| author | blanchet | 
| Thu, 05 Mar 2015 11:57:34 +0100 | |
| changeset 59603 | 427511b3d575 | 
| parent 58881 | b9556a055632 | 
| child 60500 | 903bb1495239 | 
| permissions | -rw-r--r-- | 
| 26241 | 1  | 
(* Title: HOL/Library/Option_ord.thy  | 
2  | 
Author: Florian Haftmann, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
| 58881 | 5  | 
section {* Canonical order on option type *}
 | 
| 26241 | 6  | 
|
7  | 
theory Option_ord  | 
|
| 30662 | 8  | 
imports Option Main  | 
| 26241 | 9  | 
begin  | 
10  | 
||
| 49190 | 11  | 
notation  | 
12  | 
  bot ("\<bottom>") and
 | 
|
13  | 
  top ("\<top>") and
 | 
|
14  | 
inf (infixl "\<sqinter>" 70) and  | 
|
15  | 
sup (infixl "\<squnion>" 65) and  | 
|
16  | 
  Inf  ("\<Sqinter>_" [900] 900) and
 | 
|
17  | 
  Sup  ("\<Squnion>_" [900] 900)
 | 
|
18  | 
||
19  | 
syntax (xsymbols)  | 
|
20  | 
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
|
21  | 
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
|
22  | 
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
|
23  | 
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | 
|
24  | 
||
25  | 
||
| 30662 | 26  | 
instantiation option :: (preorder) preorder  | 
| 26241 | 27  | 
begin  | 
28  | 
||
29  | 
definition less_eq_option where  | 
|
| 37765 | 30  | 
"x \<le> y \<longleftrightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> x \<le> y))"  | 
| 26241 | 31  | 
|
32  | 
definition less_option where  | 
|
| 37765 | 33  | 
"x < y \<longleftrightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> x < y))"  | 
| 26241 | 34  | 
|
| 26258 | 35  | 
lemma less_eq_option_None [simp]: "None \<le> x"  | 
| 26241 | 36  | 
by (simp add: less_eq_option_def)  | 
37  | 
||
| 26258 | 38  | 
lemma less_eq_option_None_code [code]: "None \<le> x \<longleftrightarrow> True"  | 
| 26241 | 39  | 
by simp  | 
40  | 
||
| 26258 | 41  | 
lemma less_eq_option_None_is_None: "x \<le> None \<Longrightarrow> x = None"  | 
| 26241 | 42  | 
by (cases x) (simp_all add: less_eq_option_def)  | 
43  | 
||
| 26258 | 44  | 
lemma less_eq_option_Some_None [simp, code]: "Some x \<le> None \<longleftrightarrow> False"  | 
| 26241 | 45  | 
by (simp add: less_eq_option_def)  | 
46  | 
||
| 26258 | 47  | 
lemma less_eq_option_Some [simp, code]: "Some x \<le> Some y \<longleftrightarrow> x \<le> y"  | 
| 26241 | 48  | 
by (simp add: less_eq_option_def)  | 
49  | 
||
| 26258 | 50  | 
lemma less_option_None [simp, code]: "x < None \<longleftrightarrow> False"  | 
| 26241 | 51  | 
by (simp add: less_option_def)  | 
52  | 
||
| 26258 | 53  | 
lemma less_option_None_is_Some: "None < x \<Longrightarrow> \<exists>z. x = Some z"  | 
| 26241 | 54  | 
by (cases x) (simp_all add: less_option_def)  | 
55  | 
||
| 26258 | 56  | 
lemma less_option_None_Some [simp]: "None < Some x"  | 
| 26241 | 57  | 
by (simp add: less_option_def)  | 
58  | 
||
| 26258 | 59  | 
lemma less_option_None_Some_code [code]: "None < Some x \<longleftrightarrow> True"  | 
| 26241 | 60  | 
by simp  | 
61  | 
||
| 26258 | 62  | 
lemma less_option_Some [simp, code]: "Some x < Some y \<longleftrightarrow> x < y"  | 
| 26241 | 63  | 
by (simp add: less_option_def)  | 
64  | 
||
| 30662 | 65  | 
instance proof  | 
66  | 
qed (auto simp add: less_eq_option_def less_option_def less_le_not_le elim: order_trans split: option.splits)  | 
|
| 26241 | 67  | 
|
68  | 
end  | 
|
69  | 
||
| 30662 | 70  | 
instance option :: (order) order proof  | 
71  | 
qed (auto simp add: less_eq_option_def less_option_def split: option.splits)  | 
|
72  | 
||
73  | 
instance option :: (linorder) linorder proof  | 
|
74  | 
qed (auto simp add: less_eq_option_def less_option_def split: option.splits)  | 
|
75  | 
||
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
76  | 
instantiation option :: (order) order_bot  | 
| 30662 | 77  | 
begin  | 
78  | 
||
| 49190 | 79  | 
definition bot_option where  | 
80  | 
"\<bottom> = None"  | 
|
| 30662 | 81  | 
|
82  | 
instance proof  | 
|
83  | 
qed (simp add: bot_option_def)  | 
|
84  | 
||
85  | 
end  | 
|
86  | 
||
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
87  | 
instantiation option :: (order_top) order_top  | 
| 30662 | 88  | 
begin  | 
89  | 
||
| 49190 | 90  | 
definition top_option where  | 
91  | 
"\<top> = Some \<top>"  | 
|
| 30662 | 92  | 
|
93  | 
instance proof  | 
|
94  | 
qed (simp add: top_option_def less_eq_option_def split: option.split)  | 
|
| 26241 | 95  | 
|
96  | 
end  | 
|
| 30662 | 97  | 
|
98  | 
instance option :: (wellorder) wellorder proof  | 
|
99  | 
fix P :: "'a option \<Rightarrow> bool" and z :: "'a option"  | 
|
100  | 
assume H: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x"  | 
|
101  | 
have "P None" by (rule H) simp  | 
|
102  | 
then have P_Some [case_names Some]:  | 
|
103  | 
"\<And>z. (\<And>x. z = Some x \<Longrightarrow> (P o Some) x) \<Longrightarrow> P z"  | 
|
104  | 
proof -  | 
|
105  | 
fix z  | 
|
106  | 
assume "\<And>x. z = Some x \<Longrightarrow> (P o Some) x"  | 
|
107  | 
with `P None` show "P z" by (cases z) simp_all  | 
|
108  | 
qed  | 
|
109  | 
show "P z" proof (cases z rule: P_Some)  | 
|
110  | 
case (Some w)  | 
|
111  | 
show "(P o Some) w" proof (induct rule: less_induct)  | 
|
112  | 
case (less x)  | 
|
113  | 
have "P (Some x)" proof (rule H)  | 
|
114  | 
fix y :: "'a option"  | 
|
115  | 
assume "y < Some x"  | 
|
116  | 
show "P y" proof (cases y rule: P_Some)  | 
|
117  | 
case (Some v) with `y < Some x` have "v < x" by simp  | 
|
118  | 
with less show "(P o Some) v" .  | 
|
119  | 
qed  | 
|
120  | 
qed  | 
|
121  | 
then show ?case by simp  | 
|
122  | 
qed  | 
|
123  | 
qed  | 
|
124  | 
qed  | 
|
125  | 
||
| 49190 | 126  | 
instantiation option :: (inf) inf  | 
127  | 
begin  | 
|
128  | 
||
129  | 
definition inf_option where  | 
|
130  | 
"x \<sqinter> y = (case x of None \<Rightarrow> None | Some x \<Rightarrow> (case y of None \<Rightarrow> None | Some y \<Rightarrow> Some (x \<sqinter> y)))"  | 
|
131  | 
||
132  | 
lemma inf_None_1 [simp, code]:  | 
|
133  | 
"None \<sqinter> y = None"  | 
|
134  | 
by (simp add: inf_option_def)  | 
|
135  | 
||
136  | 
lemma inf_None_2 [simp, code]:  | 
|
137  | 
"x \<sqinter> None = None"  | 
|
138  | 
by (cases x) (simp_all add: inf_option_def)  | 
|
139  | 
||
140  | 
lemma inf_Some [simp, code]:  | 
|
141  | 
"Some x \<sqinter> Some y = Some (x \<sqinter> y)"  | 
|
142  | 
by (simp add: inf_option_def)  | 
|
143  | 
||
144  | 
instance ..  | 
|
145  | 
||
| 30662 | 146  | 
end  | 
| 49190 | 147  | 
|
148  | 
instantiation option :: (sup) sup  | 
|
149  | 
begin  | 
|
150  | 
||
151  | 
definition sup_option where  | 
|
152  | 
"x \<squnion> y = (case x of None \<Rightarrow> y | Some x' \<Rightarrow> (case y of None \<Rightarrow> x | Some y \<Rightarrow> Some (x' \<squnion> y)))"  | 
|
153  | 
||
154  | 
lemma sup_None_1 [simp, code]:  | 
|
155  | 
"None \<squnion> y = y"  | 
|
156  | 
by (simp add: sup_option_def)  | 
|
157  | 
||
158  | 
lemma sup_None_2 [simp, code]:  | 
|
159  | 
"x \<squnion> None = x"  | 
|
160  | 
by (cases x) (simp_all add: sup_option_def)  | 
|
161  | 
||
162  | 
lemma sup_Some [simp, code]:  | 
|
163  | 
"Some x \<squnion> Some y = Some (x \<squnion> y)"  | 
|
164  | 
by (simp add: sup_option_def)  | 
|
165  | 
||
166  | 
instance ..  | 
|
167  | 
||
168  | 
end  | 
|
169  | 
||
170  | 
instantiation option :: (semilattice_inf) semilattice_inf  | 
|
171  | 
begin  | 
|
172  | 
||
173  | 
instance proof  | 
|
174  | 
fix x y z :: "'a option"  | 
|
175  | 
show "x \<sqinter> y \<le> x"  | 
|
176  | 
by - (cases x, simp_all, cases y, simp_all)  | 
|
177  | 
show "x \<sqinter> y \<le> y"  | 
|
178  | 
by - (cases x, simp_all, cases y, simp_all)  | 
|
179  | 
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z"  | 
|
180  | 
by - (cases x, simp_all, cases y, simp_all, cases z, simp_all)  | 
|
181  | 
qed  | 
|
182  | 
||
183  | 
end  | 
|
184  | 
||
185  | 
instantiation option :: (semilattice_sup) semilattice_sup  | 
|
186  | 
begin  | 
|
187  | 
||
188  | 
instance proof  | 
|
189  | 
fix x y z :: "'a option"  | 
|
190  | 
show "x \<le> x \<squnion> y"  | 
|
191  | 
by - (cases x, simp_all, cases y, simp_all)  | 
|
192  | 
show "y \<le> x \<squnion> y"  | 
|
193  | 
by - (cases x, simp_all, cases y, simp_all)  | 
|
194  | 
fix x y z :: "'a option"  | 
|
195  | 
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x"  | 
|
196  | 
by - (cases y, simp_all, cases z, simp_all, cases x, simp_all)  | 
|
197  | 
qed  | 
|
198  | 
||
199  | 
end  | 
|
200  | 
||
201  | 
instance option :: (lattice) lattice ..  | 
|
202  | 
||
203  | 
instance option :: (lattice) bounded_lattice_bot ..  | 
|
204  | 
||
205  | 
instance option :: (bounded_lattice_top) bounded_lattice_top ..  | 
|
206  | 
||
207  | 
instance option :: (bounded_lattice_top) bounded_lattice ..  | 
|
208  | 
||
209  | 
instance option :: (distrib_lattice) distrib_lattice  | 
|
210  | 
proof  | 
|
211  | 
fix x y z :: "'a option"  | 
|
212  | 
show "x \<squnion> y \<sqinter> z = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
213  | 
by - (cases x, simp_all, cases y, simp_all, cases z, simp_all add: sup_inf_distrib1 inf_commute)  | 
|
214  | 
qed  | 
|
215  | 
||
216  | 
instantiation option :: (complete_lattice) complete_lattice  | 
|
217  | 
begin  | 
|
218  | 
||
219  | 
definition Inf_option :: "'a option set \<Rightarrow> 'a option" where  | 
|
220  | 
"\<Sqinter>A = (if None \<in> A then None else Some (\<Sqinter>Option.these A))"  | 
|
221  | 
||
222  | 
lemma None_in_Inf [simp]:  | 
|
223  | 
"None \<in> A \<Longrightarrow> \<Sqinter>A = None"  | 
|
224  | 
by (simp add: Inf_option_def)  | 
|
225  | 
||
226  | 
definition Sup_option :: "'a option set \<Rightarrow> 'a option" where  | 
|
227  | 
  "\<Squnion>A = (if A = {} \<or> A = {None} then None else Some (\<Squnion>Option.these A))"
 | 
|
228  | 
||
229  | 
lemma empty_Sup [simp]:  | 
|
230  | 
  "\<Squnion>{} = None"
 | 
|
231  | 
by (simp add: Sup_option_def)  | 
|
232  | 
||
233  | 
lemma singleton_None_Sup [simp]:  | 
|
234  | 
  "\<Squnion>{None} = None"
 | 
|
235  | 
by (simp add: Sup_option_def)  | 
|
236  | 
||
237  | 
instance proof  | 
|
238  | 
fix x :: "'a option" and A  | 
|
239  | 
assume "x \<in> A"  | 
|
240  | 
then show "\<Sqinter>A \<le> x"  | 
|
241  | 
by (cases x) (auto simp add: Inf_option_def in_these_eq intro: Inf_lower)  | 
|
242  | 
next  | 
|
243  | 
fix z :: "'a option" and A  | 
|
244  | 
assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"  | 
|
245  | 
show "z \<le> \<Sqinter>A"  | 
|
246  | 
proof (cases z)  | 
|
247  | 
case None then show ?thesis by simp  | 
|
248  | 
next  | 
|
249  | 
case (Some y)  | 
|
250  | 
show ?thesis  | 
|
251  | 
by (auto simp add: Inf_option_def in_these_eq Some intro!: Inf_greatest dest!: *)  | 
|
252  | 
qed  | 
|
253  | 
next  | 
|
254  | 
fix x :: "'a option" and A  | 
|
255  | 
assume "x \<in> A"  | 
|
256  | 
then show "x \<le> \<Squnion>A"  | 
|
257  | 
by (cases x) (auto simp add: Sup_option_def in_these_eq intro: Sup_upper)  | 
|
258  | 
next  | 
|
259  | 
fix z :: "'a option" and A  | 
|
260  | 
assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"  | 
|
261  | 
show "\<Squnion>A \<le> z "  | 
|
262  | 
proof (cases z)  | 
|
263  | 
case None  | 
|
264  | 
with * have "\<And>x. x \<in> A \<Longrightarrow> x = None" by (auto dest: less_eq_option_None_is_None)  | 
|
265  | 
    then have "A = {} \<or> A = {None}" by blast
 | 
|
266  | 
then show ?thesis by (simp add: Sup_option_def)  | 
|
267  | 
next  | 
|
268  | 
case (Some y)  | 
|
269  | 
from * have "\<And>w. Some w \<in> A \<Longrightarrow> Some w \<le> z" .  | 
|
270  | 
with Some have "\<And>w. w \<in> Option.these A \<Longrightarrow> w \<le> y"  | 
|
271  | 
by (simp add: in_these_eq)  | 
|
272  | 
then have "\<Squnion>Option.these A \<le> y" by (rule Sup_least)  | 
|
273  | 
with Some show ?thesis by (simp add: Sup_option_def)  | 
|
274  | 
qed  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
275  | 
next  | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
276  | 
  show "\<Squnion>{} = (\<bottom>::'a option)"
 | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
277  | 
by (auto simp: bot_option_def)  | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
278  | 
next  | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
279  | 
  show "\<Sqinter>{} = (\<top>::'a option)"
 | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
49190 
diff
changeset
 | 
280  | 
by (auto simp: top_option_def Inf_option_def)  | 
| 49190 | 281  | 
qed  | 
282  | 
||
283  | 
end  | 
|
284  | 
||
285  | 
lemma Some_Inf:  | 
|
286  | 
"Some (\<Sqinter>A) = \<Sqinter>(Some ` A)"  | 
|
287  | 
by (auto simp add: Inf_option_def)  | 
|
288  | 
||
289  | 
lemma Some_Sup:  | 
|
290  | 
  "A \<noteq> {} \<Longrightarrow> Some (\<Squnion>A) = \<Squnion>(Some ` A)"
 | 
|
291  | 
by (auto simp add: Sup_option_def)  | 
|
292  | 
||
293  | 
lemma Some_INF:  | 
|
294  | 
"Some (\<Sqinter>x\<in>A. f x) = (\<Sqinter>x\<in>A. Some (f x))"  | 
|
| 56166 | 295  | 
using Some_Inf [of "f ` A"] by (simp add: comp_def)  | 
| 49190 | 296  | 
|
297  | 
lemma Some_SUP:  | 
|
298  | 
  "A \<noteq> {} \<Longrightarrow> Some (\<Squnion>x\<in>A. f x) = (\<Squnion>x\<in>A. Some (f x))"
 | 
|
| 56166 | 299  | 
using Some_Sup [of "f ` A"] by (simp add: comp_def)  | 
| 49190 | 300  | 
|
301  | 
instantiation option :: (complete_distrib_lattice) complete_distrib_lattice  | 
|
302  | 
begin  | 
|
303  | 
||
304  | 
instance proof  | 
|
305  | 
fix a :: "'a option" and B  | 
|
306  | 
show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"  | 
|
307  | 
proof (cases a)  | 
|
308  | 
case None  | 
|
309  | 
then show ?thesis by (simp add: INF_def)  | 
|
310  | 
next  | 
|
311  | 
case (Some c)  | 
|
312  | 
show ?thesis  | 
|
313  | 
proof (cases "None \<in> B")  | 
|
314  | 
case True  | 
|
315  | 
then have "Some c = (\<Sqinter>b\<in>B. Some c \<squnion> b)"  | 
|
316  | 
by (auto intro!: antisym INF_lower2 INF_greatest)  | 
|
317  | 
with True Some show ?thesis by simp  | 
|
318  | 
next  | 
|
319  | 
      case False then have B: "{x \<in> B. \<exists>y. x = Some y} = B" by auto (metis not_Some_eq)
 | 
|
320  | 
from sup_Inf have "Some c \<squnion> Some (\<Sqinter>Option.these B) = Some (\<Sqinter>b\<in>Option.these B. c \<squnion> b)" by simp  | 
|
321  | 
then have "Some c \<squnion> \<Sqinter>(Some ` Option.these B) = (\<Sqinter>x\<in>Some ` Option.these B. Some c \<squnion> x)"  | 
|
| 56166 | 322  | 
by (simp add: Some_INF Some_Inf comp_def)  | 
| 49190 | 323  | 
with Some B show ?thesis by (simp add: Some_image_these_eq)  | 
324  | 
qed  | 
|
325  | 
qed  | 
|
326  | 
show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"  | 
|
327  | 
proof (cases a)  | 
|
328  | 
case None  | 
|
329  | 
then show ?thesis by (simp add: SUP_def image_constant_conv bot_option_def)  | 
|
330  | 
next  | 
|
331  | 
case (Some c)  | 
|
332  | 
show ?thesis  | 
|
333  | 
    proof (cases "B = {} \<or> B = {None}")
 | 
|
334  | 
case True  | 
|
| 56166 | 335  | 
then show ?thesis by auto  | 
| 49190 | 336  | 
next  | 
337  | 
      have B: "B = {x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None}"
 | 
|
338  | 
by auto  | 
|
339  | 
      then have Sup_B: "\<Squnion>B = \<Squnion>({x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None})"
 | 
|
340  | 
        and SUP_B: "\<And>f. (\<Squnion>x \<in> B. f x) = (\<Squnion>x \<in> {x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None}. f x)"
 | 
|
341  | 
by simp_all  | 
|
342  | 
      have Sup_None: "\<Squnion>{x. x = None \<and> x \<in> B} = None"
 | 
|
343  | 
by (simp add: bot_option_def [symmetric])  | 
|
344  | 
      have SUP_None: "(\<Squnion>x\<in>{x. x = None \<and> x \<in> B}. Some c \<sqinter> x) = None"
 | 
|
345  | 
by (simp add: bot_option_def [symmetric])  | 
|
346  | 
      case False then have "Option.these B \<noteq> {}" by (simp add: these_not_empty_eq)
 | 
|
347  | 
moreover from inf_Sup have "Some c \<sqinter> Some (\<Squnion>Option.these B) = Some (\<Squnion>b\<in>Option.these B. c \<sqinter> b)"  | 
|
348  | 
by simp  | 
|
349  | 
ultimately have "Some c \<sqinter> \<Squnion>(Some ` Option.these B) = (\<Squnion>x\<in>Some ` Option.these B. Some c \<sqinter> x)"  | 
|
| 56166 | 350  | 
by (simp add: Some_SUP Some_Sup comp_def)  | 
| 49190 | 351  | 
with Some show ?thesis  | 
352  | 
by (simp add: Some_image_these_eq Sup_B SUP_B Sup_None SUP_None SUP_union Sup_union_distrib)  | 
|
353  | 
qed  | 
|
354  | 
qed  | 
|
355  | 
qed  | 
|
356  | 
||
357  | 
end  | 
|
358  | 
||
359  | 
instantiation option :: (complete_linorder) complete_linorder  | 
|
360  | 
begin  | 
|
361  | 
||
362  | 
instance ..  | 
|
363  | 
||
364  | 
end  | 
|
365  | 
||
366  | 
||
367  | 
no_notation  | 
|
368  | 
  bot ("\<bottom>") and
 | 
|
369  | 
  top ("\<top>") and
 | 
|
370  | 
inf (infixl "\<sqinter>" 70) and  | 
|
371  | 
sup (infixl "\<squnion>" 65) and  | 
|
372  | 
  Inf  ("\<Sqinter>_" [900] 900) and
 | 
|
373  | 
  Sup  ("\<Squnion>_" [900] 900)
 | 
|
374  | 
||
375  | 
no_syntax (xsymbols)  | 
|
376  | 
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
|
377  | 
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
|
378  | 
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
|
379  | 
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | 
|
380  | 
||
381  | 
end  | 
|
382  |