| author | huffman | 
| Mon, 08 Aug 2011 16:04:58 -0700 | |
| changeset 44077 | 427db4ab3c99 | 
| parent 42151 | 4da4fc77664b | 
| child 48891 | c0eafbd55de3 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Domain_Aux.thy | 
| 35652 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 5 | header {* Domain package support *}
 | |
| 6 | ||
| 7 | theory Domain_Aux | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40327diff
changeset | 8 | imports Map_Functions Fixrec | 
| 35652 | 9 | uses | 
| 10 |   ("Tools/Domain/domain_take_proofs.ML")
 | |
| 40503 | 11 |   ("Tools/cont_consts.ML")
 | 
| 12 |   ("Tools/cont_proc.ML")
 | |
| 13 |   ("Tools/Domain/domain_constructors.ML")
 | |
| 14 |   ("Tools/Domain/domain_induction.ML")
 | |
| 35652 | 15 | begin | 
| 16 | ||
| 35653 | 17 | subsection {* Continuous isomorphisms *}
 | 
| 18 | ||
| 19 | text {* A locale for continuous isomorphisms *}
 | |
| 20 | ||
| 21 | locale iso = | |
| 22 | fixes abs :: "'a \<rightarrow> 'b" | |
| 23 | fixes rep :: "'b \<rightarrow> 'a" | |
| 24 | assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x" | |
| 25 | assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y" | |
| 26 | begin | |
| 27 | ||
| 28 | lemma swap: "iso rep abs" | |
| 29 | by (rule iso.intro [OF rep_iso abs_iso]) | |
| 30 | ||
| 31 | lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)" | |
| 32 | proof | |
| 33 | assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" | |
| 34 | then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg) | |
| 35 | then show "x \<sqsubseteq> y" by simp | |
| 36 | next | |
| 37 | assume "x \<sqsubseteq> y" | |
| 38 | then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg) | |
| 39 | qed | |
| 40 | ||
| 41 | lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)" | |
| 42 | by (rule iso.abs_below [OF swap]) | |
| 43 | ||
| 44 | lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)" | |
| 45 | by (simp add: po_eq_conv abs_below) | |
| 46 | ||
| 47 | lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)" | |
| 48 | by (rule iso.abs_eq [OF swap]) | |
| 49 | ||
| 50 | lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>" | |
| 51 | proof - | |
| 52 | have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" .. | |
| 53 | then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg) | |
| 54 | then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41182diff
changeset | 55 | then show ?thesis by (rule bottomI) | 
| 35653 | 56 | qed | 
| 57 | ||
| 58 | lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>" | |
| 59 | by (rule iso.abs_strict [OF swap]) | |
| 60 | ||
| 61 | lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>" | |
| 62 | proof - | |
| 63 | have "x = rep\<cdot>(abs\<cdot>x)" by simp | |
| 64 | also assume "abs\<cdot>x = \<bottom>" | |
| 65 | also note rep_strict | |
| 66 | finally show "x = \<bottom>" . | |
| 67 | qed | |
| 68 | ||
| 69 | lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>" | |
| 70 | by (rule iso.abs_defin' [OF swap]) | |
| 71 | ||
| 72 | lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>" | |
| 73 | by (erule contrapos_nn, erule abs_defin') | |
| 74 | ||
| 75 | lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>" | |
| 76 | by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms) | |
| 77 | ||
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40216diff
changeset | 78 | lemma abs_bottom_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 35653 | 79 | by (auto elim: abs_defin' intro: abs_strict) | 
| 80 | ||
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40216diff
changeset | 81 | lemma rep_bottom_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40216diff
changeset | 82 | by (rule iso.abs_bottom_iff [OF iso.swap]) (rule iso_axioms) | 
| 35653 | 83 | |
| 84 | lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P" | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40216diff
changeset | 85 | by (simp add: rep_bottom_iff) | 
| 35653 | 86 | |
| 87 | lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x" | |
| 88 | proof (unfold compact_def) | |
| 41182 | 89 | assume "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> y)" | 
| 40327 | 90 | with cont_Rep_cfun2 | 
| 41182 | 91 | have "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> abs\<cdot>y)" by (rule adm_subst) | 
| 92 | then show "adm (\<lambda>y. x \<notsqsubseteq> y)" using abs_below by simp | |
| 35653 | 93 | qed | 
| 94 | ||
| 95 | lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x" | |
| 96 | by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms) | |
| 97 | ||
| 98 | lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)" | |
| 99 | by (rule compact_rep_rev) simp | |
| 100 | ||
| 101 | lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)" | |
| 102 | by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms) | |
| 103 | ||
| 104 | lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)" | |
| 105 | proof | |
| 106 | assume "x = abs\<cdot>y" | |
| 107 | then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp | |
| 108 | then show "rep\<cdot>x = y" by simp | |
| 109 | next | |
| 110 | assume "rep\<cdot>x = y" | |
| 111 | then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp | |
| 112 | then show "x = abs\<cdot>y" by simp | |
| 113 | qed | |
| 114 | ||
| 115 | end | |
| 116 | ||
| 35652 | 117 | subsection {* Proofs about take functions *}
 | 
| 118 | ||
| 119 | text {*
 | |
| 120 | This section contains lemmas that are used in a module that supports | |
| 121 | the domain isomorphism package; the module contains proofs related | |
| 122 | to take functions and the finiteness predicate. | |
| 123 | *} | |
| 124 | ||
| 125 | lemma deflation_abs_rep: | |
| 126 | fixes abs and rep and d | |
| 127 | assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x" | |
| 128 | assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y" | |
| 129 | shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)" | |
| 130 | by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms) | |
| 131 | ||
| 132 | lemma deflation_chain_min: | |
| 133 | assumes chain: "chain d" | |
| 134 | assumes defl: "\<And>n. deflation (d n)" | |
| 135 | shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x" | |
| 136 | proof (rule linorder_le_cases) | |
| 137 | assume "m \<le> n" | |
| 138 | with chain have "d m \<sqsubseteq> d n" by (rule chain_mono) | |
| 139 | then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x" | |
| 140 | by (rule deflation_below_comp1 [OF defl defl]) | |
| 141 | moreover from `m \<le> n` have "min m n = m" by simp | |
| 142 | ultimately show ?thesis by simp | |
| 143 | next | |
| 144 | assume "n \<le> m" | |
| 145 | with chain have "d n \<sqsubseteq> d m" by (rule chain_mono) | |
| 146 | then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x" | |
| 147 | by (rule deflation_below_comp2 [OF defl defl]) | |
| 148 | moreover from `n \<le> m` have "min m n = n" by simp | |
| 149 | ultimately show ?thesis by simp | |
| 150 | qed | |
| 151 | ||
| 35653 | 152 | lemma lub_ID_take_lemma: | 
| 153 | assumes "chain t" and "(\<Squnion>n. t n) = ID" | |
| 154 | assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y" | |
| 155 | proof - | |
| 156 | have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)" | |
| 157 | using assms(3) by simp | |
| 158 | then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y" | |
| 159 | using assms(1) by (simp add: lub_distribs) | |
| 160 | then show "x = y" | |
| 161 | using assms(2) by simp | |
| 162 | qed | |
| 163 | ||
| 164 | lemma lub_ID_reach: | |
| 165 | assumes "chain t" and "(\<Squnion>n. t n) = ID" | |
| 166 | shows "(\<Squnion>n. t n\<cdot>x) = x" | |
| 167 | using assms by (simp add: lub_distribs) | |
| 168 | ||
| 35655 | 169 | lemma lub_ID_take_induct: | 
| 170 | assumes "chain t" and "(\<Squnion>n. t n) = ID" | |
| 171 | assumes "adm P" and "\<And>n. P (t n\<cdot>x)" shows "P x" | |
| 172 | proof - | |
| 173 | from `chain t` have "chain (\<lambda>n. t n\<cdot>x)" by simp | |
| 174 | from `adm P` this `\<And>n. P (t n\<cdot>x)` have "P (\<Squnion>n. t n\<cdot>x)" by (rule admD) | |
| 175 | with `chain t` `(\<Squnion>n. t n) = ID` show "P x" by (simp add: lub_distribs) | |
| 176 | qed | |
| 177 | ||
| 35653 | 178 | subsection {* Finiteness *}
 | 
| 179 | ||
| 180 | text {*
 | |
| 181 | Let a ``decisive'' function be a deflation that maps every input to | |
| 182 | either itself or bottom. Then if a domain's take functions are all | |
| 183 | decisive, then all values in the domain are finite. | |
| 184 | *} | |
| 185 | ||
| 186 | definition | |
| 187 |   decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool"
 | |
| 188 | where | |
| 189 | "decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)" | |
| 190 | ||
| 191 | lemma decisiveI: "(\<And>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>) \<Longrightarrow> decisive d" | |
| 192 | unfolding decisive_def by simp | |
| 193 | ||
| 194 | lemma decisive_cases: | |
| 195 | assumes "decisive d" obtains "d\<cdot>x = x" | "d\<cdot>x = \<bottom>" | |
| 196 | using assms unfolding decisive_def by auto | |
| 197 | ||
| 198 | lemma decisive_bottom: "decisive \<bottom>" | |
| 199 | unfolding decisive_def by simp | |
| 200 | ||
| 201 | lemma decisive_ID: "decisive ID" | |
| 202 | unfolding decisive_def by simp | |
| 203 | ||
| 204 | lemma decisive_ssum_map: | |
| 205 | assumes f: "decisive f" | |
| 206 | assumes g: "decisive g" | |
| 207 | shows "decisive (ssum_map\<cdot>f\<cdot>g)" | |
| 208 | apply (rule decisiveI, rename_tac s) | |
| 209 | apply (case_tac s, simp_all) | |
| 210 | apply (rule_tac x=x in decisive_cases [OF f], simp_all) | |
| 211 | apply (rule_tac x=y in decisive_cases [OF g], simp_all) | |
| 212 | done | |
| 213 | ||
| 214 | lemma decisive_sprod_map: | |
| 215 | assumes f: "decisive f" | |
| 216 | assumes g: "decisive g" | |
| 217 | shows "decisive (sprod_map\<cdot>f\<cdot>g)" | |
| 218 | apply (rule decisiveI, rename_tac s) | |
| 219 | apply (case_tac s, simp_all) | |
| 220 | apply (rule_tac x=x in decisive_cases [OF f], simp_all) | |
| 221 | apply (rule_tac x=y in decisive_cases [OF g], simp_all) | |
| 222 | done | |
| 223 | ||
| 224 | lemma decisive_abs_rep: | |
| 225 | fixes abs rep | |
| 226 | assumes iso: "iso abs rep" | |
| 227 | assumes d: "decisive d" | |
| 228 | shows "decisive (abs oo d oo rep)" | |
| 229 | apply (rule decisiveI) | |
| 230 | apply (rule_tac x="rep\<cdot>x" in decisive_cases [OF d]) | |
| 231 | apply (simp add: iso.rep_iso [OF iso]) | |
| 232 | apply (simp add: iso.abs_strict [OF iso]) | |
| 233 | done | |
| 234 | ||
| 235 | lemma lub_ID_finite: | |
| 236 | assumes chain: "chain d" | |
| 237 | assumes lub: "(\<Squnion>n. d n) = ID" | |
| 238 | assumes decisive: "\<And>n. decisive (d n)" | |
| 239 | shows "\<exists>n. d n\<cdot>x = x" | |
| 240 | proof - | |
| 241 | have 1: "chain (\<lambda>n. d n\<cdot>x)" using chain by simp | |
| 242 | have 2: "(\<Squnion>n. d n\<cdot>x) = x" using chain lub by (rule lub_ID_reach) | |
| 243 | have "\<forall>n. d n\<cdot>x = x \<or> d n\<cdot>x = \<bottom>" | |
| 244 | using decisive unfolding decisive_def by simp | |
| 245 |   hence "range (\<lambda>n. d n\<cdot>x) \<subseteq> {x, \<bottom>}"
 | |
| 246 | by auto | |
| 247 | hence "finite (range (\<lambda>n. d n\<cdot>x))" | |
| 248 | by (rule finite_subset, simp) | |
| 249 | with 1 have "finite_chain (\<lambda>n. d n\<cdot>x)" | |
| 250 | by (rule finite_range_imp_finch) | |
| 251 | then have "\<exists>n. (\<Squnion>n. d n\<cdot>x) = d n\<cdot>x" | |
| 252 | unfolding finite_chain_def by (auto simp add: maxinch_is_thelub) | |
| 253 | with 2 show "\<exists>n. d n\<cdot>x = x" by (auto elim: sym) | |
| 254 | qed | |
| 255 | ||
| 35655 | 256 | lemma lub_ID_finite_take_induct: | 
| 257 | assumes "chain d" and "(\<Squnion>n. d n) = ID" and "\<And>n. decisive (d n)" | |
| 258 | shows "(\<And>n. P (d n\<cdot>x)) \<Longrightarrow> P x" | |
| 259 | using lub_ID_finite [OF assms] by metis | |
| 260 | ||
| 40503 | 261 | subsection {* Proofs about constructor functions *}
 | 
| 262 | ||
| 263 | text {* Lemmas for proving nchotomy rule: *}
 | |
| 264 | ||
| 265 | lemma ex_one_bottom_iff: | |
| 266 | "(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE" | |
| 267 | by simp | |
| 268 | ||
| 269 | lemma ex_up_bottom_iff: | |
| 270 | "(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))" | |
| 271 | by (safe, case_tac x, auto) | |
| 272 | ||
| 273 | lemma ex_sprod_bottom_iff: | |
| 274 | "(\<exists>y. P y \<and> y \<noteq> \<bottom>) = | |
| 275 | (\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)" | |
| 276 | by (safe, case_tac y, auto) | |
| 277 | ||
| 278 | lemma ex_sprod_up_bottom_iff: | |
| 279 | "(\<exists>y. P y \<and> y \<noteq> \<bottom>) = | |
| 280 | (\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)" | |
| 281 | by (safe, case_tac y, simp, case_tac x, auto) | |
| 282 | ||
| 283 | lemma ex_ssum_bottom_iff: | |
| 284 | "(\<exists>x. P x \<and> x \<noteq> \<bottom>) = | |
| 285 | ((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or> | |
| 286 | (\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))" | |
| 287 | by (safe, case_tac x, auto) | |
| 288 | ||
| 289 | lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)" | |
| 290 | by auto | |
| 291 | ||
| 292 | lemmas ex_bottom_iffs = | |
| 293 | ex_ssum_bottom_iff | |
| 294 | ex_sprod_up_bottom_iff | |
| 295 | ex_sprod_bottom_iff | |
| 296 | ex_up_bottom_iff | |
| 297 | ex_one_bottom_iff | |
| 298 | ||
| 299 | text {* Rules for turning nchotomy into exhaust: *}
 | |
| 300 | ||
| 301 | lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *) | |
| 302 | by auto | |
| 303 | ||
| 304 | lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)" | |
| 305 | by rule auto | |
| 306 | ||
| 307 | lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)" | |
| 308 | by rule auto | |
| 309 | ||
| 310 | lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)" | |
| 311 | by rule auto | |
| 312 | ||
| 313 | lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3 | |
| 314 | ||
| 315 | text {* Rules for proving constructor properties *}
 | |
| 316 | ||
| 317 | lemmas con_strict_rules = | |
| 318 | sinl_strict sinr_strict spair_strict1 spair_strict2 | |
| 319 | ||
| 320 | lemmas con_bottom_iff_rules = | |
| 321 | sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined | |
| 322 | ||
| 323 | lemmas con_below_iff_rules = | |
| 324 | sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules | |
| 325 | ||
| 326 | lemmas con_eq_iff_rules = | |
| 327 | sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules | |
| 328 | ||
| 329 | lemmas sel_strict_rules = | |
| 330 | cfcomp2 sscase1 sfst_strict ssnd_strict fup1 | |
| 331 | ||
| 332 | lemma sel_app_extra_rules: | |
| 333 | "sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>" | |
| 334 | "sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x" | |
| 335 | "sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>" | |
| 336 | "sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x" | |
| 337 | "fup\<cdot>ID\<cdot>(up\<cdot>x) = x" | |
| 338 | by (cases "x = \<bottom>", simp, simp)+ | |
| 339 | ||
| 340 | lemmas sel_app_rules = | |
| 341 | sel_strict_rules sel_app_extra_rules | |
| 342 | ssnd_spair sfst_spair up_defined spair_defined | |
| 343 | ||
| 344 | lemmas sel_bottom_iff_rules = | |
| 345 | cfcomp2 sfst_bottom_iff ssnd_bottom_iff | |
| 346 | ||
| 347 | lemmas take_con_rules = | |
| 348 | ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up | |
| 349 | deflation_strict deflation_ID ID1 cfcomp2 | |
| 350 | ||
| 35653 | 351 | subsection {* ML setup *}
 | 
| 352 | ||
| 35652 | 353 | use "Tools/Domain/domain_take_proofs.ML" | 
| 40503 | 354 | use "Tools/cont_consts.ML" | 
| 355 | use "Tools/cont_proc.ML" | |
| 356 | use "Tools/Domain/domain_constructors.ML" | |
| 357 | use "Tools/Domain/domain_induction.ML" | |
| 35652 | 358 | |
| 40216 
366309dfaf60
use Named_Thms instead of Theory_Data for some domain package theorems
 huffman parents: 
35655diff
changeset | 359 | setup Domain_Take_Proofs.setup | 
| 
366309dfaf60
use Named_Thms instead of Theory_Data for some domain package theorems
 huffman parents: 
35655diff
changeset | 360 | |
| 35652 | 361 | end |