| author | wenzelm | 
| Sun, 07 May 2017 13:20:24 +0200 | |
| changeset 65751 | 426d4bf3b9bb | 
| parent 58860 | fee7cfa69c50 | 
| child 67406 | 23307fd33906 | 
| permissions | -rw-r--r-- | 
| 16417 | 1  | 
theory Functions imports Main begin  | 
| 10294 | 2  | 
|
3  | 
||
4  | 
text{*
 | 
|
5  | 
@{thm[display] id_def[no_vars]}
 | 
|
6  | 
\rulename{id_def}
 | 
|
7  | 
||
8  | 
@{thm[display] o_def[no_vars]}
 | 
|
9  | 
\rulename{o_def}
 | 
|
10  | 
||
11  | 
@{thm[display] o_assoc[no_vars]}
 | 
|
12  | 
\rulename{o_assoc}
 | 
|
13  | 
*}  | 
|
14  | 
||
15  | 
text{*
 | 
|
16  | 
@{thm[display] fun_upd_apply[no_vars]}
 | 
|
17  | 
\rulename{fun_upd_apply}
 | 
|
18  | 
||
19  | 
@{thm[display] fun_upd_upd[no_vars]}
 | 
|
20  | 
\rulename{fun_upd_upd}
 | 
|
21  | 
*}  | 
|
22  | 
||
23  | 
||
24  | 
text{*
 | 
|
25  | 
definitions of injective, surjective, bijective  | 
|
26  | 
||
27  | 
@{thm[display] inj_on_def[no_vars]}
 | 
|
28  | 
\rulename{inj_on_def}
 | 
|
29  | 
||
30  | 
@{thm[display] surj_def[no_vars]}
 | 
|
31  | 
\rulename{surj_def}
 | 
|
32  | 
||
33  | 
@{thm[display] bij_def[no_vars]}
 | 
|
34  | 
\rulename{bij_def}
 | 
|
35  | 
*}  | 
|
36  | 
||
37  | 
||
38  | 
||
39  | 
text{*
 | 
|
40  | 
possibly interesting theorems about inv  | 
|
41  | 
*}  | 
|
42  | 
||
43  | 
text{*
 | 
|
44  | 
@{thm[display] inv_f_f[no_vars]}
 | 
|
45  | 
\rulename{inv_f_f}
 | 
|
46  | 
||
47  | 
@{thm[display] inj_imp_surj_inv[no_vars]}
 | 
|
48  | 
\rulename{inj_imp_surj_inv}
 | 
|
49  | 
||
50  | 
@{thm[display] surj_imp_inj_inv[no_vars]}
 | 
|
51  | 
\rulename{surj_imp_inj_inv}
 | 
|
52  | 
||
53  | 
@{thm[display] surj_f_inv_f[no_vars]}
 | 
|
54  | 
\rulename{surj_f_inv_f}
 | 
|
55  | 
||
56  | 
@{thm[display] bij_imp_bij_inv[no_vars]}
 | 
|
57  | 
\rulename{bij_imp_bij_inv}
 | 
|
58  | 
||
59  | 
@{thm[display] inv_inv_eq[no_vars]}
 | 
|
60  | 
\rulename{inv_inv_eq}
 | 
|
61  | 
||
62  | 
@{thm[display] o_inv_distrib[no_vars]}
 | 
|
63  | 
\rulename{o_inv_distrib}
 | 
|
64  | 
*}  | 
|
65  | 
||
66  | 
text{*
 | 
|
67  | 
small sample proof  | 
|
68  | 
||
69  | 
@{thm[display] ext[no_vars]}
 | 
|
70  | 
\rulename{ext}
 | 
|
71  | 
||
| 39795 | 72  | 
@{thm[display] fun_eq_iff[no_vars]}
 | 
73  | 
\rulename{fun_eq_iff}
 | 
|
| 10294 | 74  | 
*}  | 
75  | 
||
| 58860 | 76  | 
lemma "inj f \<Longrightarrow> (f o g = f o h) = (g = h)"  | 
| 39795 | 77  | 
apply (simp add: fun_eq_iff inj_on_def)  | 
| 10294 | 78  | 
apply (auto)  | 
79  | 
done  | 
|
80  | 
||
81  | 
text{*
 | 
|
82  | 
\begin{isabelle}
 | 
|
83  | 
inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline  | 
|
84  | 
\ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline  | 
|
85  | 
\ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x)  | 
|
86  | 
\end{isabelle}
 | 
|
87  | 
*}  | 
|
88  | 
||
89  | 
||
90  | 
text{*image, inverse image*}
 | 
|
91  | 
||
92  | 
text{*
 | 
|
93  | 
@{thm[display] image_def[no_vars]}
 | 
|
94  | 
\rulename{image_def}
 | 
|
95  | 
*}  | 
|
96  | 
||
97  | 
text{*
 | 
|
98  | 
@{thm[display] image_Un[no_vars]}
 | 
|
99  | 
\rulename{image_Un}
 | 
|
100  | 
*}  | 
|
101  | 
||
102  | 
text{*
 | 
|
| 
56154
 
f0a927235162
more complete set of lemmas wrt. image and composition
 
haftmann 
parents: 
48985 
diff
changeset
 | 
103  | 
@{thm[display] image_comp[no_vars]}
 | 
| 
 
f0a927235162
more complete set of lemmas wrt. image and composition
 
haftmann 
parents: 
48985 
diff
changeset
 | 
104  | 
\rulename{image_comp}
 | 
| 10294 | 105  | 
|
106  | 
@{thm[display] image_Int[no_vars]}
 | 
|
107  | 
\rulename{image_Int}
 | 
|
108  | 
||
109  | 
@{thm[display] bij_image_Compl_eq[no_vars]}
 | 
|
110  | 
\rulename{bij_image_Compl_eq}
 | 
|
111  | 
*}  | 
|
112  | 
||
113  | 
||
114  | 
text{*
 | 
|
115  | 
illustrates Union as well as image  | 
|
116  | 
*}  | 
|
| 10849 | 117  | 
|
| 10839 | 118  | 
lemma "f`A \<union> g`A = (\<Union>x\<in>A. {f x, g x})"
 | 
| 10849 | 119  | 
by blast  | 
| 10294 | 120  | 
|
| 10839 | 121  | 
lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}"
 | 
| 10849 | 122  | 
by blast  | 
| 10294 | 123  | 
|
124  | 
text{*actually a macro!*}
 | 
|
125  | 
||
| 10839 | 126  | 
lemma "range f = f`UNIV"  | 
| 10849 | 127  | 
by blast  | 
| 10294 | 128  | 
|
129  | 
||
130  | 
text{*
 | 
|
131  | 
inverse image  | 
|
132  | 
*}  | 
|
133  | 
||
134  | 
text{*
 | 
|
135  | 
@{thm[display] vimage_def[no_vars]}
 | 
|
136  | 
\rulename{vimage_def}
 | 
|
137  | 
||
138  | 
@{thm[display] vimage_Compl[no_vars]}
 | 
|
139  | 
\rulename{vimage_Compl}
 | 
|
140  | 
*}  | 
|
141  | 
||
142  | 
||
143  | 
end  |