src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy
author huffman
Mon, 08 Aug 2011 16:04:58 -0700
changeset 44077 427db4ab3c99
parent 43995 c479836d9048
child 44129 286bd57858b9
permissions -rw-r--r--
fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     2
header {*Instanciates the finite cartesian product of euclidean spaces as a euclidean space.*}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     3
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     4
theory Cartesian_Euclidean_Space
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     5
imports Finite_Cartesian_Product Integration
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     6
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     7
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     8
lemma delta_mult_idempotent:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
     9
  "(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)" by (cases "k=a", auto)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    10
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    11
lemma setsum_Plus:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    12
  "\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    13
    (\<Sum>x\<in>A <+> B. g x) = (\<Sum>x\<in>A. g (Inl x)) + (\<Sum>x\<in>B. g (Inr x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    14
  unfolding Plus_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    15
  by (subst setsum_Un_disjoint, auto simp add: setsum_reindex)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    16
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    17
lemma setsum_UNIV_sum:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    18
  fixes g :: "'a::finite + 'b::finite \<Rightarrow> _"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    19
  shows "(\<Sum>x\<in>UNIV. g x) = (\<Sum>x\<in>UNIV. g (Inl x)) + (\<Sum>x\<in>UNIV. g (Inr x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    20
  apply (subst UNIV_Plus_UNIV [symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    21
  apply (rule setsum_Plus [OF finite finite])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    22
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    23
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    24
lemma setsum_mult_product:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    25
  "setsum h {..<A * B :: nat} = (\<Sum>i\<in>{..<A}. \<Sum>j\<in>{..<B}. h (j + i * B))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    26
  unfolding sumr_group[of h B A, unfolded atLeast0LessThan, symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    27
proof (rule setsum_cong, simp, rule setsum_reindex_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    28
  fix i show "inj_on (\<lambda>j. j + i * B) {..<B}" by (auto intro!: inj_onI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    29
  show "{i * B..<i * B + B} = (\<lambda>j. j + i * B) ` {..<B}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    30
  proof safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    31
    fix j assume "j \<in> {i * B..<i * B + B}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    32
    thus "j \<in> (\<lambda>j. j + i * B) ` {..<B}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    33
      by (auto intro!: image_eqI[of _ _ "j - i * B"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    34
  qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    35
qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    36
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    37
subsection{* Basic componentwise operations on vectors. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    38
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    39
instantiation cart :: (times,finite) times
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    40
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    41
  definition vector_mult_def : "op * \<equiv> (\<lambda> x y.  (\<chi> i. (x$i) * (y$i)))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    42
  instance ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    43
end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    44
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    45
instantiation cart :: (one,finite) one
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    46
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    47
  definition vector_one_def : "1 \<equiv> (\<chi> i. 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    48
  instance ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    49
end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    50
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    51
instantiation cart :: (ord,finite) ord
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    52
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    53
  definition vector_le_def:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    54
    "less_eq (x :: 'a ^'b) y = (ALL i. x$i <= y$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    55
  definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i. x$i < y$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    56
  instance by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    57
end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    58
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    59
text{* The ordering on one-dimensional vectors is linear. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    60
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    61
class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    62
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    63
  subclass finite
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    64
  proof from UNIV_one show "finite (UNIV :: 'a set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    65
      by (auto intro!: card_ge_0_finite) qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    66
end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    67
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    68
instantiation cart :: (linorder,cart_one) linorder begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    69
instance proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    70
  guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    71
  hence *:"UNIV = {a}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    72
  have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    73
  fix x y z::"'a^'b::cart_one" note * = vector_le_def vector_less_def all Cart_eq
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    74
  show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    75
  { assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    76
  { assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    77
qed end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    78
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    79
text{* Constant Vectors *} 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    80
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    81
definition "vec x = (\<chi> i. x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    82
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    83
text{* Also the scalar-vector multiplication. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    84
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    85
definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    86
  where "c *s x = (\<chi> i. c * (x$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    87
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    88
subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    89
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    90
method_setup vector = {*
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    91
let
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    92
  val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym,
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    93
  @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    94
  @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    95
  val ss2 = @{simpset} addsimps
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    96
             [@{thm vector_add_def}, @{thm vector_mult_def},
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    97
              @{thm vector_minus_def}, @{thm vector_uminus_def},
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    98
              @{thm vector_one_def}, @{thm vector_zero_def}, @{thm vec_def},
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
    99
              @{thm vector_scaleR_def},
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   100
              @{thm Cart_lambda_beta}, @{thm vector_scalar_mult_def}]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   101
 fun vector_arith_tac ths =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   102
   simp_tac ss1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   103
   THEN' (fn i => rtac @{thm setsum_cong2} i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   104
         ORELSE rtac @{thm setsum_0'} i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   105
         ORELSE simp_tac (HOL_basic_ss addsimps [@{thm "Cart_eq"}]) i)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   106
   (* THEN' TRY o clarify_tac HOL_cs  THEN' (TRY o rtac @{thm iffI}) *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   107
   THEN' asm_full_simp_tac (ss2 addsimps ths)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   108
 in
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   109
  Attrib.thms >> (fn ths => K (SIMPLE_METHOD' (vector_arith_tac ths)))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   110
 end
42814
5af15f1e2ef6 simplified/unified method_setup/attribute_setup;
wenzelm
parents: 40786
diff changeset
   111
*} "lift trivial vector statements to real arith statements"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   112
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   113
lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   114
lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   115
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   116
lemma vec_inj[simp]: "vec x = vec y \<longleftrightarrow> x = y" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   117
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   118
lemma vec_in_image_vec: "vec x \<in> (vec ` S) \<longleftrightarrow> x \<in> S" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   119
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   120
lemma vec_add: "vec(x + y) = vec x + vec y"  by (vector vec_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   121
lemma vec_sub: "vec(x - y) = vec x - vec y" by (vector vec_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   122
lemma vec_cmul: "vec(c * x) = c *s vec x " by (vector vec_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   123
lemma vec_neg: "vec(- x) = - vec x " by (vector vec_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   124
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   125
lemma vec_setsum: assumes fS: "finite S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   126
  shows "vec(setsum f S) = setsum (vec o f) S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   127
  apply (induct rule: finite_induct[OF fS])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   128
  apply (simp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   129
  apply (auto simp add: vec_add)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   130
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   131
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   132
text{* Obvious "component-pushing". *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   133
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   134
lemma vec_component [simp]: "vec x $ i = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   135
  by (vector vec_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   136
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   137
lemma vector_mult_component [simp]: "(x * y)$i = x$i * y$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   138
  by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   139
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   140
lemma vector_smult_component [simp]: "(c *s y)$i = c * (y$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   141
  by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   142
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   143
lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   144
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   145
lemmas vector_component =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   146
  vec_component vector_add_component vector_mult_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   147
  vector_smult_component vector_minus_component vector_uminus_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   148
  vector_scaleR_component cond_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   149
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   150
subsection {* Some frequently useful arithmetic lemmas over vectors. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   151
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   152
instance cart :: (semigroup_mult,finite) semigroup_mult
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   153
  apply (intro_classes) by (vector mult_assoc)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   154
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   155
instance cart :: (monoid_mult,finite) monoid_mult
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   156
  apply (intro_classes) by vector+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   157
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   158
instance cart :: (ab_semigroup_mult,finite) ab_semigroup_mult
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   159
  apply (intro_classes) by (vector mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   160
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   161
instance cart :: (ab_semigroup_idem_mult,finite) ab_semigroup_idem_mult
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   162
  apply (intro_classes) by (vector mult_idem)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   163
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   164
instance cart :: (comm_monoid_mult,finite) comm_monoid_mult
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   165
  apply (intro_classes) by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   166
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   167
instance cart :: (semiring,finite) semiring
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   168
  apply (intro_classes) by (vector field_simps)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   169
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   170
instance cart :: (semiring_0,finite) semiring_0
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   171
  apply (intro_classes) by (vector field_simps)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   172
instance cart :: (semiring_1,finite) semiring_1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   173
  apply (intro_classes) by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   174
instance cart :: (comm_semiring,finite) comm_semiring
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   175
  apply (intro_classes) by (vector field_simps)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   176
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   177
instance cart :: (comm_semiring_0,finite) comm_semiring_0 by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   178
instance cart :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   179
instance cart :: (semiring_0_cancel,finite) semiring_0_cancel by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   180
instance cart :: (comm_semiring_0_cancel,finite) comm_semiring_0_cancel by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   181
instance cart :: (ring,finite) ring by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   182
instance cart :: (semiring_1_cancel,finite) semiring_1_cancel by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   183
instance cart :: (comm_semiring_1,finite) comm_semiring_1 by (intro_classes)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   184
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   185
instance cart :: (ring_1,finite) ring_1 ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   186
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   187
instance cart :: (real_algebra,finite) real_algebra
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   188
  apply intro_classes
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   189
  apply (simp_all add: vector_scaleR_def field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   190
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   191
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   192
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   193
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   194
instance cart :: (real_algebra_1,finite) real_algebra_1 ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   195
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   196
lemma of_nat_index:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   197
  "(of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   198
  apply (induct n)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   199
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   200
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   201
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   202
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   203
lemma one_index[simp]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   204
  "(1 :: 'a::one ^'n)$i = 1" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   205
38621
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   206
instance cart :: (semiring_char_0, finite) semiring_char_0
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   207
proof
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   208
  fix m n :: nat
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   209
  show "inj (of_nat :: nat \<Rightarrow> 'a ^ 'b)"
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   210
    by (auto intro!: injI simp add: Cart_eq of_nat_index)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   211
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   212
38621
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   213
instance cart :: (comm_ring_1,finite) comm_ring_1 ..
d6cb7e625d75 more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents: 37678
diff changeset
   214
instance cart :: (ring_char_0,finite) ring_char_0 ..
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   215
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   216
instance cart :: (real_vector,finite) real_vector ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   217
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   218
lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   219
  by (vector mult_assoc)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   220
lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   221
  by (vector field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   222
lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   223
  by (vector field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   224
lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   225
lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   226
lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   227
  by (vector field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   228
lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   229
lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   230
lemma vector_sneg_minus1: "-x = (- (1::'a::ring_1)) *s x" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   231
lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   232
lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   233
  by (vector field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   234
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   235
lemma vec_eq[simp]: "(vec m = vec n) \<longleftrightarrow> (m = n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   236
  by (simp add: Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   237
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   238
lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   239
lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   240
  by vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   241
lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   242
  by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   243
lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   244
  by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   245
lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==>  a *s x = a *s y ==> (x = y)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   246
  by (metis vector_mul_lcancel)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   247
lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   248
  by (metis vector_mul_rcancel)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   249
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   250
lemma component_le_norm_cart: "\<bar>x$i\<bar> <= norm x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   251
  apply (simp add: norm_vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   252
  apply (rule member_le_setL2, simp_all)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   253
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   254
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   255
lemma norm_bound_component_le_cart: "norm x <= e ==> \<bar>x$i\<bar> <= e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   256
  by (metis component_le_norm_cart order_trans)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   257
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   258
lemma norm_bound_component_lt_cart: "norm x < e ==> \<bar>x$i\<bar> < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   259
  by (metis component_le_norm_cart basic_trans_rules(21))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   260
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   261
lemma norm_le_l1_cart: "norm x <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   262
  by (simp add: norm_vector_def setL2_le_setsum)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   263
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   264
lemma scalar_mult_eq_scaleR: "c *s x = c *\<^sub>R x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   265
  unfolding vector_scaleR_def vector_scalar_mult_def by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   266
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   267
lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   268
  unfolding dist_norm scalar_mult_eq_scaleR
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   269
  unfolding scaleR_right_diff_distrib[symmetric] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   270
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   271
lemma setsum_component [simp]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   272
  fixes f:: " 'a \<Rightarrow> ('b::comm_monoid_add) ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   273
  shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   274
  by (cases "finite S", induct S set: finite, simp_all)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   275
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   276
lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   277
  by (simp add: Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   278
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   279
lemma setsum_cmul:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   280
  fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   281
  shows "setsum (\<lambda>x. c *s f x) S = c *s setsum f S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   282
  by (simp add: Cart_eq setsum_right_distrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   283
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   284
(* TODO: use setsum_norm_allsubsets_bound *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   285
lemma setsum_norm_allsubsets_bound_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   286
  fixes f:: "'a \<Rightarrow> real ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   287
  assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   288
  shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real CARD('n) *  e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   289
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   290
  let ?d = "real CARD('n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   291
  let ?nf = "\<lambda>x. norm (f x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   292
  let ?U = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   293
  have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $ i\<bar>) P) ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   294
    by (rule setsum_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   295
  have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   296
  have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   297
    apply (rule setsum_mono)    by (rule norm_le_l1_cart)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   298
  also have "\<dots> \<le> 2 * ?d * e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   299
    unfolding th0 th1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   300
  proof(rule setsum_bounded)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   301
    fix i assume i: "i \<in> ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   302
    let ?Pp = "{x. x\<in> P \<and> f x $ i \<ge> 0}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   303
    let ?Pn = "{x. x \<in> P \<and> f x $ i < 0}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   304
    have thp: "P = ?Pp \<union> ?Pn" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   305
    have thp0: "?Pp \<inter> ?Pn ={}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   306
    have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   307
    have Ppe:"setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp \<le> e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   308
      using component_le_norm_cart[of "setsum (\<lambda>x. f x) ?Pp" i]  fPs[OF PpP]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   309
      by (auto intro: abs_le_D1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   310
    have Pne: "setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn \<le> e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   311
      using component_le_norm_cart[of "setsum (\<lambda>x. - f x) ?Pn" i]  fPs[OF PnP]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   312
      by (auto simp add: setsum_negf intro: abs_le_D1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   313
    have "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   314
      apply (subst thp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   315
      apply (rule setsum_Un_zero)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   316
      using fP thp0 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   317
    also have "\<dots> \<le> 2*e" using Pne Ppe by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   318
    finally show "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P \<le> 2*e" .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   319
  qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   320
  finally show ?thesis .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   321
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   322
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   323
subsection {* A bijection between 'n::finite and {..<CARD('n)} *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   324
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   325
definition cart_bij_nat :: "nat \<Rightarrow> ('n::finite)" where
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   326
  "cart_bij_nat = (SOME p. bij_betw p {..<CARD('n)} (UNIV::'n set) )"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   327
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   328
abbreviation "\<pi> \<equiv> cart_bij_nat"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   329
definition "\<pi>' = inv_into {..<CARD('n)} (\<pi>::nat \<Rightarrow> ('n::finite))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   330
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   331
lemma bij_betw_pi:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   332
  "bij_betw \<pi> {..<CARD('n::finite)} (UNIV::('n::finite) set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   333
  using ex_bij_betw_nat_finite[of "UNIV::'n set"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   334
  by (auto simp: cart_bij_nat_def atLeast0LessThan
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   335
    intro!: someI_ex[of "\<lambda>x. bij_betw x {..<CARD('n)} (UNIV::'n set)"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   336
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   337
lemma bij_betw_pi'[intro]: "bij_betw \<pi>' (UNIV::'n set) {..<CARD('n::finite)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   338
  using bij_betw_inv_into[OF bij_betw_pi] unfolding \<pi>'_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   339
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   340
lemma pi'_inj[intro]: "inj \<pi>'"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   341
  using bij_betw_pi' unfolding bij_betw_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   342
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   343
lemma pi'_range[intro]: "\<And>i::'n. \<pi>' i < CARD('n::finite)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   344
  using bij_betw_pi' unfolding bij_betw_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   345
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   346
lemma \<pi>\<pi>'[simp]: "\<And>i::'n::finite. \<pi> (\<pi>' i) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   347
  using bij_betw_pi by (auto intro!: f_inv_into_f simp: \<pi>'_def bij_betw_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   348
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   349
lemma \<pi>'\<pi>[simp]: "\<And>i. i\<in>{..<CARD('n::finite)} \<Longrightarrow> \<pi>' (\<pi> i::'n) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   350
  using bij_betw_pi by (auto intro!: inv_into_f_eq simp: \<pi>'_def bij_betw_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   351
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   352
lemma \<pi>\<pi>'_alt[simp]: "\<And>i. i<CARD('n::finite) \<Longrightarrow> \<pi>' (\<pi> i::'n) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   353
  by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   354
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   355
lemma \<pi>_inj_on: "inj_on (\<pi>::nat\<Rightarrow>'n::finite) {..<CARD('n)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   356
  using bij_betw_pi[where 'n='n] by (simp add: bij_betw_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   357
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   358
instantiation cart :: (real_basis,finite) real_basis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   359
begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   360
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   361
definition "(basis i::'a^'b) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   362
  (if i < (CARD('b) * DIM('a))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   363
  then (\<chi> j::'b. if j = \<pi>(i div DIM('a)) then basis (i mod DIM('a)) else 0)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   364
  else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   365
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   366
lemma basis_eq:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   367
  assumes "i < CARD('b)" and "j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   368
  shows "basis (j + i * DIM('a)) = (\<chi> k. if k = \<pi> i then basis j else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   369
proof -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   370
  have "j + i * DIM('a) <  DIM('a) * (i + 1)" using assms by (auto simp: field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   371
  also have "\<dots> \<le> DIM('a) * CARD('b)" using assms unfolding mult_le_cancel1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   372
  finally show ?thesis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   373
    unfolding basis_cart_def using assms by (auto simp: Cart_eq not_less field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   374
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   375
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   376
lemma basis_eq_pi':
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   377
  assumes "j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   378
  shows "basis (j + \<pi>' i * DIM('a)) $ k = (if k = i then basis j else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   379
  apply (subst basis_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   380
  using pi'_range assms by simp_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   381
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   382
lemma split_times_into_modulo[consumes 1]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   383
  fixes k :: nat
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   384
  assumes "k < A * B"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   385
  obtains i j where "i < A" and "j < B" and "k = j + i * B"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   386
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   387
  have "A * B \<noteq> 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   388
  proof assume "A * B = 0" with assms show False by simp qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   389
  hence "0 < B" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   390
  thus "k mod B < B" using `0 < B` by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   391
next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   392
  have "k div B * B \<le> k div B * B + k mod B" by (rule le_add1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   393
  also have "... < A * B" using assms by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   394
  finally show "k div B < A" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   395
qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   396
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   397
lemma split_CARD_DIM[consumes 1]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   398
  fixes k :: nat
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   399
  assumes k: "k < CARD('b) * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   400
  obtains i and j::'b where "i < DIM('a)" "k = i + \<pi>' j * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   401
proof -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   402
  from split_times_into_modulo[OF k] guess i j . note ij = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   403
  show thesis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   404
  proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   405
    show "j < DIM('a)" using ij by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   406
    show "k = j + \<pi>' (\<pi> i :: 'b) * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   407
      using ij by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   408
  qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   409
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   410
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   411
lemma linear_less_than_times:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   412
  fixes i j A B :: nat assumes "i < B" "j < A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   413
  shows "j + i * A < B * A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   414
proof -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   415
  have "i * A + j < (Suc i)*A" using `j < A` by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   416
  also have "\<dots> \<le> B * A" using `i < B` unfolding mult_le_cancel2 by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   417
  finally show ?thesis by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   418
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   419
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   420
instance
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   421
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   422
  let ?b = "basis :: nat \<Rightarrow> 'a^'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   423
  let ?b' = "basis :: nat \<Rightarrow> 'a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   424
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   425
  have setsum_basis:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   426
    "\<And>f. (\<Sum>x\<in>range basis. f (x::'a)) = f 0 + (\<Sum>i<DIM('a). f (basis i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   427
    unfolding range_basis apply (subst setsum.insert)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   428
    by (auto simp: basis_eq_0_iff setsum.insert setsum_reindex[OF basis_inj])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   429
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   430
  have inj: "inj_on ?b {..<CARD('b)*DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   431
    by (auto intro!: inj_onI elim!: split_CARD_DIM split: split_if_asm
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   432
             simp add: Cart_eq basis_eq_pi' all_conj_distrib basis_neq_0
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   433
                       inj_on_iff[OF basis_inj])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   434
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   435
  hence indep: "independent (?b ` {..<CARD('b) * DIM('a)})"
37664
2946b8f057df Instantiate product type as euclidean space.
hoelzl
parents: 37494
diff changeset
   436
  proof (rule independent_eq_inj_on[THEN iffD2], safe elim!: split_CARD_DIM del: notI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   437
    fix j and i :: 'b and u :: "'a^'b \<Rightarrow> real" assume "j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   438
    let ?x = "j + \<pi>' i * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   439
    show "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) \<noteq> ?b ?x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   440
      unfolding Cart_eq not_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   441
    proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   442
      have "(\<lambda>j. j + \<pi>' i*DIM('a))`({..<DIM('a)}-{j}) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   443
        {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)} - {?x}"(is "?S = ?I - _")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   444
      proof safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   445
        fix y assume "y \<in> ?I"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   446
        moreover def k \<equiv> "y - \<pi>' i*DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   447
        ultimately have "k < DIM('a)" and "y = k + \<pi>' i * DIM('a)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   448
        moreover assume "y \<notin> ?S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   449
        ultimately show "y = j + \<pi>' i * DIM('a)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   450
      qed auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   451
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   452
      have "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) $ i =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   453
          (\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k $ i)" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   454
      also have "\<dots> = (\<Sum>k\<in>?S. u(?b k) *\<^sub>R ?b k $ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   455
        unfolding `?S = ?I - {?x}`
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   456
      proof (safe intro!: setsum_mono_zero_cong_right)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   457
        fix y assume "y \<in> {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   458
        moreover have "Suc (\<pi>' i) * DIM('a) \<le> CARD('b) * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   459
          unfolding mult_le_cancel2 using pi'_range[of i] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   460
        ultimately show "y < CARD('b) * DIM('a)" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   461
      next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   462
        fix y assume "y < CARD('b) * DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   463
        with split_CARD_DIM guess l k . note y = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   464
        moreover assume "u (?b y) *\<^sub>R ?b y $ i \<noteq> 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   465
        ultimately show "y \<in> {\<pi>' i*DIM('a)..<Suc (\<pi>' i) * DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   466
          by (auto simp: basis_eq_pi' split: split_if_asm)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   467
      qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   468
      also have "\<dots> = (\<Sum>k\<in>{..<DIM('a)} - {j}. u (?b (k + \<pi>' i*DIM('a))) *\<^sub>R (?b' k))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   469
        by (subst setsum_reindex) (auto simp: basis_eq_pi' intro!: inj_onI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   470
      also have "\<dots> \<noteq> ?b ?x $ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   471
      proof -
37664
2946b8f057df Instantiate product type as euclidean space.
hoelzl
parents: 37494
diff changeset
   472
        note independent_eq_inj_on[THEN iffD1, OF basis_inj independent_basis, rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   473
        note this[of j "\<lambda>v. u (\<chi> ka::'b. if ka = i then v else (0\<Colon>'a))"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   474
        thus ?thesis by (simp add: `j < DIM('a)` basis_eq pi'_range)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   475
      qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   476
      finally show "(\<Sum>k\<in>{..<CARD('b) * DIM('a)} - {?x}. u(?b k) *\<^sub>R ?b k) $ i \<noteq> ?b ?x $ i" .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   477
    qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   478
  qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   479
  ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   480
  show "\<exists>d>0. ?b ` {d..} = {0} \<and> independent (?b ` {..<d}) \<and> inj_on ?b {..<d}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   481
    by (auto intro!: exI[of _ "CARD('b) * DIM('a)"] simp: basis_cart_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   482
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   483
  from indep have exclude_0: "0 \<notin> ?b ` {..<CARD('b) * DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   484
    using dependent_0[of "?b ` {..<CARD('b) * DIM('a)}"] by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   485
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   486
  show "span (range ?b) = UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   487
  proof -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   488
    { fix x :: "'a^'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   489
      let "?if i y" = "(\<chi> k::'b. if k = i then ?b' y else (0\<Colon>'a))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   490
      have The_if: "\<And>i j. j < DIM('a) \<Longrightarrow> (THE k. (?if i j) $ k \<noteq> 0) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   491
        by (rule the_equality) (simp_all split: split_if_asm add: basis_neq_0)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   492
      { fix x :: 'a
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   493
        have "x \<in> span (range basis)"
37664
2946b8f057df Instantiate product type as euclidean space.
hoelzl
parents: 37494
diff changeset
   494
          using span_basis by (auto simp: range_basis)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   495
        hence "\<exists>u. (\<Sum>x<DIM('a). u (?b' x) *\<^sub>R ?b' x) = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   496
          by (subst (asm) span_finite) (auto simp: setsum_basis) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   497
      hence "\<forall>i. \<exists>u. (\<Sum>x<DIM('a). u (?b' x) *\<^sub>R ?b' x) = i" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   498
      then obtain u where u: "\<forall>i. (\<Sum>x<DIM('a). u i (?b' x) *\<^sub>R ?b' x) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   499
        by (auto dest: choice)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   500
      have "\<exists>u. \<forall>i. (\<Sum>j<DIM('a). u (?if i j) *\<^sub>R ?b' j) = x $ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   501
        apply (rule exI[of _ "\<lambda>v. let i = (THE i. v$i \<noteq> 0) in u (x$i) (v$i)"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   502
        using The_if u by simp }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   503
    moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   504
    have "\<And>i::'b. {..<CARD('b)} \<inter> {x. i = \<pi> x} = {\<pi>' i}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   505
      using pi'_range[where 'n='b] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   506
    moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   507
    have "range ?b = {0} \<union> ?b ` {..<CARD('b) * DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   508
      by (auto simp: image_def basis_cart_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   509
    ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   510
    show ?thesis
37664
2946b8f057df Instantiate product type as euclidean space.
hoelzl
parents: 37494
diff changeset
   511
      by (auto simp add: Cart_eq setsum_reindex[OF inj] range_basis
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   512
          setsum_mult_product basis_eq if_distrib setsum_cases span_finite
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   513
          setsum_reindex[OF basis_inj])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   514
  qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   515
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   516
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   517
end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   518
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   519
lemma DIM_cart[simp]: "DIM('a^'b) = CARD('b) * DIM('a::real_basis)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   520
proof (safe intro!: dimension_eq elim!: split_times_into_modulo del: notI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   521
  fix i j assume *: "i < CARD('b)" "j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   522
  hence A: "(i * DIM('a) + j) div DIM('a) = i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   523
    by (subst div_add1_eq) simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   524
  from * have B: "(i * DIM('a) + j) mod DIM('a) = j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   525
    unfolding mod_mult_self3 by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   526
  show "basis (j + i * DIM('a)) \<noteq> (0::'a^'b)" unfolding basis_cart_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   527
    using * basis_finite[where 'a='a]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   528
      linear_less_than_times[of i "CARD('b)" j "DIM('a)"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   529
    by (auto simp: A B field_simps Cart_eq basis_eq_0_iff)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   530
qed (auto simp: basis_cart_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   531
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   532
lemma if_distr: "(if P then f else g) $ i = (if P then f $ i else g $ i)" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   533
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   534
lemma split_dimensions'[consumes 1]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   535
  assumes "k < DIM('a::real_basis^'b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   536
  obtains i j where "i < CARD('b::finite)" and "j < DIM('a::real_basis)" and "k = j + i * DIM('a::real_basis)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   537
using split_times_into_modulo[OF assms[simplified]] .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   538
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   539
lemma cart_euclidean_bound[intro]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   540
  assumes j:"j < DIM('a::{real_basis})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   541
  shows "j + \<pi>' (i::'b::finite) * DIM('a) < CARD('b) * DIM('a::real_basis)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   542
  using linear_less_than_times[OF pi'_range j, of i] .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   543
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   544
instance cart :: (real_basis_with_inner,finite) real_basis_with_inner ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   545
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   546
lemma (in real_basis) forall_CARD_DIM:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   547
  "(\<forall>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<forall>(i::'b::finite) j. j<DIM('a) \<longrightarrow> P (j + \<pi>' i * DIM('a)))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   548
   (is "?l \<longleftrightarrow> ?r")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   549
proof (safe elim!: split_times_into_modulo)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   550
  fix i :: 'b and j assume "j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   551
  note linear_less_than_times[OF pi'_range[of i] this]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   552
  moreover assume "?l"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   553
  ultimately show "P (j + \<pi>' i * DIM('a))" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   554
next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   555
  fix i j assume "i < CARD('b)" "j < DIM('a)" and "?r"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   556
  from `?r`[rule_format, OF `j < DIM('a)`, of "\<pi> i"] `i < CARD('b)`
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   557
  show "P (j + i * DIM('a))" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   558
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   559
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   560
lemma (in real_basis) exists_CARD_DIM:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   561
  "(\<exists>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<exists>i::'b::finite. \<exists>j<DIM('a). P (j + \<pi>' i * DIM('a)))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   562
  using forall_CARD_DIM[where 'b='b, of "\<lambda>x. \<not> P x"] by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   563
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   564
lemma forall_CARD:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   565
  "(\<forall>i<CARD('b). P i) \<longleftrightarrow> (\<forall>i::'b::finite. P (\<pi>' i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   566
  using forall_CARD_DIM[where 'a=real, of P] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   567
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   568
lemma exists_CARD:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   569
  "(\<exists>i<CARD('b). P i) \<longleftrightarrow> (\<exists>i::'b::finite. P (\<pi>' i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   570
  using exists_CARD_DIM[where 'a=real, of P] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   571
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   572
lemmas cart_simps = forall_CARD_DIM exists_CARD_DIM forall_CARD exists_CARD
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   573
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   574
lemma cart_euclidean_nth[simp]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   575
  fixes x :: "('a::real_basis_with_inner, 'b::finite) cart"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   576
  assumes j:"j < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   577
  shows "x $$ (j + \<pi>' i * DIM('a)) = x $ i $$ j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   578
  unfolding euclidean_component_def inner_vector_def basis_eq_pi'[OF j] if_distrib cond_application_beta
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   579
  by (simp add: setsum_cases)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   580
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   581
lemma real_euclidean_nth:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   582
  fixes x :: "real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   583
  shows "x $$ \<pi>' i = (x $ i :: real)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   584
  using cart_euclidean_nth[where 'a=real, of 0 x i] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   585
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   586
lemmas nth_conv_component = real_euclidean_nth[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   587
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   588
lemma mult_split_eq:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   589
  fixes A :: nat assumes "x < A" "y < A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   590
  shows "x + i * A = y + j * A \<longleftrightarrow> x = y \<and> i = j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   591
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   592
  assume *: "x + i * A = y + j * A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   593
  { fix x y i j assume "i < j" "x < A" and *: "x + i * A = y + j * A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   594
    hence "x + i * A < Suc i * A" using `x < A` by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   595
    also have "\<dots> \<le> j * A" using `i < j` unfolding mult_le_cancel2 by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   596
    also have "\<dots> \<le> y + j * A" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   597
    finally have "i = j" using * by simp }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   598
  note eq = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   599
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   600
  have "i = j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   601
  proof (cases rule: linorder_cases)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   602
    assume "i < j" from eq[OF this `x < A` *] show "i = j" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   603
  next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   604
    assume "j < i" from eq[OF this `y < A` *[symmetric]] show "i = j" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   605
  qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   606
  thus "x = y \<and> i = j" using * by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   607
qed simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   608
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   609
instance cart :: (euclidean_space,finite) euclidean_space
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   610
proof (default, safe elim!: split_dimensions')
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   611
  let ?b = "basis :: nat \<Rightarrow> 'a^'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   612
  have if_distrib_op: "\<And>f P Q a b c d.
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   613
    f (if P then a else b) (if Q then c else d) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   614
      (if P then if Q then f a c else f a d else if Q then f b c else f b d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   615
    by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   616
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   617
  fix i j k l
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   618
  assume "i < CARD('b)" "k < CARD('b)" "j < DIM('a)" "l < DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   619
  thus "?b (j + i * DIM('a)) \<bullet> ?b (l + k * DIM('a)) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   620
    (if j + i * DIM('a) = l + k * DIM('a) then 1 else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   621
    using inj_on_iff[OF \<pi>_inj_on[where 'n='b], of k i]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   622
    by (auto simp add: basis_eq inner_vector_def if_distrib_op[of inner] setsum_cases basis_orthonormal mult_split_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   623
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   624
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   625
instance cart :: (ordered_euclidean_space,finite) ordered_euclidean_space
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   626
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   627
  fix x y::"'a^'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   628
  show "(x \<le> y) = (\<forall>i<DIM(('a, 'b) cart). x $$ i \<le> y $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   629
    unfolding vector_le_def apply(subst eucl_le) by (simp add: cart_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   630
  show"(x < y) = (\<forall>i<DIM(('a, 'b) cart). x $$ i < y $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   631
    unfolding vector_less_def apply(subst eucl_less) by (simp add: cart_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   632
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   633
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   634
subsection{* Basis vectors in coordinate directions. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   635
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   636
definition "cart_basis k = (\<chi> i. if i = k then 1 else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   637
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   638
lemma basis_component [simp]: "cart_basis k $ i = (if k=i then 1 else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   639
  unfolding cart_basis_def by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   640
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   641
lemma norm_basis[simp]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   642
  shows "norm (cart_basis k :: real ^'n) = 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   643
  apply (simp add: cart_basis_def norm_eq_sqrt_inner) unfolding inner_vector_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   644
  apply (vector delta_mult_idempotent)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   645
  using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   646
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   647
lemma norm_basis_1: "norm(cart_basis 1 :: real ^'n::{finite,one}) = 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   648
  by (rule norm_basis)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   649
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   650
lemma vector_choose_size: "0 <= c ==> \<exists>(x::real^'n). norm x = c"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   651
  by (rule exI[where x="c *\<^sub>R cart_basis arbitrary"]) simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   652
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   653
lemma vector_choose_dist: assumes e: "0 <= e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   654
  shows "\<exists>(y::real^'n). dist x y = e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   655
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   656
  from vector_choose_size[OF e] obtain c:: "real ^'n"  where "norm c = e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   657
    by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   658
  then have "dist x (x - c) = e" by (simp add: dist_norm)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   659
  then show ?thesis by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   660
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   661
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   662
lemma basis_inj[intro]: "inj (cart_basis :: 'n \<Rightarrow> real ^'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   663
  by (simp add: inj_on_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   664
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   665
lemma basis_expansion:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   666
  "setsum (\<lambda>i. (x$i) *s cart_basis i) UNIV = (x::('a::ring_1) ^'n)" (is "?lhs = ?rhs" is "setsum ?f ?S = _")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   667
  by (auto simp add: Cart_eq if_distrib setsum_delta[of "?S", where ?'b = "'a", simplified] cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   668
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   669
lemma smult_conv_scaleR: "c *s x = scaleR c x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   670
  unfolding vector_scalar_mult_def vector_scaleR_def by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   671
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   672
lemma basis_expansion':
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   673
  "setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) UNIV = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   674
  by (rule basis_expansion [where 'a=real, unfolded smult_conv_scaleR])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   675
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   676
lemma basis_expansion_unique:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   677
  "setsum (\<lambda>i. f i *s cart_basis i) UNIV = (x::('a::comm_ring_1) ^'n) \<longleftrightarrow> (\<forall>i. f i = x$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   678
  by (simp add: Cart_eq setsum_delta if_distrib cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   679
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   680
lemma dot_basis:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   681
  shows "cart_basis i \<bullet> x = x$i" "x \<bullet> (cart_basis i) = (x$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   682
  by (auto simp add: inner_vector_def cart_basis_def cond_application_beta if_distrib setsum_delta
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   683
           cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   684
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   685
lemma inner_basis:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   686
  fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   687
  shows "inner (cart_basis i) x = inner 1 (x $ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   688
    and "inner x (cart_basis i) = inner (x $ i) 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   689
  unfolding inner_vector_def cart_basis_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   690
  by (auto simp add: cond_application_beta if_distrib setsum_delta cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   691
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   692
lemma basis_eq_0: "cart_basis i = (0::'a::semiring_1^'n) \<longleftrightarrow> False"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   693
  by (auto simp add: Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   694
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   695
lemma basis_nonzero:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   696
  shows "cart_basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   697
  by (simp add: basis_eq_0)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   698
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   699
text {* some lemmas to map between Eucl and Cart *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   700
lemma basis_real_n[simp]:"(basis (\<pi>' i)::real^'a) = cart_basis i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   701
  unfolding basis_cart_def using pi'_range[where 'n='a]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   702
  by (auto simp: Cart_eq Cart_lambda_beta)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   703
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   704
subsection {* Orthogonality on cartesian products *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   705
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   706
lemma orthogonal_basis:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   707
  shows "orthogonal (cart_basis i) x \<longleftrightarrow> x$i = (0::real)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   708
  by (auto simp add: orthogonal_def inner_vector_def cart_basis_def if_distrib
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   709
                     cond_application_beta setsum_delta cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   710
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   711
lemma orthogonal_basis_basis:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   712
  shows "orthogonal (cart_basis i :: real^'n) (cart_basis j) \<longleftrightarrow> i \<noteq> j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   713
  unfolding orthogonal_basis[of i] basis_component[of j] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   714
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   715
subsection {* Linearity on cartesian products *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   716
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   717
lemma linear_vmul_component:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   718
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   719
  shows "linear (\<lambda>x. f x $ k *\<^sub>R v)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   720
  using lf
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   721
  by (auto simp add: linear_def algebra_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   722
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   723
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   724
subsection{* Adjoints on cartesian products *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   725
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   726
text {* TODO: The following lemmas about adjoints should hold for any
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   727
Hilbert space (i.e. complete inner product space).
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   728
(see \url{http://en.wikipedia.org/wiki/Hermitian_adjoint})
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   729
*}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   730
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   731
lemma adjoint_works_lemma:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   732
  fixes f:: "real ^'n \<Rightarrow> real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   733
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   734
  shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   735
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   736
  let ?N = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   737
  let ?M = "UNIV :: 'm set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   738
  have fN: "finite ?N" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   739
  have fM: "finite ?M" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   740
  {fix y:: "real ^ 'm"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   741
    let ?w = "(\<chi> i. (f (cart_basis i) \<bullet> y)) :: real ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   742
    {fix x
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   743
      have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) ?N) \<bullet> y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   744
        by (simp only: basis_expansion')
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   745
      also have "\<dots> = (setsum (\<lambda>i. (x$i) *\<^sub>R f (cart_basis i)) ?N) \<bullet> y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   746
        unfolding linear_setsum[OF lf fN]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   747
        by (simp add: linear_cmul[OF lf])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   748
      finally have "f x \<bullet> y = x \<bullet> ?w"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   749
        apply (simp only: )
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   750
        apply (simp add: inner_vector_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   751
        done}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   752
  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   753
  then show ?thesis unfolding adjoint_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   754
    some_eq_ex[of "\<lambda>f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   755
    using choice_iff[of "\<lambda>a b. \<forall>x. f x \<bullet> a = x \<bullet> b "]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   756
    by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   757
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   758
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   759
lemma adjoint_works:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   760
  fixes f:: "real ^'n \<Rightarrow> real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   761
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   762
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   763
  using adjoint_works_lemma[OF lf] by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   764
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   765
lemma adjoint_linear:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   766
  fixes f:: "real ^'n \<Rightarrow> real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   767
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   768
  shows "linear (adjoint f)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   769
  unfolding linear_def vector_eq_ldot[where 'a="real^'n", symmetric] apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   770
  unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   771
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   772
lemma adjoint_clauses:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   773
  fixes f:: "real ^'n \<Rightarrow> real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   774
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   775
  shows "x \<bullet> adjoint f y = f x \<bullet> y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   776
  and "adjoint f y \<bullet> x = y \<bullet> f x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   777
  by (simp_all add: adjoint_works[OF lf] inner_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   778
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   779
lemma adjoint_adjoint:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   780
  fixes f:: "real ^'n \<Rightarrow> real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   781
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   782
  shows "adjoint (adjoint f) = f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   783
  by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   784
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   785
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   786
subsection {* Matrix operations *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   787
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   788
text{* Matrix notation. NB: an MxN matrix is of type @{typ "'a^'n^'m"}, not @{typ "'a^'m^'n"} *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   789
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   790
definition matrix_matrix_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'p^'n \<Rightarrow> 'a ^ 'p ^'m"  (infixl "**" 70)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   791
  where "m ** m' == (\<chi> i j. setsum (\<lambda>k. ((m$i)$k) * ((m'$k)$j)) (UNIV :: 'n set)) ::'a ^ 'p ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   792
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   793
definition matrix_vector_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'm"  (infixl "*v" 70)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   794
  where "m *v x \<equiv> (\<chi> i. setsum (\<lambda>j. ((m$i)$j) * (x$j)) (UNIV ::'n set)) :: 'a^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   795
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   796
definition vector_matrix_mult :: "'a ^ 'm \<Rightarrow> ('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n "  (infixl "v*" 70)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   797
  where "v v* m == (\<chi> j. setsum (\<lambda>i. ((m$i)$j) * (v$i)) (UNIV :: 'm set)) :: 'a^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   798
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   799
definition "(mat::'a::zero => 'a ^'n^'n) k = (\<chi> i j. if i = j then k else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   800
definition transpose where 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   801
  "(transpose::'a^'n^'m \<Rightarrow> 'a^'m^'n) A = (\<chi> i j. ((A$j)$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   802
definition "(row::'m => 'a ^'n^'m \<Rightarrow> 'a ^'n) i A = (\<chi> j. ((A$i)$j))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   803
definition "(column::'n =>'a^'n^'m =>'a^'m) j A = (\<chi> i. ((A$i)$j))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   804
definition "rows(A::'a^'n^'m) = { row i A | i. i \<in> (UNIV :: 'm set)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   805
definition "columns(A::'a^'n^'m) = { column i A | i. i \<in> (UNIV :: 'n set)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   806
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   807
lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   808
lemma matrix_add_ldistrib: "(A ** (B + C)) = (A ** B) + (A ** C)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   809
  by (vector matrix_matrix_mult_def setsum_addf[symmetric] field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   810
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   811
lemma matrix_mul_lid:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   812
  fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   813
  shows "mat 1 ** A = A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   814
  apply (simp add: matrix_matrix_mult_def mat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   815
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   816
  by (auto simp only: if_distrib cond_application_beta setsum_delta'[OF finite]  mult_1_left mult_zero_left if_True UNIV_I)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   817
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   818
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   819
lemma matrix_mul_rid:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   820
  fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   821
  shows "A ** mat 1 = A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   822
  apply (simp add: matrix_matrix_mult_def mat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   823
  apply vector
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   824
  by (auto simp only: if_distrib cond_application_beta setsum_delta[OF finite]  mult_1_right mult_zero_right if_True UNIV_I cong: if_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   825
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   826
lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   827
  apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   828
  apply (subst setsum_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   829
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   830
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   831
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   832
lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   833
  apply (vector matrix_matrix_mult_def matrix_vector_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   834
  apply (subst setsum_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   835
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   836
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   837
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   838
lemma matrix_vector_mul_lid: "mat 1 *v x = (x::'a::semiring_1 ^ 'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   839
  apply (vector matrix_vector_mult_def mat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   840
  by (simp add: if_distrib cond_application_beta
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   841
    setsum_delta' cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   842
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   843
lemma matrix_transpose_mul: "transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   844
  by (simp add: matrix_matrix_mult_def transpose_def Cart_eq mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   845
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   846
lemma matrix_eq:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   847
  fixes A B :: "'a::semiring_1 ^ 'n ^ 'm"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   848
  shows "A = B \<longleftrightarrow>  (\<forall>x. A *v x = B *v x)" (is "?lhs \<longleftrightarrow> ?rhs")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   849
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   850
  apply (subst Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   851
  apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   852
  apply (clarsimp simp add: matrix_vector_mult_def cart_basis_def if_distrib cond_application_beta Cart_eq cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   853
  apply (erule_tac x="cart_basis ia" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   854
  apply (erule_tac x="i" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   855
  by (auto simp add: cart_basis_def if_distrib cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   856
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   857
lemma matrix_vector_mul_component:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   858
  shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   859
  by (simp add: matrix_vector_mult_def inner_vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   860
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   861
lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   862
  apply (simp add: inner_vector_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   863
  apply (subst setsum_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   864
  by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   865
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   866
lemma transpose_mat: "transpose (mat n) = mat n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   867
  by (vector transpose_def mat_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   868
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   869
lemma transpose_transpose: "transpose(transpose A) = A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   870
  by (vector transpose_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   871
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   872
lemma row_transpose:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   873
  fixes A:: "'a::semiring_1^_^_"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   874
  shows "row i (transpose A) = column i A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   875
  by (simp add: row_def column_def transpose_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   876
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   877
lemma column_transpose:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   878
  fixes A:: "'a::semiring_1^_^_"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   879
  shows "column i (transpose A) = row i A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   880
  by (simp add: row_def column_def transpose_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   881
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   882
lemma rows_transpose: "rows(transpose (A::'a::semiring_1^_^_)) = columns A"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   883
by (auto simp add: rows_def columns_def row_transpose intro: set_eqI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   884
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   885
lemma columns_transpose: "columns(transpose (A::'a::semiring_1^_^_)) = rows A" by (metis transpose_transpose rows_transpose)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   886
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   887
text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   888
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   889
lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   890
  by (simp add: matrix_vector_mult_def inner_vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   891
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   892
lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   893
  by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   894
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   895
lemma vector_componentwise:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   896
  "(x::'a::ring_1^'n) = (\<chi> j. setsum (\<lambda>i. (x$i) * (cart_basis i :: 'a^'n)$j) (UNIV :: 'n set))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   897
  apply (subst basis_expansion[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   898
  by (vector Cart_eq setsum_component)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   899
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   900
lemma linear_componentwise:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   901
  fixes f:: "real ^'m \<Rightarrow> real ^ _"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   902
  assumes lf: "linear f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   903
  shows "(f x)$j = setsum (\<lambda>i. (x$i) * (f (cart_basis i)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   904
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   905
  let ?M = "(UNIV :: 'm set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   906
  let ?N = "(UNIV :: 'n set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   907
  have fM: "finite ?M" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   908
  have "?rhs = (setsum (\<lambda>i.(x$i) *\<^sub>R f (cart_basis i) ) ?M)$j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   909
    unfolding vector_smult_component[symmetric] smult_conv_scaleR
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   910
    unfolding setsum_component[of "(\<lambda>i.(x$i) *\<^sub>R f (cart_basis i :: real^'m))" ?M]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   911
    ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   912
  then show ?thesis unfolding linear_setsum_mul[OF lf fM, symmetric] basis_expansion' ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   913
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   914
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   915
text{* Inverse matrices  (not necessarily square) *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   916
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   917
definition "invertible(A::'a::semiring_1^'n^'m) \<longleftrightarrow> (\<exists>A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   918
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   919
definition "matrix_inv(A:: 'a::semiring_1^'n^'m) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   920
        (SOME A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   921
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   922
text{* Correspondence between matrices and linear operators. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   923
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   924
definition matrix:: "('a::{plus,times, one, zero}^'m \<Rightarrow> 'a ^ 'n) \<Rightarrow> 'a^'m^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   925
where "matrix f = (\<chi> i j. (f(cart_basis j))$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   926
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   927
lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::real ^ _))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   928
  by (simp add: linear_def matrix_vector_mult_def Cart_eq field_simps setsum_right_distrib setsum_addf)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   929
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   930
lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::real ^ 'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   931
apply (simp add: matrix_def matrix_vector_mult_def Cart_eq mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   932
apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   933
apply (rule linear_componentwise[OF lf, symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   934
done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   935
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   936
lemma matrix_vector_mul: "linear f ==> f = (\<lambda>x. matrix f *v (x::real ^ 'n))" by (simp add: ext matrix_works)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   937
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   938
lemma matrix_of_matrix_vector_mul: "matrix(\<lambda>x. A *v (x :: real ^ 'n)) = A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   939
  by (simp add: matrix_eq matrix_vector_mul_linear matrix_works)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   940
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   941
lemma matrix_compose:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   942
  assumes lf: "linear (f::real^'n \<Rightarrow> real^'m)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   943
  and lg: "linear (g::real^'m \<Rightarrow> real^_)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   944
  shows "matrix (g o f) = matrix g ** matrix f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   945
  using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   946
  by (simp  add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   947
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   948
lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   949
  by (simp add: matrix_vector_mult_def transpose_def Cart_eq mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   950
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   951
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   952
  apply (rule adjoint_unique)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   953
  apply (simp add: transpose_def inner_vector_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   954
  apply (subst setsum_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   955
  apply (auto simp add: mult_ac)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   956
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   957
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   958
lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   959
  shows "matrix(adjoint f) = transpose(matrix f)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   960
  apply (subst matrix_vector_mul[OF lf])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   961
  unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   962
37494
6e9f48cf6adf Make latex happy
hoelzl
parents: 37489
diff changeset
   963
section {* lambda skolemization on cartesian products *}
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   964
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   965
(* FIXME: rename do choice_cart *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   966
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   967
lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow>
37494
6e9f48cf6adf Make latex happy
hoelzl
parents: 37489
diff changeset
   968
   (\<exists>x::'a ^ 'n. \<forall>i. P i (x $ i))" (is "?lhs \<longleftrightarrow> ?rhs")
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   969
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   970
  let ?S = "(UNIV :: 'n set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   971
  {assume H: "?rhs"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   972
    then have ?lhs by auto}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   973
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   974
  {assume H: "?lhs"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   975
    then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   976
    let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   977
    {fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   978
      from f have "P i (f i)" by metis
37494
6e9f48cf6adf Make latex happy
hoelzl
parents: 37489
diff changeset
   979
      then have "P i (?x $ i)" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   980
    }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   981
    hence "\<forall>i. P i (?x$i)" by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   982
    hence ?rhs by metis }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   983
  ultimately show ?thesis by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   984
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   985
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   986
subsection {* Standard bases are a spanning set, and obviously finite. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   987
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   988
lemma span_stdbasis:"span {cart_basis i :: real^'n | i. i \<in> (UNIV :: 'n set)} = UNIV"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   989
apply (rule set_eqI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   990
apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   991
apply (subst basis_expansion'[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   992
apply (rule span_setsum)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   993
apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   994
apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   995
apply (rule span_mul)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   996
apply (rule span_superset)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   997
apply (auto simp add: Collect_def mem_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   998
done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
   999
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1000
lemma finite_stdbasis: "finite {cart_basis i ::real^'n |i. i\<in> (UNIV:: 'n set)}" (is "finite ?S")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1001
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1002
  have eq: "?S = cart_basis ` UNIV" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1003
  show ?thesis unfolding eq by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1004
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1005
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1006
lemma card_stdbasis: "card {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)} = CARD('n)" (is "card ?S = _")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1007
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1008
  have eq: "?S = cart_basis ` UNIV" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1009
  show ?thesis unfolding eq using card_image[OF basis_inj] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1010
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1011
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1012
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1013
lemma independent_stdbasis_lemma:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1014
  assumes x: "(x::real ^ 'n) \<in> span (cart_basis ` S)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1015
  and iS: "i \<notin> S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1016
  shows "(x$i) = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1017
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1018
  let ?U = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1019
  let ?B = "cart_basis ` S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1020
  let ?P = "\<lambda>(x::real^_). \<forall>i\<in> ?U. i \<notin> S \<longrightarrow> x$i =0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1021
 {fix x::"real^_" assume xS: "x\<in> ?B"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1022
   from xS have "?P x" by auto}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1023
 moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1024
 have "subspace ?P"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1025
   by (auto simp add: subspace_def Collect_def mem_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1026
 ultimately show ?thesis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1027
   using x span_induct[of ?B ?P x] iS by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1028
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1029
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1030
lemma independent_stdbasis: "independent {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1031
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1032
  let ?I = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1033
  let ?b = "cart_basis :: _ \<Rightarrow> real ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1034
  let ?B = "?b ` ?I"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1035
  have eq: "{?b i|i. i \<in> ?I} = ?B"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1036
    by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1037
  {assume d: "dependent ?B"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1038
    then obtain k where k: "k \<in> ?I" "?b k \<in> span (?B - {?b k})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1039
      unfolding dependent_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1040
    have eq1: "?B - {?b k} = ?B - ?b ` {k}"  by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1041
    have eq2: "?B - {?b k} = ?b ` (?I - {k})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1042
      unfolding eq1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1043
      apply (rule inj_on_image_set_diff[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1044
      apply (rule basis_inj) using k(1) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1045
    from k(2) have th0: "?b k \<in> span (?b ` (?I - {k}))" unfolding eq2 .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1046
    from independent_stdbasis_lemma[OF th0, of k, simplified]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1047
    have False by simp}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1048
  then show ?thesis unfolding eq dependent_def ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1049
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1050
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1051
lemma vector_sub_project_orthogonal_cart: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1052
  unfolding inner_simps smult_conv_scaleR by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1053
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1054
lemma linear_eq_stdbasis_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1055
  assumes lf: "linear (f::real^'m \<Rightarrow> _)" and lg: "linear g"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1056
  and fg: "\<forall>i. f (cart_basis i) = g(cart_basis i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1057
  shows "f = g"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1058
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1059
  let ?U = "UNIV :: 'm set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1060
  let ?I = "{cart_basis i:: real^'m|i. i \<in> ?U}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1061
  {fix x assume x: "x \<in> (UNIV :: (real^'m) set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1062
    from equalityD2[OF span_stdbasis]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1063
    have IU: " (UNIV :: (real^'m) set) \<subseteq> span ?I" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1064
    from linear_eq[OF lf lg IU] fg x
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1065
    have "f x = g x" unfolding Collect_def  Ball_def mem_def by metis}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1066
  then show ?thesis by (auto intro: ext)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1067
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1068
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1069
lemma bilinear_eq_stdbasis_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1070
  assumes bf: "bilinear (f:: real^'m \<Rightarrow> real^'n \<Rightarrow> _)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1071
  and bg: "bilinear g"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1072
  and fg: "\<forall>i j. f (cart_basis i) (cart_basis j) = g (cart_basis i) (cart_basis j)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1073
  shows "f = g"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1074
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1075
  from fg have th: "\<forall>x \<in> {cart_basis i| i. i\<in> (UNIV :: 'm set)}. \<forall>y\<in>  {cart_basis j |j. j \<in> (UNIV :: 'n set)}. f x y = g x y" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1076
  from bilinear_eq[OF bf bg equalityD2[OF span_stdbasis] equalityD2[OF span_stdbasis] th] show ?thesis by (blast intro: ext)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1077
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1078
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1079
lemma left_invertible_transpose:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1080
  "(\<exists>(B). B ** transpose (A) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). A ** B = mat 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1081
  by (metis matrix_transpose_mul transpose_mat transpose_transpose)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1082
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1083
lemma right_invertible_transpose:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1084
  "(\<exists>(B). transpose (A) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). B ** A = mat 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1085
  by (metis matrix_transpose_mul transpose_mat transpose_transpose)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1086
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1087
lemma matrix_left_invertible_injective:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1088
"(\<exists>B. (B::real^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x y. A *v x = A *v y \<longrightarrow> x = y)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1089
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1090
  {fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1091
    from xy have "B*v (A *v x) = B *v (A*v y)" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1092
    hence "x = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1093
      unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid .}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1094
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1095
  {assume A: "\<forall>x y. A *v x = A *v y \<longrightarrow> x = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1096
    hence i: "inj (op *v A)" unfolding inj_on_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1097
    from linear_injective_left_inverse[OF matrix_vector_mul_linear i]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1098
    obtain g where g: "linear g" "g o op *v A = id" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1099
    have "matrix g ** A = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1100
      unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1101
      using g(2) by (simp add: o_def id_def stupid_ext)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1102
    then have "\<exists>B. (B::real ^'m^'n) ** A = mat 1" by blast}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1103
  ultimately show ?thesis by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1104
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1105
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1106
lemma matrix_left_invertible_ker:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1107
  "(\<exists>B. (B::real ^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1108
  unfolding matrix_left_invertible_injective
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1109
  using linear_injective_0[OF matrix_vector_mul_linear, of A]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1110
  by (simp add: inj_on_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1111
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1112
lemma matrix_right_invertible_surjective:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1113
"(\<exists>B. (A::real^'n^'m) ** (B::real^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1114
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1115
  {fix B :: "real ^'m^'n"  assume AB: "A ** B = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1116
    {fix x :: "real ^ 'm"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1117
      have "A *v (B *v x) = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1118
        by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB)}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1119
    hence "surj (op *v A)" unfolding surj_def by metis }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1120
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1121
  {assume sf: "surj (op *v A)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1122
    from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1123
    obtain g:: "real ^'m \<Rightarrow> real ^'n" where g: "linear g" "op *v A o g = id"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1124
      by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1125
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1126
    have "A ** (matrix g) = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1127
      unfolding matrix_eq  matrix_vector_mul_lid
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1128
        matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1129
      using g(2) unfolding o_def stupid_ext[symmetric] id_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1130
      .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1131
    hence "\<exists>B. A ** (B::real^'m^'n) = mat 1" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1132
  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1133
  ultimately show ?thesis unfolding surj_def by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1134
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1135
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1136
lemma matrix_left_invertible_independent_columns:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1137
  fixes A :: "real^'n^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1138
  shows "(\<exists>(B::real ^'m^'n). B ** A = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1139
   (is "?lhs \<longleftrightarrow> ?rhs")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1140
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1141
  let ?U = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1142
  {assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1143
    {fix c i assume c: "setsum (\<lambda>i. c i *s column i A) ?U = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1144
      and i: "i \<in> ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1145
      let ?x = "\<chi> i. c i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1146
      have th0:"A *v ?x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1147
        using c
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1148
        unfolding matrix_mult_vsum Cart_eq
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1149
        by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1150
      from k[rule_format, OF th0] i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1151
      have "c i = 0" by (vector Cart_eq)}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1152
    hence ?rhs by blast}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1153
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1154
  {assume H: ?rhs
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1155
    {fix x assume x: "A *v x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1156
      let ?c = "\<lambda>i. ((x$i ):: real)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1157
      from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1158
      have "x = 0" by vector}}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1159
  ultimately show ?thesis unfolding matrix_left_invertible_ker by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1160
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1161
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1162
lemma matrix_right_invertible_independent_rows:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1163
  fixes A :: "real^'n^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1164
  shows "(\<exists>(B::real^'m^'n). A ** B = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1165
  unfolding left_invertible_transpose[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1166
    matrix_left_invertible_independent_columns
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1167
  by (simp add: column_transpose)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1168
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1169
lemma matrix_right_invertible_span_columns:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1170
  "(\<exists>(B::real ^'n^'m). (A::real ^'m^'n) ** B = mat 1) \<longleftrightarrow> span (columns A) = UNIV" (is "?lhs = ?rhs")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1171
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1172
  let ?U = "UNIV :: 'm set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1173
  have fU: "finite ?U" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1174
  have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1175
    unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1176
    apply (subst eq_commute) ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1177
  have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> span (columns A))" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1178
  {assume h: ?lhs
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1179
    {fix x:: "real ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1180
        from h[unfolded lhseq, rule_format, of x] obtain y:: "real ^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1181
          where y: "setsum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1182
        have "x \<in> span (columns A)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1183
          unfolding y[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1184
          apply (rule span_setsum[OF fU])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1185
          apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1186
          unfolding smult_conv_scaleR
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1187
          apply (rule span_mul)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1188
          apply (rule span_superset)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1189
          unfolding columns_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1190
          by blast}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1191
    then have ?rhs unfolding rhseq by blast}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1192
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1193
  {assume h:?rhs
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1194
    let ?P = "\<lambda>(y::real ^'n). \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1195
    {fix y have "?P y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1196
      proof(rule span_induct_alt[of ?P "columns A", folded smult_conv_scaleR])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1197
        show "\<exists>x\<Colon>real ^ 'm. setsum (\<lambda>i. (x$i) *s column i A) ?U = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1198
          by (rule exI[where x=0], simp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1199
      next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1200
        fix c y1 y2 assume y1: "y1 \<in> columns A" and y2: "?P y2"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1201
        from y1 obtain i where i: "i \<in> ?U" "y1 = column i A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1202
          unfolding columns_def by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1203
        from y2 obtain x:: "real ^'m" where
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1204
          x: "setsum (\<lambda>i. (x$i) *s column i A) ?U = y2" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1205
        let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::real^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1206
        show "?P (c*s y1 + y2)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1207
          proof(rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] if_distrib right_distrib cond_application_beta cong del: if_weak_cong)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1208
            fix j
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1209
            have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1210
           else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))" using i(1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1211
              by (simp add: field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1212
            have "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1213
           else (x$xa) * ((column xa A$j))) ?U = setsum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1214
              apply (rule setsum_cong[OF refl])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1215
              using th by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1216
            also have "\<dots> = setsum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1217
              by (simp add: setsum_addf)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1218
            also have "\<dots> = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1219
              unfolding setsum_delta[OF fU]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1220
              using i(1) by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1221
            finally show "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1222
           else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1223
          qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1224
        next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1225
          show "y \<in> span (columns A)" unfolding h by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1226
        qed}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1227
    then have ?lhs unfolding lhseq ..}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1228
  ultimately show ?thesis by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1229
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1230
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1231
lemma matrix_left_invertible_span_rows:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1232
  "(\<exists>(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1233
  unfolding right_invertible_transpose[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1234
  unfolding columns_transpose[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1235
  unfolding matrix_right_invertible_span_columns
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1236
 ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1237
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1238
text {* The same result in terms of square matrices. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1239
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1240
lemma matrix_left_right_inverse:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1241
  fixes A A' :: "real ^'n^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1242
  shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1243
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1244
  {fix A A' :: "real ^'n^'n" assume AA': "A ** A' = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1245
    have sA: "surj (op *v A)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1246
      unfolding surj_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1247
      apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1248
      apply (rule_tac x="(A' *v y)" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1249
      by (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1250
    from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1251
    obtain f' :: "real ^'n \<Rightarrow> real ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1252
      where f': "linear f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1253
    have th: "matrix f' ** A = mat 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1254
      by (simp add: matrix_eq matrix_works[OF f'(1)] matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1255
    hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1256
    hence "matrix f' = A'" by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1257
    hence "matrix f' ** A = A' ** A" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1258
    hence "A' ** A = mat 1" by (simp add: th)}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1259
  then show ?thesis by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1260
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1261
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1262
text {* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1263
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1264
definition "rowvector v = (\<chi> i j. (v$j))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1265
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1266
definition "columnvector v = (\<chi> i j. (v$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1267
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1268
lemma transpose_columnvector:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1269
 "transpose(columnvector v) = rowvector v"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1270
  by (simp add: transpose_def rowvector_def columnvector_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1271
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1272
lemma transpose_rowvector: "transpose(rowvector v) = columnvector v"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1273
  by (simp add: transpose_def columnvector_def rowvector_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1274
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1275
lemma dot_rowvector_columnvector:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1276
  "columnvector (A *v v) = A ** columnvector v"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1277
  by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1278
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1279
lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1280
  by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1281
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1282
lemma dot_matrix_vector_mul:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1283
  fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1284
  shows "(A *v x) \<bullet> (B *v y) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1285
      (((rowvector x :: real^'n^1) ** ((transpose A ** B) ** (columnvector y :: real ^1^'n)))$1)$1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1286
unfolding dot_matrix_product transpose_columnvector[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1287
  dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1288
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1289
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1290
lemma infnorm_cart:"infnorm (x::real^'n) = Sup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1291
  unfolding infnorm_def apply(rule arg_cong[where f=Sup]) apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1292
  apply(rule_tac x="\<pi> i" in exI) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1293
  apply(rule_tac x="\<pi>' i" in exI) unfolding nth_conv_component using pi'_range by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1294
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1295
lemma infnorm_set_image_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1296
  "{abs(x$i) |i. i\<in> (UNIV :: _ set)} =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1297
  (\<lambda>i. abs(x$i)) ` (UNIV)" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1298
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1299
lemma infnorm_set_lemma_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1300
  shows "finite {abs((x::'a::abs ^'n)$i) |i. i\<in> (UNIV :: 'n set)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1301
  and "{abs(x$i) |i. i\<in> (UNIV :: 'n::finite set)} \<noteq> {}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1302
  unfolding  infnorm_set_image_cart
40786
0a54cfc9add3 gave more standard finite set rules simp and intro attribute
nipkow
parents: 39302
diff changeset
  1303
  by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1304
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1305
lemma component_le_infnorm_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1306
  shows "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1307
  unfolding nth_conv_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1308
  using component_le_infnorm[of x] .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1309
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1310
instance cart :: (perfect_space, finite) perfect_space
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1311
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1312
  fix x :: "'a ^ 'b"
44077
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1313
  show "x islimpt UNIV"
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1314
    apply (rule islimptI)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1315
    apply (unfold open_vector_def)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1316
    apply (drule (1) bspec)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1317
    apply clarsimp
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1318
    apply (subgoal_tac "\<forall>i\<in>UNIV. \<exists>y. y \<in> A i \<and> y \<noteq> x $ i")
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1319
     apply (drule finite_choice [OF finite_UNIV], erule exE)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1320
     apply (rule_tac x="Cart_lambda f" in exI)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1321
     apply (simp add: Cart_eq)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1322
    apply (rule ballI, drule_tac x=i in spec, clarify)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1323
    apply (cut_tac x="x $ i" in islimpt_UNIV)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1324
    apply (simp add: islimpt_def)
427db4ab3c99 fix perfect_space instance proof for finite cartesian product (cf. 5b970711fb39)
huffman
parents: 43995
diff changeset
  1325
    done
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1326
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1327
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1328
lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1329
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1330
  let ?U = "UNIV :: 'n set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1331
  let ?O = "{x::real^'n. \<forall>i. x$i\<ge>0}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1332
  {fix x:: "real^'n" and i::'n assume H: "\<forall>e>0. \<exists>x'\<in>?O. x' \<noteq> x \<and> dist x' x < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1333
    and xi: "x$i < 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1334
    from xi have th0: "-x$i > 0" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1335
    from H[rule_format, OF th0] obtain x' where x': "x' \<in>?O" "x' \<noteq> x" "dist x' x < -x $ i" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1336
      have th:" \<And>b a (x::real). abs x <= b \<Longrightarrow> b <= a ==> ~(a + x < 0)" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1337
      have th': "\<And>x (y::real). x < 0 \<Longrightarrow> 0 <= y ==> abs x <= abs (y - x)" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1338
      have th1: "\<bar>x$i\<bar> \<le> \<bar>(x' - x)$i\<bar>" using x'(1) xi
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1339
        apply (simp only: vector_component)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1340
        by (rule th') auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1341
      have th2: "\<bar>dist x x'\<bar> \<ge> \<bar>(x' - x)$i\<bar>" using  component_le_norm_cart[of "x'-x" i]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1342
        apply (simp add: dist_norm) by norm
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1343
      from th[OF th1 th2] x'(3) have False by (simp add: dist_commute) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1344
  then show ?thesis unfolding closed_limpt islimpt_approachable
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1345
    unfolding not_le[symmetric] by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1346
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1347
lemma Lim_component_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1348
  fixes f :: "'a \<Rightarrow> 'b::metric_space ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1349
  shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $i) ---> l$i) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1350
  unfolding tendsto_iff
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1351
  apply (clarify)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1352
  apply (drule spec, drule (1) mp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1353
  apply (erule eventually_elim1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1354
  apply (erule le_less_trans [OF dist_nth_le_cart])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1355
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1356
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1357
lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1358
unfolding bounded_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1359
apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1360
apply (rule_tac x="x $ i" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1361
apply (rule_tac x="e" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1362
apply clarify
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1363
apply (rule order_trans [OF dist_nth_le_cart], simp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1364
done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1365
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1366
lemma compact_lemma_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1367
  fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1368
  assumes "bounded s" and "\<forall>n. f n \<in> s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1369
  shows "\<forall>d.
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1370
        \<exists>l r. subseq r \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1371
        (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1372
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1373
  fix d::"'n set" have "finite d" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1374
  thus "\<exists>l::'a ^ 'n. \<exists>r. subseq r \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1375
      (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1376
  proof(induct d) case empty thus ?case unfolding subseq_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1377
  next case (insert k d)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1378
    have s': "bounded ((\<lambda>x. x $ k) ` s)" using `bounded s` by (rule bounded_component_cart)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1379
    obtain l1::"'a^'n" and r1 where r1:"subseq r1" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1380
      using insert(3) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1381
    have f': "\<forall>n. f (r1 n) $ k \<in> (\<lambda>x. x $ k) ` s" using `\<forall>n. f n \<in> s` by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1382
    obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1383
      using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1384
    def r \<equiv> "r1 \<circ> r2" have r:"subseq r"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1385
      using r1 and r2 unfolding r_def o_def subseq_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1386
    moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1387
    def l \<equiv> "(\<chi> i. if i = k then l2 else l1$i)::'a^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1388
    { fix e::real assume "e>0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1389
      from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1390
      from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $ k) l2 < e) sequentially" by (rule tendstoD)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1391
      from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $ i) (l1 $ i) < e) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1392
        by (rule eventually_subseq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1393
      have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $ i) (l $ i) < e) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1394
        using N1' N2 by (rule eventually_elim2, simp add: l_def r_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1395
    }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1396
    ultimately show ?case by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1397
  qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1398
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1399
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1400
instance cart :: (heine_borel, finite) heine_borel
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1401
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1402
  fix s :: "('a ^ 'b) set" and f :: "nat \<Rightarrow> 'a ^ 'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1403
  assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1404
  then obtain l r where r: "subseq r"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1405
    and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1406
    using compact_lemma_cart [OF s f] by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1407
  let ?d = "UNIV::'b set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1408
  { fix e::real assume "e>0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1409
    hence "0 < e / (real_of_nat (card ?d))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1410
      using zero_less_card_finite using divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1411
    with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1412
      by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1413
    moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1414
    { fix n assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1415
      have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1416
        unfolding dist_vector_def using zero_le_dist by (rule setL2_le_setsum)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1417
      also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1418
        by (rule setsum_strict_mono) (simp_all add: n)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1419
      finally have "dist (f (r n)) l < e" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1420
    }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1421
    ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1422
      by (rule eventually_elim1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1423
  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1424
  hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1425
  with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1426
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1427
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1428
lemma continuous_at_component: "continuous (at a) (\<lambda>x. x $ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1429
unfolding continuous_at by (intro tendsto_intros)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1430
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1431
lemma continuous_on_component: "continuous_on s (\<lambda>x. x $ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1432
unfolding continuous_on_def by (intro ballI tendsto_intros)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1433
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1434
lemma interval_cart: fixes a :: "'a::ord^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1435
  "{a <..< b} = {x::'a^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1436
  "{a .. b} = {x::'a^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1437
  by (auto simp add: set_eq_iff vector_less_def vector_le_def)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1438
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1439
lemma mem_interval_cart: fixes a :: "'a::ord^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1440
  "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1441
  "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1442
  using interval_cart[of a b] by(auto simp add: set_eq_iff vector_less_def vector_le_def)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1443
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1444
lemma interval_eq_empty_cart: fixes a :: "real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1445
 "({a <..< b} = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1446
 "({a  ..  b} = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1447
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1448
  { fix i x assume as:"b$i \<le> a$i" and x:"x\<in>{a <..< b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1449
    hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval_cart by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1450
    hence "a$i < b$i" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1451
    hence False using as by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1452
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1453
  { assume as:"\<forall>i. \<not> (b$i \<le> a$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1454
    let ?x = "(1/2) *\<^sub>R (a + b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1455
    { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1456
      have "a$i < b$i" using as[THEN spec[where x=i]] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1457
      hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1458
        unfolding vector_smult_component and vector_add_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1459
        by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1460
    hence "{a <..< b} \<noteq> {}" using mem_interval_cart(1)[of "?x" a b] by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1461
  ultimately show ?th1 by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1462
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1463
  { fix i x assume as:"b$i < a$i" and x:"x\<in>{a .. b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1464
    hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval_cart by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1465
    hence "a$i \<le> b$i" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1466
    hence False using as by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1467
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1468
  { assume as:"\<forall>i. \<not> (b$i < a$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1469
    let ?x = "(1/2) *\<^sub>R (a + b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1470
    { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1471
      have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1472
      hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1473
        unfolding vector_smult_component and vector_add_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1474
        by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1475
    hence "{a .. b} \<noteq> {}" using mem_interval_cart(2)[of "?x" a b] by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1476
  ultimately show ?th2 by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1477
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1478
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1479
lemma interval_ne_empty_cart: fixes a :: "real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1480
  "{a  ..  b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)" and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1481
  "{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1482
  unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1483
    (* BH: Why doesn't just "auto" work here? *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1484
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1485
lemma subset_interval_imp_cart: fixes a :: "real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1486
 "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1487
 "(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1488
 "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1489
 "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1490
  unfolding subset_eq[unfolded Ball_def] unfolding mem_interval_cart
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1491
  by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1492
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1493
lemma interval_sing: fixes a :: "'a::linorder^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1494
 "{a .. a} = {a} \<and> {a<..<a} = {}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1495
apply(auto simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1496
apply (simp add: order_eq_iff)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1497
apply (auto simp add: not_less less_imp_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1498
done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1499
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1500
lemma interval_open_subset_closed_cart:  fixes a :: "'a::preorder^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1501
 "{a<..<b} \<subseteq> {a .. b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1502
proof(simp add: subset_eq, rule)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1503
  fix x
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1504
  assume x:"x \<in>{a<..<b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1505
  { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1506
    have "a $ i \<le> x $ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1507
      using x order_less_imp_le[of "a$i" "x$i"]
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1508
      by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1509
  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1510
  moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1511
  { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1512
    have "x $ i \<le> b $ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1513
      using x order_less_imp_le[of "x$i" "b$i"]
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1514
      by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1515
  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1516
  ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1517
  show "a \<le> x \<and> x \<le> b"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1518
    by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1519
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1520
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1521
lemma subset_interval_cart: fixes a :: "real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1522
 "{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1523
 "{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1524
 "{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1525
 "{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1526
  using subset_interval[of c d a b] by (simp_all add: cart_simps real_euclidean_nth)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1527
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1528
lemma disjoint_interval_cart: fixes a::"real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1529
  "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1530
  "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1531
  "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1532
  "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1533
  using disjoint_interval[of a b c d] by (simp_all add: cart_simps real_euclidean_nth)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1534
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1535
lemma inter_interval_cart: fixes a :: "'a::linorder^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1536
 "{a .. b} \<inter> {c .. d} =  {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1537
  unfolding set_eq_iff and Int_iff and mem_interval_cart
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1538
  by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1539
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1540
lemma closed_interval_left_cart: fixes b::"real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1541
  shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1542
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1543
  { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1544
    fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. x $ i \<le> b $ i}. x' \<noteq> x \<and> dist x' x < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1545
    { assume "x$i > b$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1546
      then obtain y where "y $ i \<le> b $ i"  "y \<noteq> x"  "dist y x < x$i - b$i" using x[THEN spec[where x="x$i - b$i"]] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1547
      hence False using component_le_norm_cart[of "y - x" i] unfolding dist_norm and vector_minus_component by auto   }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1548
    hence "x$i \<le> b$i" by(rule ccontr)auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1549
  thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1550
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1551
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1552
lemma closed_interval_right_cart: fixes a::"real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1553
  shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1554
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1555
  { fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1556
    fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. a $ i \<le> x $ i}. x' \<noteq> x \<and> dist x' x < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1557
    { assume "a$i > x$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1558
      then obtain y where "a $ i \<le> y $ i"  "y \<noteq> x"  "dist y x < a$i - x$i" using x[THEN spec[where x="a$i - x$i"]] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1559
      hence False using component_le_norm_cart[of "y - x" i] unfolding dist_norm and vector_minus_component by auto   }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1560
    hence "a$i \<le> x$i" by(rule ccontr)auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1561
  thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1562
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1563
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1564
lemma is_interval_cart:"is_interval (s::(real^'n) set) \<longleftrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1565
  (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i))) \<longrightarrow> x \<in> s)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1566
  unfolding is_interval_def Ball_def by (simp add: cart_simps real_euclidean_nth)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1567
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1568
lemma closed_halfspace_component_le_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1569
  shows "closed {x::real^'n. x$i \<le> a}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1570
  using closed_halfspace_le[of "(cart_basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1571
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1572
lemma closed_halfspace_component_ge_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1573
  shows "closed {x::real^'n. x$i \<ge> a}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1574
  using closed_halfspace_ge[of a "(cart_basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1575
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1576
lemma open_halfspace_component_lt_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1577
  shows "open {x::real^'n. x$i < a}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1578
  using open_halfspace_lt[of "(cart_basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1579
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1580
lemma open_halfspace_component_gt_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1581
  shows "open {x::real^'n. x$i  > a}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1582
  using open_halfspace_gt[of a "(cart_basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1583
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1584
lemma Lim_component_le_cart: fixes f :: "'a \<Rightarrow> real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1585
  assumes "(f ---> l) net" "\<not> (trivial_limit net)"  "eventually (\<lambda>x. f(x)$i \<le> b) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1586
  shows "l$i \<le> b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1587
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1588
  { fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding inner_basis by auto } note * = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1589
  show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<le> b}" f net l] unfolding *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1590
    using closed_halfspace_le[of "(cart_basis i)::real^'n" b] and assms(1,2,3) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1591
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1592
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1593
lemma Lim_component_ge_cart: fixes f :: "'a \<Rightarrow> real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1594
  assumes "(f ---> l) net"  "\<not> (trivial_limit net)"  "eventually (\<lambda>x. b \<le> (f x)$i) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1595
  shows "b \<le> l$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1596
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1597
  { fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding inner_basis by auto } note * = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1598
  show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<ge> b}" f net l] unfolding *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1599
    using closed_halfspace_ge[of b "(cart_basis i)::real^'n"] and assms(1,2,3) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1600
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1601
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1602
lemma Lim_component_eq_cart: fixes f :: "'a \<Rightarrow> real^'n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1603
  assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1604
  shows "l$i = b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1605
  using ev[unfolded order_eq_iff eventually_and] using Lim_component_ge_cart[OF net, of b i] and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1606
    Lim_component_le_cart[OF net, of i b] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1607
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1608
lemma connected_ivt_component_cart: fixes x::"real^'n" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1609
 "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s.  z$k = a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1610
  using connected_ivt_hyperplane[of s x y "(cart_basis k)::real^'n" a] by (auto simp add: inner_basis)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1611
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1612
lemma subspace_substandard_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1613
 "subspace {x::real^_. (\<forall>i. P i \<longrightarrow> x$i = 0)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1614
  unfolding subspace_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1615
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1616
lemma closed_substandard_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1617
 "closed {x::real^'n. \<forall>i. P i --> x$i = 0}" (is "closed ?A")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1618
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1619
  let ?D = "{i. P i}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1620
  let ?Bs = "{{x::real^'n. inner (cart_basis i) x = 0}| i. i \<in> ?D}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1621
  { fix x
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1622
    { assume "x\<in>?A"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1623
      hence x:"\<forall>i\<in>?D. x $ i = 0" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1624
      hence "x\<in> \<Inter> ?Bs" by(auto simp add: inner_basis x) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1625
    moreover
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1626
    { assume x:"x\<in>\<Inter>?Bs"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1627
      { fix i assume i:"i \<in> ?D"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1628
        then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. inner (cart_basis i) x = 0}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1629
        hence "x $ i = 0" unfolding B using x unfolding inner_basis by auto  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1630
      hence "x\<in>?A" by auto }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1631
    ultimately have "x\<in>?A \<longleftrightarrow> x\<in> \<Inter>?Bs" .. }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1632
  hence "?A = \<Inter> ?Bs" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1633
  thus ?thesis by(auto simp add: closed_Inter closed_hyperplane)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1634
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1635
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1636
lemma dim_substandard_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1637
  shows "dim {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d" (is "dim ?A = _")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1638
proof- have *:"{x. \<forall>i<DIM((real, 'n) cart). i \<notin> \<pi>' ` d \<longrightarrow> x $$ i = 0} = 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1639
    {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0}"apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1640
    apply(erule_tac x="\<pi>' i" in allE) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1641
    apply(erule_tac x="\<pi> i" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1642
    unfolding image_iff real_euclidean_nth[symmetric] by (auto simp: pi'_inj[THEN inj_eq])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1643
  have " \<pi>' ` d \<subseteq> {..<DIM((real, 'n) cart)}" using pi'_range[where 'n='n] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1644
  thus ?thesis using dim_substandard[of "\<pi>' ` d", where 'a="real^'n"] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1645
    unfolding * using card_image[of "\<pi>'" d] using pi'_inj unfolding inj_on_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1646
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1647
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1648
lemma affinity_inverses:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1649
  assumes m0: "m \<noteq> (0::'a::field)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1650
  shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1651
  "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1652
  using m0
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1653
apply (auto simp add: fun_eq_iff vector_add_ldistrib)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1654
by (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1655
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1656
lemma vector_affinity_eq:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1657
  assumes m0: "(m::'a::field) \<noteq> 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1658
  shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1659
proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1660
  assume h: "m *s x + c = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1661
  hence "m *s x = y - c" by (simp add: field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1662
  hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1663
  then show "x = inverse m *s y + - (inverse m *s c)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1664
    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1665
next
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1666
  assume h: "x = inverse m *s y + - (inverse m *s c)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1667
  show "m *s x + c = y" unfolding h diff_minus[symmetric]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1668
    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1669
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1670
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1671
lemma vector_eq_affinity:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1672
 "(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1673
  using vector_affinity_eq[where m=m and x=x and y=y and c=c]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1674
  by metis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1675
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1676
lemma const_vector_cart:"((\<chi> i. d)::real^'n) = (\<chi>\<chi> i. d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1677
  apply(subst euclidean_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1678
proof safe case goal1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1679
  hence *:"(basis i::real^'n) = cart_basis (\<pi> i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1680
    unfolding basis_real_n[THEN sym] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1681
  have "((\<chi> i. d)::real^'n) $$ i = d" unfolding euclidean_component_def *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1682
    unfolding dot_basis by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1683
  thus ?case using goal1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1684
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1685
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1686
section "Convex Euclidean Space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1687
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1688
lemma Cart_1:"(1::real^'n) = (\<chi>\<chi> i. 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1689
  apply(subst euclidean_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1690
proof safe case goal1 thus ?case using nth_conv_component[THEN sym,where i1="\<pi> i" and x1="1::real^'n"] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1691
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1692
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1693
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1694
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1695
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1696
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1697
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1698
lemma convex_box_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1699
  assumes "\<And>i. convex {x. P i x}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1700
  shows "convex {x. \<forall>i. P i (x$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1701
  using assms unfolding convex_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1702
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1703
lemma convex_positive_orthant_cart: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1704
  by (rule convex_box_cart) (simp add: atLeast_def[symmetric] convex_real_interval)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1705
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1706
lemma unit_interval_convex_hull_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1707
  "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1708
  unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"]
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1709
  apply(rule arg_cong[where f="\<lambda>x. convex hull x"]) apply(rule set_eqI) unfolding mem_Collect_eq
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1710
  apply safe apply(erule_tac x="\<pi>' i" in allE) unfolding nth_conv_component defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1711
  apply(erule_tac x="\<pi> i" in allE) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1712
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1713
lemma cube_convex_hull_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1714
  assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1715
proof- from cube_convex_hull[OF assms, where 'a="real^'n" and x=x] guess s . note s=this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1716
  show thesis apply(rule that[OF s(1)]) unfolding s(2)[THEN sym] const_vector_cart ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1717
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1718
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1719
lemma std_simplex_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1720
  "(insert (0::real^'n) { cart_basis i | i. i\<in>UNIV}) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1721
  (insert 0 { basis i | i. i<DIM((real,'n) cart)})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1722
  apply(rule arg_cong[where f="\<lambda>s. (insert 0 s)"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1723
  unfolding basis_real_n[THEN sym] apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1724
  apply(rule_tac x="\<pi>' i" in exI) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1725
  apply(rule_tac x="\<pi> i" in exI) using pi'_range[where 'n='n] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1726
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1727
subsection "Brouwer Fixpoint"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1728
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1729
lemma kuhn_labelling_lemma_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1730
  assumes "(\<forall>x::real^_. P x \<longrightarrow> P (f x))"  "\<forall>x. P x \<longrightarrow> (\<forall>i. Q i \<longrightarrow> 0 \<le> x$i \<and> x$i \<le> 1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1731
  shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1732
             (\<forall>x i. P x \<and> Q i \<and> (x$i = 0) \<longrightarrow> (l x i = 0)) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1733
             (\<forall>x i. P x \<and> Q i \<and> (x$i = 1) \<longrightarrow> (l x i = 1)) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1734
             (\<forall>x i. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x$i \<le> f(x)$i) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1735
             (\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x)$i \<le> x$i)" proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1736
  have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1737
  have *:"\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1738
  show ?thesis unfolding and_forall_thm apply(subst choice_iff[THEN sym])+ proof(rule,rule) case goal1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1739
    let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x $ xa = 0 \<longrightarrow> y = (0::nat)) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1740
        (P x \<and> Q xa \<and> x $ xa = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x $ xa \<le> f x $ xa) \<and> (P x \<and> Q xa \<and> y = 1 \<longrightarrow> f x $ xa \<le> x $ xa)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1741
    { assume "P x" "Q xa" hence "0 \<le> f x $ xa \<and> f x $ xa \<le> 1" using assms(2)[rule_format,of "f x" xa]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1742
        apply(drule_tac assms(1)[rule_format]) by auto }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1743
    hence "?R 0 \<or> ?R 1" by auto thus ?case by auto qed qed 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1744
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1745
lemma interval_bij_cart:"interval_bij = (\<lambda> (a,b) (u,v) (x::real^'n).
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1746
    (\<chi> i. u$i + (x$i - a$i) / (b$i - a$i) * (v$i - u$i))::real^'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1747
  unfolding interval_bij_def apply(rule ext)+ apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1748
  unfolding Cart_eq Cart_lambda_beta unfolding nth_conv_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1749
  apply rule apply(subst euclidean_lambda_beta) using pi'_range by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1750
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1751
lemma interval_bij_affine_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1752
 "interval_bij (a,b) (u,v) = (\<lambda>x. (\<chi> i. (v$i - u$i) / (b$i - a$i) * x$i) +
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1753
            (\<chi> i. u$i - (v$i - u$i) / (b$i - a$i) * a$i)::real^'n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1754
  apply rule unfolding Cart_eq interval_bij_cart vector_component_simps
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1755
  by(auto simp add: field_simps add_divide_distrib[THEN sym]) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1756
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1757
subsection "Derivative"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1758
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1759
lemma has_derivative_vmul_component_cart: fixes c::"real^'a \<Rightarrow> real^'b" and v::"real^'c"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1760
  assumes "(c has_derivative c') net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1761
  shows "((\<lambda>x. c(x)$k *\<^sub>R v) has_derivative (\<lambda>x. (c' x)$k *\<^sub>R v)) net" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1762
  using has_derivative_vmul_component[OF assms] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1763
  unfolding nth_conv_component .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1764
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1765
lemma differentiable_at_imp_differentiable_on: "(\<forall>x\<in>(s::(real^'n) set). f differentiable at x) \<Longrightarrow> f differentiable_on s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1766
  unfolding differentiable_on_def by(auto intro!: differentiable_at_withinI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1767
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1768
definition "jacobian f net = matrix(frechet_derivative f net)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1769
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1770
lemma jacobian_works: "(f::(real^'a) \<Rightarrow> (real^'b)) differentiable net \<longleftrightarrow> (f has_derivative (\<lambda>h. (jacobian f net) *v h)) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1771
  apply rule unfolding jacobian_def apply(simp only: matrix_works[OF linear_frechet_derivative]) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1772
  apply(rule differentiableI) apply assumption unfolding frechet_derivative_works by assumption
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1773
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1774
subsection {* Component of the differential must be zero if it exists at a local        *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1775
(* maximum or minimum for that corresponding component. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1776
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1777
lemma differential_zero_maxmin_component: fixes f::"real^'a \<Rightarrow> real^'b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1778
  assumes "0 < e" "((\<forall>y \<in> ball x e. (f y)$k \<le> (f x)$k) \<or> (\<forall>y\<in>ball x e. (f x)$k \<le> (f y)$k))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1779
  "f differentiable (at x)" shows "jacobian f (at x) $ k = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1780
(* FIXME: reuse proof of generic differential_zero_maxmin_component*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1781
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1782
proof(rule ccontr)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1783
  def D \<equiv> "jacobian f (at x)" assume "jacobian f (at x) $ k \<noteq> 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1784
  then obtain j where j:"D$k$j \<noteq> 0" unfolding Cart_eq D_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1785
  hence *:"abs (jacobian f (at x) $ k $ j) / 2 > 0" unfolding D_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1786
  note as = assms(3)[unfolded jacobian_works has_derivative_at_alt]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1787
  guess e' using as[THEN conjunct2,rule_format,OF *] .. note e' = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1788
  guess d using real_lbound_gt_zero[OF assms(1) e'[THEN conjunct1]] .. note d = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1789
  { fix c assume "abs c \<le> d" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1790
    hence *:"norm (x + c *\<^sub>R cart_basis j - x) < e'" using norm_basis[of j] d by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1791
    have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> norm (f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j))" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1792
      by(rule component_le_norm_cart)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1793
    also have "\<dots> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" using e'[THEN conjunct2,rule_format,OF *] and norm_basis[of j] unfolding D_def[symmetric] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1794
    finally have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1795
    hence "\<bar>f (x + c *\<^sub>R cart_basis j) $ k - f x $ k - c * D $ k $ j\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1796
      unfolding vector_component_simps matrix_vector_mul_component unfolding smult_conv_scaleR[symmetric] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1797
      unfolding inner_simps dot_basis smult_conv_scaleR by simp  } note * = this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1798
  have "x + d *\<^sub>R cart_basis j \<in> ball x e" "x - d *\<^sub>R cart_basis j \<in> ball x e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1799
    unfolding mem_ball dist_norm using norm_basis[of j] d by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1800
  hence **:"((f (x - d *\<^sub>R cart_basis j))$k \<le> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<le> (f x)$k) \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1801
         ((f (x - d *\<^sub>R cart_basis j))$k \<ge> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<ge> (f x)$k)" using assms(2) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1802
  have ***:"\<And>y y1 y2 d dx::real. (y1\<le>y\<and>y2\<le>y) \<or> (y\<le>y1\<and>y\<le>y2) \<Longrightarrow> d < abs dx \<Longrightarrow> abs(y1 - y - - dx) \<le> d \<Longrightarrow> (abs (y2 - y - dx) \<le> d) \<Longrightarrow> False" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1803
  show False apply(rule ***[OF **, where dx="d * D $ k $ j" and d="\<bar>D $ k $ j\<bar> / 2 * \<bar>d\<bar>"]) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1804
    using *[of "-d"] and *[of d] and d[THEN conjunct1] and j unfolding mult_minus_left
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1805
    unfolding abs_mult diff_minus_eq_add scaleR.minus_left unfolding algebra_simps by (auto intro: mult_pos_pos)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1806
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1807
37494
6e9f48cf6adf Make latex happy
hoelzl
parents: 37489
diff changeset
  1808
subsection {* Lemmas for working on @{typ "real^1"} *}
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1809
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1810
lemma forall_1[simp]: "(\<forall>i::1. P i) \<longleftrightarrow> P 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1811
  by (metis num1_eq_iff)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1812
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1813
lemma ex_1[simp]: "(\<exists>x::1. P x) \<longleftrightarrow> P 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1814
  by auto (metis num1_eq_iff)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1815
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1816
lemma exhaust_2:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1817
  fixes x :: 2 shows "x = 1 \<or> x = 2"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1818
proof (induct x)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1819
  case (of_int z)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1820
  then have "0 <= z" and "z < 2" by simp_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1821
  then have "z = 0 | z = 1" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1822
  then show ?case by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1823
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1824
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1825
lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1826
  by (metis exhaust_2)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1827
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1828
lemma exhaust_3:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1829
  fixes x :: 3 shows "x = 1 \<or> x = 2 \<or> x = 3"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1830
proof (induct x)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1831
  case (of_int z)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1832
  then have "0 <= z" and "z < 3" by simp_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1833
  then have "z = 0 \<or> z = 1 \<or> z = 2" by arith
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1834
  then show ?case by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1835
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1836
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1837
lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1838
  by (metis exhaust_3)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1839
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1840
lemma UNIV_1 [simp]: "UNIV = {1::1}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1841
  by (auto simp add: num1_eq_iff)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1842
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1843
lemma UNIV_2: "UNIV = {1::2, 2::2}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1844
  using exhaust_2 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1845
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1846
lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1847
  using exhaust_3 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1848
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1849
lemma setsum_1: "setsum f (UNIV::1 set) = f 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1850
  unfolding UNIV_1 by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1851
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1852
lemma setsum_2: "setsum f (UNIV::2 set) = f 1 + f 2"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1853
  unfolding UNIV_2 by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1854
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1855
lemma setsum_3: "setsum f (UNIV::3 set) = f 1 + f 2 + f 3"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1856
  unfolding UNIV_3 by (simp add: add_ac)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1857
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1858
instantiation num1 :: cart_one begin
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1859
instance proof
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1860
  show "CARD(1) = Suc 0" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1861
qed end
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1862
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1863
(* "lift" from 'a to 'a^1 and "drop" from 'a^1 to 'a -- FIXME: potential use of transfer *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1864
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1865
abbreviation vec1:: "'a \<Rightarrow> 'a ^ 1" where "vec1 x \<equiv> vec x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1866
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1867
abbreviation dest_vec1:: "'a ^1 \<Rightarrow> 'a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1868
  where "dest_vec1 x \<equiv> (x$1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1869
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1870
lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" "dest_vec1(vec1 y) = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1871
  by (simp_all add:  Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1872
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1873
lemma vec1_component[simp]: "(vec1 x)$1 = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1874
  by (simp_all add:  Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1875
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1876
declare vec1_dest_vec1(1) [simp]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1877
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1878
lemma forall_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (vec1 x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1879
  by (metis vec1_dest_vec1(1))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1880
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1881
lemma exists_vec1: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P(vec1 x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1882
  by (metis vec1_dest_vec1(1))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1883
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1884
lemma vec1_eq[simp]:  "vec1 x = vec1 y \<longleftrightarrow> x = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1885
  by (metis vec1_dest_vec1(2))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1886
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1887
lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \<longleftrightarrow> x = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1888
  by (metis vec1_dest_vec1(1))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1889
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1890
subsection{* The collapse of the general concepts to dimension one. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1891
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1892
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1893
  by (simp add: Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1894
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1895
lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1896
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1897
  apply (erule_tac x= "x$1" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1898
  apply (simp only: vector_one[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1899
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1900
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1901
lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1902
  by (simp add: norm_vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1903
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1904
lemma norm_real: "norm(x::real ^ 1) = abs(x$1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1905
  by (simp add: norm_vector_1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1906
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1907
lemma dist_real: "dist(x::real ^ 1) y = abs((x$1) - (y$1))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1908
  by (auto simp add: norm_real dist_norm)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1909
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1910
subsection{* Explicit vector construction from lists. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1911
43995
c479836d9048 simplified definition of vector (also removed Cartesian_Euclidean_Space.from_nat which collides with Countable.from_nat)
hoelzl
parents: 42814
diff changeset
  1912
definition "vector l = (\<chi> i. foldr (\<lambda>x f n. fun_upd (f (n+1)) n x) l (\<lambda>n x. 0) 1 i)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1913
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1914
lemma vector_1: "(vector[x]) $1 = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1915
  unfolding vector_def by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1916
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1917
lemma vector_2:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1918
 "(vector[x,y]) $1 = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1919
 "(vector[x,y] :: 'a^2)$2 = (y::'a::zero)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1920
  unfolding vector_def by simp_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1921
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1922
lemma vector_3:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1923
 "(vector [x,y,z] ::('a::zero)^3)$1 = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1924
 "(vector [x,y,z] ::('a::zero)^3)$2 = y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1925
 "(vector [x,y,z] ::('a::zero)^3)$3 = z"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1926
  unfolding vector_def by simp_all
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1927
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1928
lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1929
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1930
  apply (erule_tac x="v$1" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1931
  apply (subgoal_tac "vector [v$1] = v")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1932
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1933
  apply (vector vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1934
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1935
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1936
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1937
lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1938
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1939
  apply (erule_tac x="v$1" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1940
  apply (erule_tac x="v$2" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1941
  apply (subgoal_tac "vector [v$1, v$2] = v")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1942
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1943
  apply (vector vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1944
  apply (simp add: forall_2)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1945
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1946
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1947
lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1948
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1949
  apply (erule_tac x="v$1" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1950
  apply (erule_tac x="v$2" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1951
  apply (erule_tac x="v$3" in allE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1952
  apply (subgoal_tac "vector [v$1, v$2, v$3] = v")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1953
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1954
  apply (vector vector_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1955
  apply (simp add: forall_3)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1956
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1957
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1958
lemma range_vec1[simp]:"range vec1 = UNIV" apply(rule set_eqI,rule) unfolding image_iff defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1959
  apply(rule_tac x="dest_vec1 x" in bexI) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1960
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1961
lemma dest_vec1_lambda: "dest_vec1(\<chi> i. x i) = x 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1962
  by (simp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1963
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1964
lemma dest_vec1_vec: "dest_vec1(vec x) = x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1965
  by (simp)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1966
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1967
lemma dest_vec1_sum: assumes fS: "finite S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1968
  shows "dest_vec1(setsum f S) = setsum (dest_vec1 o f) S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1969
  apply (induct rule: finite_induct[OF fS])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1970
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1971
  apply auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1972
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1973
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1974
lemma norm_vec1 [simp]: "norm(vec1 x) = abs(x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1975
  by (simp add: vec_def norm_real)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1976
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1977
lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1978
  by (simp only: dist_real vec1_component)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1979
lemma abs_dest_vec1: "norm x = \<bar>dest_vec1 x\<bar>"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1980
  by (metis vec1_dest_vec1(1) norm_vec1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1981
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1982
lemmas vec1_dest_vec1_simps = forall_vec1 vec_add[THEN sym] dist_vec1 vec_sub[THEN sym] vec1_dest_vec1 norm_vec1 vector_smult_component
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1983
   vec1_eq vec_cmul[THEN sym] smult_conv_scaleR[THEN sym] o_def dist_real_def norm_vec1 real_norm_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1984
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1985
lemma bounded_linear_vec1:"bounded_linear (vec1::real\<Rightarrow>real^1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1986
  unfolding bounded_linear_def additive_def bounded_linear_axioms_def 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1987
  unfolding smult_conv_scaleR[THEN sym] unfolding vec1_dest_vec1_simps
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1988
  apply(rule conjI) defer apply(rule conjI) defer apply(rule_tac x=1 in exI) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1989
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1990
lemma linear_vmul_dest_vec1:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1991
  fixes f:: "real^_ \<Rightarrow> real^1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1992
  shows "linear f \<Longrightarrow> linear (\<lambda>x. dest_vec1(f x) *s v)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1993
  unfolding smult_conv_scaleR
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1994
  by (rule linear_vmul_component)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1995
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1996
lemma linear_from_scalars:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1997
  assumes lf: "linear (f::real^1 \<Rightarrow> real^_)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1998
  shows "f = (\<lambda>x. dest_vec1 x *s column 1 (matrix f))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  1999
  unfolding smult_conv_scaleR
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2000
  apply (rule ext)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2001
  apply (subst matrix_works[OF lf, symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2002
  apply (auto simp add: Cart_eq matrix_vector_mult_def column_def mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2003
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2004
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2005
lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2006
  shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2007
  apply (rule ext)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2008
  apply (subst matrix_works[OF lf, symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2009
  apply (simp add: Cart_eq matrix_vector_mult_def row_def inner_vector_def mult_commute)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2010
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2011
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2012
lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2013
  by (simp add: dest_vec1_eq[symmetric])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2014
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2015
lemma setsum_scalars: assumes fS: "finite S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2016
  shows "setsum f S = vec1 (setsum (dest_vec1 o f) S)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2017
  unfolding vec_setsum[OF fS] by simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2018
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2019
lemma dest_vec1_wlog_le: "(\<And>(x::'a::linorder ^ 1) y. P x y \<longleftrightarrow> P y x)  \<Longrightarrow> (\<And>x y. dest_vec1 x <= dest_vec1 y ==> P x y) \<Longrightarrow> P x y"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2020
  apply (cases "dest_vec1 x \<le> dest_vec1 y")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2021
  apply simp
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2022
  apply (subgoal_tac "dest_vec1 y \<le> dest_vec1 x")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2023
  apply (auto)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2024
  done
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2025
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2026
text{* Lifting and dropping *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2027
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2028
lemma continuous_on_o_dest_vec1: fixes f::"real \<Rightarrow> 'a::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2029
  assumes "continuous_on {a..b::real} f" shows "continuous_on {vec1 a..vec1 b} (f o dest_vec1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2030
  using assms unfolding continuous_on_iff apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2031
  apply(erule_tac x="x$1" in ballE,erule_tac x=e in allE) apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2032
  apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2033
  apply(erule_tac x="dest_vec1 x'" in ballE) by(auto simp add:vector_le_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2034
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2035
lemma continuous_on_o_vec1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2036
  assumes "continuous_on {a..b} f" shows "continuous_on {dest_vec1 a..dest_vec1 b} (f o vec1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2037
  using assms unfolding continuous_on_iff apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2038
  apply(erule_tac x="vec x" in ballE,erule_tac x=e in allE) apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2039
  apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2040
  apply(erule_tac x="vec1 x'" in ballE) by(auto simp add:vector_le_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2041
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2042
lemma continuous_on_vec1:"continuous_on A (vec1::real\<Rightarrow>real^1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2043
  by(rule linear_continuous_on[OF bounded_linear_vec1])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2044
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2045
lemma mem_interval_1: fixes x :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2046
 "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2047
 "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2048
by(simp_all add: Cart_eq vector_less_def vector_le_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2049
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2050
lemma vec1_interval:fixes a::"real" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2051
  "vec1 ` {a .. b} = {vec1 a .. vec1 b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2052
  "vec1 ` {a<..<b} = {vec1 a<..<vec1 b}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  2053
  apply(rule_tac[!] set_eqI) unfolding image_iff vector_less_def unfolding mem_interval_cart
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2054
  unfolding forall_1 unfolding vec1_dest_vec1_simps
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2055
  apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) prefer 3 apply rule defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2056
  apply(rule_tac x="dest_vec1 x" in bexI) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2057
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2058
(* Some special cases for intervals in R^1.                                  *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2059
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2060
lemma interval_cases_1: fixes x :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2061
 "x \<in> {a .. b} ==> x \<in> {a<..<b} \<or> (x = a) \<or> (x = b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2062
  unfolding Cart_eq vector_less_def vector_le_def mem_interval_cart by(auto simp del:dest_vec1_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2063
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2064
lemma in_interval_1: fixes x :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2065
 "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b) \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2066
  (x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2067
  unfolding Cart_eq vector_less_def vector_le_def mem_interval_cart by(auto simp del:dest_vec1_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2068
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2069
lemma interval_eq_empty_1: fixes a :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2070
  "{a .. b} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2071
  "{a<..<b} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2072
  unfolding interval_eq_empty_cart and ex_1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2073
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2074
lemma subset_interval_1: fixes a :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2075
 "({a .. b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2076
                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2077
 "({a .. b} \<subseteq> {c<..<d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2078
                dest_vec1 c < dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b < dest_vec1 d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2079
 "({a<..<b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b \<le> dest_vec1 a \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2080
                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2081
 "({a<..<b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2082
                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2083
  unfolding subset_interval_cart[of a b c d] unfolding forall_1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2084
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2085
lemma eq_interval_1: fixes a :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2086
 "{a .. b} = {c .. d} \<longleftrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2087
          dest_vec1 b < dest_vec1 a \<and> dest_vec1 d < dest_vec1 c \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2088
          dest_vec1 a = dest_vec1 c \<and> dest_vec1 b = dest_vec1 d"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2089
unfolding set_eq_subset[of "{a .. b}" "{c .. d}"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2090
unfolding subset_interval_1(1)[of a b c d]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2091
unfolding subset_interval_1(1)[of c d a b]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2092
by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2093
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2094
lemma disjoint_interval_1: fixes a :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2095
  "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b < dest_vec1 c \<or> dest_vec1 d < dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2096
  "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2097
  "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2098
  "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2099
  unfolding disjoint_interval_cart and ex_1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2100
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2101
lemma open_closed_interval_1: fixes a :: "real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2102
 "{a<..<b} = {a .. b} - {a, b}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  2103
  unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2104
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2105
lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  2106
  unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2107
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2108
lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2109
  "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2110
  using Lim_component_le_cart[of f l net 1 b] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2111
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2112
lemma Lim_drop_ge: fixes f :: "'a \<Rightarrow> real^1" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2113
 "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. b \<le> dest_vec1 (f x)) net ==> b \<le> dest_vec1 l"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2114
  using Lim_component_ge_cart[of f l net b 1] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2115
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2116
text{* Also more convenient formulations of monotone convergence.                *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2117
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2118
lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real^1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2119
  assumes "bounded {s n| n::nat. True}"  "\<forall>n. dest_vec1(s n) \<le> dest_vec1(s(Suc n))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2120
  shows "\<exists>l. (s ---> l) sequentially"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2121
proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2122
  obtain a where a:"\<forall>n. \<bar>dest_vec1 (s n)\<bar> \<le>  a" using assms(1)[unfolded bounded_iff abs_dest_vec1] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2123
  { fix m::nat
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2124
    have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2125
      apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq)  }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2126
  hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2127
  then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] unfolding monoseq_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2128
  thus ?thesis unfolding Lim_sequentially apply(rule_tac x="vec1 l" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2129
    unfolding dist_norm unfolding abs_dest_vec1  by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2130
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2131
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2132
lemma dest_vec1_simps[simp]: fixes a::"real^1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2133
  shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2134
  "a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2135
  by(auto simp add: vector_le_def Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2136
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2137
lemma dest_vec1_inverval:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2138
  "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2139
  "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2140
  "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2141
  "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2142
  apply(rule_tac [!] equalityI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2143
  unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2144
  apply(rule_tac [!] allI)apply(rule_tac [!] impI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2145
  apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2146
  apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2147
  by (auto simp add: vector_less_def vector_le_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2148
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2149
lemma dest_vec1_setsum: assumes "finite S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2150
  shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2151
  using dest_vec1_sum[OF assms] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2152
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2153
lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2154
unfolding open_vector_def forall_1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2155
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2156
lemma tendsto_dest_vec1 [tendsto_intros]:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2157
  "(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2158
by(rule tendsto_Cart_nth)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2159
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2160
lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2161
  unfolding continuous_def by (rule tendsto_dest_vec1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2162
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2163
lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2164
  apply safe defer apply(erule_tac x="vec1 x" in allE) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2165
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2166
lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2167
  apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2168
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2169
lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2170
  apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2171
  apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2172
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2173
lemma dist_vec1_0[simp]: "dist(vec1 (x::real)) 0 = norm x" unfolding dist_norm by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2174
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2175
lemma bounded_linear_vec1_dest_vec1: fixes f::"real \<Rightarrow> real"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2176
  shows "linear (vec1 \<circ> f \<circ> dest_vec1) = bounded_linear f" (is "?l = ?r") proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2177
  { assume ?l guess K using linear_bounded[OF `?l`] ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2178
    hence "\<exists>K. \<forall>x. \<bar>f x\<bar> \<le> \<bar>x\<bar> * K" apply(rule_tac x=K in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2179
      unfolding vec1_dest_vec1_simps by (auto simp add:field_simps) }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2180
  thus ?thesis unfolding linear_def bounded_linear_def additive_def bounded_linear_axioms_def o_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2181
    unfolding vec1_dest_vec1_simps by auto qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2182
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2183
lemma vec1_le[simp]:fixes a::real shows "vec1 a \<le> vec1 b \<longleftrightarrow> a \<le> b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2184
  unfolding vector_le_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2185
lemma vec1_less[simp]:fixes a::real shows "vec1 a < vec1 b \<longleftrightarrow> a < b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2186
  unfolding vector_less_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2187
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2188
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2189
subsection {* Derivatives on real = Derivatives on @{typ "real^1"} *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2190
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2191
lemma has_derivative_within_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2192
  "((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2193
  = (f has_derivative f') (at x within s)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2194
  unfolding has_derivative_within unfolding bounded_linear_vec1_dest_vec1[unfolded linear_conv_bounded_linear]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2195
  unfolding o_def Lim_within Ball_def unfolding forall_vec1 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2196
  unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto  
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2197
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2198
lemma has_derivative_at_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2199
  "((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2200
  using has_derivative_within_vec1_dest_vec1[where s=UNIV, unfolded range_vec1 within_UNIV] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2201
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2202
lemma bounded_linear_vec1': fixes f::"'a::real_normed_vector\<Rightarrow>real"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2203
  shows "bounded_linear f = bounded_linear (vec1 \<circ> f)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2204
  unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2205
  unfolding vec1_dest_vec1_simps by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2206
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2207
lemma bounded_linear_dest_vec1: fixes f::"real\<Rightarrow>'a::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2208
  shows "bounded_linear f = bounded_linear (f \<circ> dest_vec1)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2209
  unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2210
  unfolding vec1_dest_vec1_simps by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2211
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2212
lemma has_derivative_at_vec1: fixes f::"'a::real_normed_vector\<Rightarrow>real" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2213
  "(f has_derivative f') (at x) = ((vec1 \<circ> f) has_derivative (vec1 \<circ> f')) (at x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2214
  unfolding has_derivative_at unfolding bounded_linear_vec1'[unfolded linear_conv_bounded_linear]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2215
  unfolding o_def Lim_at unfolding vec1_dest_vec1_simps dist_vec1_0 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2216
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2217
lemma has_derivative_within_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2218
  "((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s) = (f has_derivative f') (at x within s)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2219
  unfolding has_derivative_within bounded_linear_dest_vec1 unfolding o_def Lim_within Ball_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2220
  unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2221
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2222
lemma has_derivative_at_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2223
  "((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2224
  using has_derivative_within_dest_vec1[where s=UNIV] by(auto simp add:within_UNIV)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2225
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2226
subsection {* In particular if we have a mapping into @{typ "real^1"}. *}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2227
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2228
lemma onorm_vec1: fixes f::"real \<Rightarrow> real"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2229
  shows "onorm (\<lambda>x. vec1 (f (dest_vec1 x))) = onorm f" proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2230
  have "\<forall>x::real^1. norm x = 1 \<longleftrightarrow> x\<in>{vec1 -1, vec1 (1::real)}" unfolding forall_vec1 by(auto simp add:Cart_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2231
  hence 1:"{x. norm x = 1} = {vec1 -1, vec1 (1::real)}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2232
  have 2:"{norm (vec1 (f (dest_vec1 x))) |x. norm x = 1} = (\<lambda>x. norm (vec1 (f (dest_vec1 x)))) ` {x. norm x=1}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2233
  have "\<forall>x::real. norm x = 1 \<longleftrightarrow> x\<in>{-1, 1}" by auto hence 3:"{x. norm x = 1} = {-1, (1::real)}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2234
  have 4:"{norm (f x) |x. norm x = 1} = (\<lambda>x. norm (f x)) ` {x. norm x=1}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2235
  show ?thesis unfolding onorm_def 1 2 3 4 by(simp add:Sup_finite_Max) qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2236
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2237
lemma convex_vec1:"convex (vec1 ` s) = convex (s::real set)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2238
  unfolding convex_def Ball_def forall_vec1 unfolding vec1_dest_vec1_simps image_iff by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2239
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2240
lemma bounded_linear_component_cart[intro]: "bounded_linear (\<lambda>x::real^'n. x $ k)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2241
  apply(rule bounded_linearI[where K=1]) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2242
  using component_le_norm_cart[of _ k] unfolding real_norm_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2243
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2244
lemma bounded_vec1[intro]:  "bounded s \<Longrightarrow> bounded (vec1 ` (s::real set))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2245
  unfolding bounded_def apply safe apply(rule_tac x="vec1 x" in exI,rule_tac x=e in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2246
  by(auto simp add: dist_real dist_real_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2247
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2248
(*lemma content_closed_interval_cases_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2249
  "content {a..b::real^'n} =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2250
  (if {a..b} = {} then 0 else setprod (\<lambda>i. b$i - a$i) UNIV)" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2251
proof(cases "{a..b} = {}")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2252
  case True thus ?thesis unfolding content_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2253
next case Falsethus ?thesis unfolding content_def unfolding if_not_P[OF False]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2254
  proof(cases "\<forall>i. a $ i \<le> b $ i")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2255
    case False thus ?thesis unfolding content_def using t by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2256
  next case True note interval_eq_empty
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2257
   apply auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2258
  
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2259
  sorry*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2260
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2261
lemma integral_component_eq_cart[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real^'m"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2262
  assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $ k) = integral s f $ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2263
  using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2264
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2265
lemma interval_split_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2266
  "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2267
  "{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  2268
  apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval_cart mem_Collect_eq
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2269
  unfolding Cart_lambda_beta by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2270
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2271
(*lemma content_split_cart:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2272
  "content {a..b::real^'n} = content({a..b} \<inter> {x. x$k \<le> c}) + content({a..b} \<inter> {x. x$k >= c})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2273
proof- note simps = interval_split_cart content_closed_interval_cases_cart Cart_lambda_beta vector_le_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2274
  { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps by auto }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2275
  have *:"UNIV = insert k (UNIV - {k})" "\<And>x. finite (UNIV-{x::'n})" "\<And>x. x\<notin>UNIV-{x}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2276
  have *:"\<And>X Y Z. (\<Prod>i\<in>UNIV. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>UNIV-{k}. Z i (Y i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2277
    "(\<Prod>i\<in>UNIV. b$i - a$i) = (\<Prod>i\<in>UNIV-{k}. b$i - a$i) * (b$k - a$k)" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2278
    apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2279
  assume as:"a\<le>b" moreover have "\<And>x. min (b $ k) c = max (a $ k) c
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2280
    \<Longrightarrow> x* (b$k - a$k) = x*(max (a $ k) c - a $ k) + x*(b $ k - max (a $ k) c)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2281
    by  (auto simp add:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2282
  moreover have "\<not> a $ k \<le> c \<Longrightarrow> \<not> c \<le> b $ k \<Longrightarrow> False"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2283
    unfolding not_le using as[unfolded vector_le_def,rule_format,of k] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2284
  ultimately show ?thesis 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2285
    unfolding simps unfolding *(1)[of "\<lambda>i x. b$i - x"] *(1)[of "\<lambda>i x. x - a$i"] *(2) by(auto)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2286
qed*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2287
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2288
lemma has_integral_vec1: assumes "(f has_integral k) {a..b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2289
  shows "((\<lambda>x. vec1 (f x)) has_integral (vec1 k)) {a..b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2290
proof- have *:"\<And>p. (\<Sum>(x, k)\<in>p. content k *\<^sub>R vec1 (f x)) - vec1 k = vec1 ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2291
    unfolding vec_sub Cart_eq by(auto simp add: split_beta)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2292
  show ?thesis using assms unfolding has_integral apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2293
    apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2294
    apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2295
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents:
diff changeset
  2296
end