 |
\ !!y z.[| <a,y> : r^+; <y,z> : r; P(y) |] ==> P(z) \
|
0
|
154 |
\ |] ==> P(b)";
|
|
155 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
|
|
156 |
(*by induction on this formula*)
|
|
157 |
by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
|
|
158 |
(*now solve first subgoal: this formula is sufficient*)
|
2929
|
159 |
by (Blast_tac 1);
|
0
|
160 |
by (etac rtrancl_induct 1);
|
4091
|
161 |
by (ALLGOALS (fast_tac (claset() addIs (rtrancl_into_trancl1::prems))));
|
760
|
162 |
qed "trancl_induct";
|
0
|
163 |
|
|
164 |
(*elimination of r^+ -- NOT an induction rule*)
|
5321
|
165 |
val major::prems = Goal
|
0
|
166 |
"[| <a,b> : r^+; \
|
|
167 |
\ <a,b> : r ==> P; \
|
1461
|
168 |
\ !!y.[| <a,y> : r^+; <y,b> : r |] ==> P \
|
0
|
169 |
\ |] ==> P";
|
|
170 |
by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r)" 1);
|
4091
|
171 |
by (fast_tac (claset() addIs prems) 1);
|
0
|
172 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
|
|
173 |
by (etac rtranclE 1);
|
4091
|
174 |
by (ALLGOALS (blast_tac (claset() addIs [rtrancl_into_trancl1])));
|
760
|
175 |
qed "tranclE";
|
0
|
176 |
|
5067
|
177 |
Goalw [trancl_def] "r^+ <= field(r)*field(r)";
|
4091
|
178 |
by (blast_tac (claset() addEs [rtrancl_type RS subsetD RS SigmaE2]) 1);
|
760
|
179 |
qed "trancl_type";
|
0
|
180 |
|
5321
|
181 |
Goalw [trancl_def] "r<=s ==> r^+ <= s^+";
|
|
182 |
by (REPEAT (ares_tac [comp_mono, rtrancl_mono] 1));
|
760
|
183 |
qed "trancl_mono";
|
0
|
184 |
|
8318
|
185 |
(** Suggested by Sidi Ould Ehmety **)
|
|
186 |
|
|
187 |
Goal "(r^*)^* = r^*";
|
|
188 |
by (rtac equalityI 1);
|
|
189 |
by Auto_tac;
|
|
190 |
by (ALLGOALS (forward_tac [impOfSubs rtrancl_type]));
|
|
191 |
by (ALLGOALS Clarify_tac);
|
|
192 |
by (etac r_into_rtrancl 2);
|
|
193 |
by (etac rtrancl_induct 1);
|
|
194 |
by (asm_full_simp_tac (simpset() addsimps [rtrancl_refl, rtrancl_field]) 1);
|
|
195 |
by (blast_tac (claset() addIs [rtrancl_trans]) 1);
|
|
196 |
qed "rtrancl_idemp";
|
|
197 |
Addsimps [rtrancl_idemp];
|
|
198 |
|
|
199 |
Goal "[| R <= S; S <= R^* |] ==> S^* = R^*";
|
|
200 |
by (dtac rtrancl_mono 1);
|
|
201 |
by (dtac rtrancl_mono 1);
|
|
202 |
by (ALLGOALS Asm_full_simp_tac);
|
|
203 |
by (Blast_tac 1);
|
|
204 |
qed "rtrancl_subset";
|
|
205 |
|
|
206 |
Goal "[| r<= Sigma(A,B); s<=Sigma(C,D) |] ==> (r^* Un s^*)^* = (r Un s)^*";
|
|
207 |
by (rtac rtrancl_subset 1);
|
|
208 |
by (blast_tac (claset() addDs [r_subset_rtrancl]) 1);
|
|
209 |
by (blast_tac (claset() addIs [rtrancl_mono RS subsetD]) 1);
|
|
210 |
qed "rtrancl_Un_rtrancl";
|
|
211 |
|
|
212 |
(** "converse" laws by Sidi Ould Ehmety **)
|
|
213 |
|
|
214 |
Goal "<x,y>:converse(r)^* ==> <x,y>:converse(r^*)";
|
|
215 |
by (rtac converseI 1);
|
|
216 |
by (forward_tac [rtrancl_type RS subsetD] 1);
|
|
217 |
by (etac rtrancl_induct 1);
|
|
218 |
by (blast_tac (claset() addIs [rtrancl_refl]) 1);
|
|
219 |
by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
|
|
220 |
qed "rtrancl_converseD";
|
|
221 |
|
|
222 |
Goal "<x,y>:converse(r^*) ==> <x,y>:converse(r)^*";
|
|
223 |
by (dtac converseD 1);
|
|
224 |
by (forward_tac [rtrancl_type RS subsetD] 1);
|
|
225 |
by (etac rtrancl_induct 1);
|
|
226 |
by (blast_tac (claset() addIs [rtrancl_refl]) 1);
|
|
227 |
by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
|
|
228 |
qed "rtrancl_converseI";
|
|
229 |
|
|
230 |
Goal "converse(r)^* = converse(r^*)";
|
|
231 |
by (safe_tac (claset() addSIs [equalityI]));
|
|
232 |
by (forward_tac [rtrancl_type RS subsetD] 1);
|
|
233 |
by (safe_tac (claset() addSDs [rtrancl_converseD] addSIs [rtrancl_converseI]));
|
|
234 |
qed "rtrancl_converse";
|