| 
16417
 | 
     1  | 
theory Recur imports Main begin
  | 
| 
10294
 | 
     2  | 
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
text{*
 | 
| 
 | 
     5  | 
@{thm[display] mono_def[no_vars]}
 | 
| 
 | 
     6  | 
\rulename{mono_def}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
@{thm[display] monoI[no_vars]}
 | 
| 
 | 
     9  | 
\rulename{monoI}
 | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
@{thm[display] monoD[no_vars]}
 | 
| 
 | 
    12  | 
\rulename{monoD}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
@{thm[display] lfp_unfold[no_vars]}
 | 
| 
 | 
    15  | 
\rulename{lfp_unfold}
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
@{thm[display] lfp_induct[no_vars]}
 | 
| 
 | 
    18  | 
\rulename{lfp_induct}
 | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
@{thm[display] gfp_unfold[no_vars]}
 | 
| 
 | 
    21  | 
\rulename{gfp_unfold}
 | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
@{thm[display] coinduct[no_vars]}
 | 
| 
 | 
    24  | 
\rulename{coinduct}
 | 
| 
 | 
    25  | 
*}
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
text{*\noindent
 | 
| 
 | 
    28  | 
A relation $<$ is
  | 
| 
 | 
    29  | 
\bfindex{wellfounded} if it has no infinite descending chain $\cdots <
 | 
| 
 | 
    30  | 
a@2 < a@1 < a@0$. Clearly, a function definition is total iff the set
  | 
| 
 | 
    31  | 
of all pairs $(r,l)$, where $l$ is the argument on the left-hand side
  | 
| 
 | 
    32  | 
of an equation and $r$ the argument of some recursive call on the
  | 
| 
 | 
    33  | 
corresponding right-hand side, induces a wellfounded relation. 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
The HOL library formalizes
  | 
| 
 | 
    36  | 
some of the theory of wellfounded relations. For example
  | 
| 
 | 
    37  | 
@{prop"wf r"}\index{*wf|bold} means that relation @{term[show_types]"r::('a*'a)set"} is
 | 
| 
 | 
    38  | 
wellfounded.
  | 
| 
 | 
    39  | 
Finally we should mention that HOL already provides the mother of all
  | 
| 
 | 
    40  | 
inductions, \textbf{wellfounded
 | 
| 
 | 
    41  | 
induction}\indexbold{induction!wellfounded}\index{wellfounded
 | 
| 
 | 
    42  | 
induction|see{induction, wellfounded}} (@{thm[source]wf_induct}):
 | 
| 
 | 
    43  | 
@{thm[display]wf_induct[no_vars]}
 | 
| 
 | 
    44  | 
where @{term"wf r"} means that the relation @{term r} is wellfounded
 | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
*}
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
text{*
 | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
@{thm[display] wf_induct[no_vars]}
 | 
| 
 | 
    51  | 
\rulename{wf_induct}
 | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
@{thm[display] less_than_iff[no_vars]}
 | 
| 
 | 
    54  | 
\rulename{less_than_iff}
 | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
@{thm[display] inv_image_def[no_vars]}
 | 
| 
 | 
    57  | 
\rulename{inv_image_def}
 | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
@{thm[display] measure_def[no_vars]}
 | 
| 
 | 
    60  | 
\rulename{measure_def}
 | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
@{thm[display] wf_less_than[no_vars]}
 | 
| 
 | 
    63  | 
\rulename{wf_less_than}
 | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
@{thm[display] wf_inv_image[no_vars]}
 | 
| 
 | 
    66  | 
\rulename{wf_inv_image}
 | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
@{thm[display] wf_measure[no_vars]}
 | 
| 
 | 
    69  | 
\rulename{wf_measure}
 | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
@{thm[display] lex_prod_def[no_vars]}
 | 
| 
 | 
    72  | 
\rulename{lex_prod_def}
 | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
@{thm[display] wf_lex_prod[no_vars]}
 | 
| 
 | 
    75  | 
\rulename{wf_lex_prod}
 | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
*}
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
end
  | 
| 
 | 
    80  | 
  |