| author | wenzelm | 
| Mon, 15 Jul 2013 10:42:12 +0200 | |
| changeset 52657 | 42c14dba1daa | 
| parent 51717 | 9e7d1c139569 | 
| child 54998 | 8601434fa334 | 
| permissions | -rw-r--r-- | 
| 41777 | 1 | (* Title: ZF/OrdQuant.thy | 
| 2469 | 2 | Authors: Krzysztof Grabczewski and L C Paulson | 
| 3 | *) | |
| 4 | ||
| 13253 | 5 | header {*Special quantifiers*}
 | 
| 6 | ||
| 16417 | 7 | theory OrdQuant imports Ordinal begin | 
| 2469 | 8 | |
| 13253 | 9 | subsection {*Quantifiers and union operator for ordinals*}
 | 
| 10 | ||
| 24893 | 11 | definition | 
| 2469 | 12 | (* Ordinal Quantifiers *) | 
| 24893 | 13 | oall :: "[i, i => o] => o" where | 
| 46820 | 14 | "oall(A, P) == \<forall>x. x<A \<longrightarrow> P(x)" | 
| 13298 | 15 | |
| 24893 | 16 | definition | 
| 17 | oex :: "[i, i => o] => o" where | |
| 46820 | 18 | "oex(A, P) == \<exists>x. x<A & P(x)" | 
| 2469 | 19 | |
| 24893 | 20 | definition | 
| 2469 | 21 | (* Ordinal Union *) | 
| 24893 | 22 | OUnion :: "[i, i => i] => i" where | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 23 |     "OUnion(i,B) == {z: \<Union>x\<in>i. B(x). Ord(i)}"
 | 
| 13298 | 24 | |
| 2469 | 25 | syntax | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 26 |   "_oall"     :: "[idt, i, o] => o"        ("(3ALL _<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 27 |   "_oex"      :: "[idt, i, o] => o"        ("(3EX _<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 28 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3UN _<_./ _)" 10)
 | 
| 2469 | 29 | |
| 30 | translations | |
| 24893 | 31 | "ALL x<a. P" == "CONST oall(a, %x. P)" | 
| 32 | "EX x<a. P" == "CONST oex(a, %x. P)" | |
| 33 | "UN x<a. B" == "CONST OUnion(a, %x. B)" | |
| 2469 | 34 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
6093diff
changeset | 35 | syntax (xsymbols) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 36 |   "_oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 37 |   "_oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 38 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
 | 
| 14565 | 39 | syntax (HTML output) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 40 |   "_oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 41 |   "_oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 42 |   "_OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
 | 
| 12620 | 43 | |
| 44 | ||
| 13302 | 45 | subsubsection {*simplification of the new quantifiers*}
 | 
| 12825 | 46 | |
| 47 | ||
| 13169 | 48 | (*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize | 
| 13298 | 49 | is proved. Ord_atomize would convert this rule to | 
| 12825 | 50 | x < 0 ==> P(x) == True, which causes dire effects!*) | 
| 46820 | 51 | lemma [simp]: "(\<forall>x<0. P(x))" | 
| 13298 | 52 | by (simp add: oall_def) | 
| 12825 | 53 | |
| 46820 | 54 | lemma [simp]: "~(\<exists>x<0. P(x))" | 
| 13298 | 55 | by (simp add: oex_def) | 
| 12825 | 56 | |
| 46820 | 57 | lemma [simp]: "(\<forall>x<succ(i). P(x)) <-> (Ord(i) \<longrightarrow> P(i) & (\<forall>x<i. P(x)))" | 
| 13298 | 58 | apply (simp add: oall_def le_iff) | 
| 59 | apply (blast intro: lt_Ord2) | |
| 12825 | 60 | done | 
| 61 | ||
| 46820 | 62 | lemma [simp]: "(\<exists>x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (\<exists>x<i. P(x))))" | 
| 13298 | 63 | apply (simp add: oex_def le_iff) | 
| 64 | apply (blast intro: lt_Ord2) | |
| 12825 | 65 | done | 
| 66 | ||
| 13302 | 67 | subsubsection {*Union over ordinals*}
 | 
| 13118 | 68 | |
| 12620 | 69 | lemma Ord_OUN [intro,simp]: | 
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 70 | "[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(\<Union>x<A. B(x))" | 
| 13298 | 71 | by (simp add: OUnion_def ltI Ord_UN) | 
| 12620 | 72 | |
| 73 | lemma OUN_upper_lt: | |
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 74 | "[| a<A; i < b(a); Ord(\<Union>x<A. b(x)) |] ==> i < (\<Union>x<A. b(x))" | 
| 12620 | 75 | by (unfold OUnion_def lt_def, blast ) | 
| 76 | ||
| 77 | lemma OUN_upper_le: | |
| 13162 
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
 paulson parents: 
13149diff
changeset | 78 | "[| a<A; i\<le>b(a); Ord(\<Union>x<A. b(x)) |] ==> i \<le> (\<Union>x<A. b(x))" | 
| 12820 | 79 | apply (unfold OUnion_def, auto) | 
| 12620 | 80 | apply (rule UN_upper_le ) | 
| 13298 | 81 | apply (auto simp add: lt_def) | 
| 12620 | 82 | done | 
| 2469 | 83 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 84 | lemma Limit_OUN_eq: "Limit(i) ==> (\<Union>x<i. x) = i" | 
| 12620 | 85 | by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord) | 
| 86 | ||
| 46820 | 87 | (* No < version of this theorem: consider that @{term"(\<Union>i\<in>nat.i)=nat"}! *)
 | 
| 12620 | 88 | lemma OUN_least: | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 89 | "(!!x. x<A ==> B(x) \<subseteq> C) ==> (\<Union>x<A. B(x)) \<subseteq> C" | 
| 12620 | 90 | by (simp add: OUnion_def UN_least ltI) | 
| 91 | ||
| 92 | lemma OUN_least_le: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 93 | "[| Ord(i); !!x. x<A ==> b(x) \<le> i |] ==> (\<Union>x<A. b(x)) \<le> i" | 
| 12620 | 94 | by (simp add: OUnion_def UN_least_le ltI Ord_0_le) | 
| 95 | ||
| 96 | lemma le_implies_OUN_le_OUN: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 97 | "[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (\<Union>x<A. c(x)) \<le> (\<Union>x<A. d(x))" | 
| 12620 | 98 | by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN) | 
| 99 | ||
| 100 | lemma OUN_UN_eq: | |
| 46953 | 101 | "(!!x. x \<in> A ==> Ord(B(x))) | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 102 | ==> (\<Union>z < (\<Union>x\<in>A. B(x)). C(z)) = (\<Union>x\<in>A. \<Union>z < B(x). C(z))" | 
| 13298 | 103 | by (simp add: OUnion_def) | 
| 12620 | 104 | |
| 105 | lemma OUN_Union_eq: | |
| 46953 | 106 | "(!!x. x \<in> X ==> Ord(x)) | 
| 46820 | 107 | ==> (\<Union>z < \<Union>(X). C(z)) = (\<Union>x\<in>X. \<Union>z < x. C(z))" | 
| 13298 | 108 | by (simp add: OUnion_def) | 
| 12620 | 109 | |
| 46820 | 110 | (*So that rule_format will get rid of this quantifier...*) | 
| 12763 | 111 | lemma atomize_oall [symmetric, rulify]: | 
| 46820 | 112 | "(!!x. x<A ==> P(x)) == Trueprop (\<forall>x<A. P(x))" | 
| 12763 | 113 | by (simp add: oall_def atomize_all atomize_imp) | 
| 114 | ||
| 13302 | 115 | subsubsection {*universal quantifier for ordinals*}
 | 
| 13169 | 116 | |
| 117 | lemma oallI [intro!]: | |
| 46820 | 118 | "[| !!x. x<A ==> P(x) |] ==> \<forall>x<A. P(x)" | 
| 13298 | 119 | by (simp add: oall_def) | 
| 13169 | 120 | |
| 46820 | 121 | lemma ospec: "[| \<forall>x<A. P(x); x<A |] ==> P(x)" | 
| 13298 | 122 | by (simp add: oall_def) | 
| 13169 | 123 | |
| 124 | lemma oallE: | |
| 46820 | 125 | "[| \<forall>x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q" | 
| 13298 | 126 | by (simp add: oall_def, blast) | 
| 13169 | 127 | |
| 128 | lemma rev_oallE [elim]: | |
| 46820 | 129 | "[| \<forall>x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q" | 
| 13298 | 130 | by (simp add: oall_def, blast) | 
| 13169 | 131 | |
| 132 | ||
| 46820 | 133 | (*Trival rewrite rule.  @{term"(\<forall>x<a.P)<->P"} holds only if a is not 0!*)
 | 
| 134 | lemma oall_simp [simp]: "(\<forall>x<a. True) <-> True" | |
| 13170 | 135 | by blast | 
| 13169 | 136 | |
| 137 | (*Congruence rule for rewriting*) | |
| 138 | lemma oall_cong [cong]: | |
| 13298 | 139 | "[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] | 
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 140 | ==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))" | 
| 13169 | 141 | by (simp add: oall_def) | 
| 142 | ||
| 143 | ||
| 13302 | 144 | subsubsection {*existential quantifier for ordinals*}
 | 
| 13169 | 145 | |
| 146 | lemma oexI [intro]: | |
| 46820 | 147 | "[| P(x); x<A |] ==> \<exists>x<A. P(x)" | 
| 13298 | 148 | apply (simp add: oex_def, blast) | 
| 13169 | 149 | done | 
| 150 | ||
| 46820 | 151 | (*Not of the general form for such rules... *) | 
| 13169 | 152 | lemma oexCI: | 
| 46820 | 153 | "[| \<forall>x<A. ~P(x) ==> P(a); a<A |] ==> \<exists>x<A. P(x)" | 
| 13298 | 154 | apply (simp add: oex_def, blast) | 
| 13169 | 155 | done | 
| 156 | ||
| 157 | lemma oexE [elim!]: | |
| 46820 | 158 | "[| \<exists>x<A. P(x); !!x. [| x<A; P(x) |] ==> Q |] ==> Q" | 
| 13298 | 159 | apply (simp add: oex_def, blast) | 
| 13169 | 160 | done | 
| 161 | ||
| 162 | lemma oex_cong [cong]: | |
| 13298 | 163 | "[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] | 
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 164 | ==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))" | 
| 13169 | 165 | apply (simp add: oex_def cong add: conj_cong) | 
| 166 | done | |
| 167 | ||
| 168 | ||
| 13302 | 169 | subsubsection {*Rules for Ordinal-Indexed Unions*}
 | 
| 13169 | 170 | |
| 46953 | 171 | lemma OUN_I [intro]: "[| a<i; b \<in> B(a) |] ==> b: (\<Union>z<i. B(z))" | 
| 13170 | 172 | by (unfold OUnion_def lt_def, blast) | 
| 13169 | 173 | |
| 174 | lemma OUN_E [elim!]: | |
| 46953 | 175 | "[| b \<in> (\<Union>z<i. B(z)); !!a.[| b \<in> B(a); a<i |] ==> R |] ==> R" | 
| 13170 | 176 | apply (unfold OUnion_def lt_def, blast) | 
| 13169 | 177 | done | 
| 178 | ||
| 46820 | 179 | lemma OUN_iff: "b \<in> (\<Union>x<i. B(x)) <-> (\<exists>x<i. b \<in> B(x))" | 
| 13170 | 180 | by (unfold OUnion_def oex_def lt_def, blast) | 
| 13169 | 181 | |
| 182 | lemma OUN_cong [cong]: | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13462diff
changeset | 183 | "[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (\<Union>x<i. C(x)) = (\<Union>x<j. D(x))" | 
| 13169 | 184 | by (simp add: OUnion_def lt_def OUN_iff) | 
| 185 | ||
| 13298 | 186 | lemma lt_induct: | 
| 46820 | 187 | "[| i<k; !!x.[| x<k; \<forall>y<x. P(y) |] ==> P(x) |] ==> P(i)" | 
| 13169 | 188 | apply (simp add: lt_def oall_def) | 
| 13298 | 189 | apply (erule conjE) | 
| 190 | apply (erule Ord_induct, assumption, blast) | |
| 13169 | 191 | done | 
| 192 | ||
| 13253 | 193 | |
| 194 | subsection {*Quantification over a class*}
 | |
| 195 | ||
| 24893 | 196 | definition | 
| 197 | "rall" :: "[i=>o, i=>o] => o" where | |
| 46820 | 198 | "rall(M, P) == \<forall>x. M(x) \<longrightarrow> P(x)" | 
| 13253 | 199 | |
| 24893 | 200 | definition | 
| 201 | "rex" :: "[i=>o, i=>o] => o" where | |
| 46820 | 202 | "rex(M, P) == \<exists>x. M(x) & P(x)" | 
| 13253 | 203 | |
| 204 | syntax | |
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 205 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3ALL _[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 206 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3EX _[_]./ _)" 10)
 | 
| 13253 | 207 | |
| 208 | syntax (xsymbols) | |
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 209 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3\<forall>_[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 210 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3\<exists>_[_]./ _)" 10)
 | 
| 14565 | 211 | syntax (HTML output) | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 212 |   "_rall"     :: "[pttrn, i=>o, o] => o"        ("(3\<forall>_[_]./ _)" 10)
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32010diff
changeset | 213 |   "_rex"      :: "[pttrn, i=>o, o] => o"        ("(3\<exists>_[_]./ _)" 10)
 | 
| 13253 | 214 | |
| 215 | translations | |
| 24893 | 216 | "ALL x[M]. P" == "CONST rall(M, %x. P)" | 
| 217 | "EX x[M]. P" == "CONST rex(M, %x. P)" | |
| 13253 | 218 | |
| 13298 | 219 | |
| 220 | subsubsection{*Relativized universal quantifier*}
 | |
| 13253 | 221 | |
| 46820 | 222 | lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> \<forall>x[M]. P(x)" | 
| 13253 | 223 | by (simp add: rall_def) | 
| 224 | ||
| 46820 | 225 | lemma rspec: "[| \<forall>x[M]. P(x); M(x) |] ==> P(x)" | 
| 13253 | 226 | by (simp add: rall_def) | 
| 227 | ||
| 228 | (*Instantiates x first: better for automatic theorem proving?*) | |
| 13298 | 229 | lemma rev_rallE [elim]: | 
| 46820 | 230 | "[| \<forall>x[M]. P(x); ~ M(x) ==> Q; P(x) ==> Q |] ==> Q" | 
| 13298 | 231 | by (simp add: rall_def, blast) | 
| 13253 | 232 | |
| 46820 | 233 | lemma rallE: "[| \<forall>x[M]. P(x); P(x) ==> Q; ~ M(x) ==> Q |] ==> Q" | 
| 13253 | 234 | by blast | 
| 235 | ||
| 236 | (*Trival rewrite rule; (ALL x[M].P)<->P holds only if A is nonempty!*) | |
| 237 | lemma rall_triv [simp]: "(ALL x[M]. P) <-> ((EX x. M(x)) --> P)" | |
| 238 | by (simp add: rall_def) | |
| 239 | ||
| 240 | (*Congruence rule for rewriting*) | |
| 241 | lemma rall_cong [cong]: | |
| 46820 | 242 | "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (\<forall>x[M]. P(x)) <-> (\<forall>x[M]. P'(x))" | 
| 13253 | 243 | by (simp add: rall_def) | 
| 244 | ||
| 13298 | 245 | |
| 246 | subsubsection{*Relativized existential quantifier*}
 | |
| 13253 | 247 | |
| 46820 | 248 | lemma rexI [intro]: "[| P(x); M(x) |] ==> \<exists>x[M]. P(x)" | 
| 13253 | 249 | by (simp add: rex_def, blast) | 
| 250 | ||
| 251 | (*The best argument order when there is only one M(x)*) | |
| 46820 | 252 | lemma rev_rexI: "[| M(x); P(x) |] ==> \<exists>x[M]. P(x)" | 
| 13253 | 253 | by blast | 
| 254 | ||
| 46820 | 255 | (*Not of the general form for such rules... *) | 
| 256 | lemma rexCI: "[| \<forall>x[M]. ~P(x) ==> P(a); M(a) |] ==> \<exists>x[M]. P(x)" | |
| 13253 | 257 | by blast | 
| 258 | ||
| 46820 | 259 | lemma rexE [elim!]: "[| \<exists>x[M]. P(x); !!x. [| M(x); P(x) |] ==> Q |] ==> Q" | 
| 13253 | 260 | by (simp add: rex_def, blast) | 
| 261 | ||
| 262 | (*We do not even have (EX x[M]. True) <-> True unless A is nonempty!!*) | |
| 263 | lemma rex_triv [simp]: "(EX x[M]. P) <-> ((EX x. M(x)) & P)" | |
| 264 | by (simp add: rex_def) | |
| 265 | ||
| 266 | lemma rex_cong [cong]: | |
| 46820 | 267 | "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (\<exists>x[M]. P(x)) <-> (\<exists>x[M]. P'(x))" | 
| 13253 | 268 | by (simp add: rex_def cong: conj_cong) | 
| 269 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 270 | lemma rall_is_ball [simp]: "(\<forall>x[%z. z\<in>A]. P(x)) <-> (\<forall>x\<in>A. P(x))" | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 271 | by blast | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 272 | |
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 273 | lemma rex_is_bex [simp]: "(\<exists>x[%z. z\<in>A]. P(x)) <-> (\<exists>x\<in>A. P(x))" | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 274 | by blast | 
| 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 275 | |
| 46820 | 276 | lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (\<forall>x[M]. P(x))"; | 
| 13253 | 277 | by (simp add: rall_def atomize_all atomize_imp) | 
| 278 | ||
| 279 | declare atomize_rall [symmetric, rulify] | |
| 280 | ||
| 281 | lemma rall_simps1: | |
| 46820 | 282 | "(\<forall>x[M]. P(x) & Q) <-> (\<forall>x[M]. P(x)) & ((\<forall>x[M]. False) | Q)" | 
| 283 | "(\<forall>x[M]. P(x) | Q) <-> ((\<forall>x[M]. P(x)) | Q)" | |
| 284 | "(\<forall>x[M]. P(x) \<longrightarrow> Q) <-> ((\<exists>x[M]. P(x)) \<longrightarrow> Q)" | |
| 285 | "(~(\<forall>x[M]. P(x))) <-> (\<exists>x[M]. ~P(x))" | |
| 13253 | 286 | by blast+ | 
| 287 | ||
| 288 | lemma rall_simps2: | |
| 46820 | 289 | "(\<forall>x[M]. P & Q(x)) <-> ((\<forall>x[M]. False) | P) & (\<forall>x[M]. Q(x))" | 
| 290 | "(\<forall>x[M]. P | Q(x)) <-> (P | (\<forall>x[M]. Q(x)))" | |
| 291 | "(\<forall>x[M]. P \<longrightarrow> Q(x)) <-> (P \<longrightarrow> (\<forall>x[M]. Q(x)))" | |
| 13253 | 292 | by blast+ | 
| 293 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 294 | lemmas rall_simps [simp] = rall_simps1 rall_simps2 | 
| 13253 | 295 | |
| 296 | lemma rall_conj_distrib: | |
| 46820 | 297 | "(\<forall>x[M]. P(x) & Q(x)) <-> ((\<forall>x[M]. P(x)) & (\<forall>x[M]. Q(x)))" | 
| 13253 | 298 | by blast | 
| 299 | ||
| 300 | lemma rex_simps1: | |
| 46820 | 301 | "(\<exists>x[M]. P(x) & Q) <-> ((\<exists>x[M]. P(x)) & Q)" | 
| 302 | "(\<exists>x[M]. P(x) | Q) <-> (\<exists>x[M]. P(x)) | ((\<exists>x[M]. True) & Q)" | |
| 303 | "(\<exists>x[M]. P(x) \<longrightarrow> Q) <-> ((\<forall>x[M]. P(x)) \<longrightarrow> ((\<exists>x[M]. True) & Q))" | |
| 304 | "(~(\<exists>x[M]. P(x))) <-> (\<forall>x[M]. ~P(x))" | |
| 13253 | 305 | by blast+ | 
| 306 | ||
| 307 | lemma rex_simps2: | |
| 46820 | 308 | "(\<exists>x[M]. P & Q(x)) <-> (P & (\<exists>x[M]. Q(x)))" | 
| 309 | "(\<exists>x[M]. P | Q(x)) <-> ((\<exists>x[M]. True) & P) | (\<exists>x[M]. Q(x))" | |
| 310 | "(\<exists>x[M]. P \<longrightarrow> Q(x)) <-> (((\<forall>x[M]. False) | P) \<longrightarrow> (\<exists>x[M]. Q(x)))" | |
| 13253 | 311 | by blast+ | 
| 312 | ||
| 13289 
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
 paulson parents: 
13253diff
changeset | 313 | lemmas rex_simps [simp] = rex_simps1 rex_simps2 | 
| 13253 | 314 | |
| 315 | lemma rex_disj_distrib: | |
| 46820 | 316 | "(\<exists>x[M]. P(x) | Q(x)) <-> ((\<exists>x[M]. P(x)) | (\<exists>x[M]. Q(x)))" | 
| 13253 | 317 | by blast | 
| 318 | ||
| 319 | ||
| 13298 | 320 | subsubsection{*One-point rule for bounded quantifiers*}
 | 
| 13253 | 321 | |
| 46820 | 322 | lemma rex_triv_one_point1 [simp]: "(\<exists>x[M]. x=a) <-> ( M(a))" | 
| 13253 | 323 | by blast | 
| 324 | ||
| 46820 | 325 | lemma rex_triv_one_point2 [simp]: "(\<exists>x[M]. a=x) <-> ( M(a))" | 
| 13253 | 326 | by blast | 
| 327 | ||
| 46820 | 328 | lemma rex_one_point1 [simp]: "(\<exists>x[M]. x=a & P(x)) <-> ( M(a) & P(a))" | 
| 13253 | 329 | by blast | 
| 330 | ||
| 46820 | 331 | lemma rex_one_point2 [simp]: "(\<exists>x[M]. a=x & P(x)) <-> ( M(a) & P(a))" | 
| 13253 | 332 | by blast | 
| 333 | ||
| 46820 | 334 | lemma rall_one_point1 [simp]: "(\<forall>x[M]. x=a \<longrightarrow> P(x)) <-> ( M(a) \<longrightarrow> P(a))" | 
| 13253 | 335 | by blast | 
| 336 | ||
| 46820 | 337 | lemma rall_one_point2 [simp]: "(\<forall>x[M]. a=x \<longrightarrow> P(x)) <-> ( M(a) \<longrightarrow> P(a))" | 
| 13253 | 338 | by blast | 
| 339 | ||
| 340 | ||
| 13298 | 341 | subsubsection{*Sets as Classes*}
 | 
| 342 | ||
| 24893 | 343 | definition | 
| 344 |   setclass :: "[i,i] => o"       ("##_" [40] 40)  where
 | |
| 46820 | 345 | "setclass(A) == %x. x \<in> A" | 
| 13298 | 346 | |
| 46820 | 347 | lemma setclass_iff [simp]: "setclass(A,x) <-> x \<in> A" | 
| 13362 | 348 | by (simp add: setclass_def) | 
| 13298 | 349 | |
| 13807 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 paulson parents: 
13615diff
changeset | 350 | lemma rall_setclass_is_ball [simp]: "(\<forall>x[##A]. P(x)) <-> (\<forall>x\<in>A. P(x))" | 
| 13298 | 351 | by auto | 
| 352 | ||
| 13807 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 paulson parents: 
13615diff
changeset | 353 | lemma rex_setclass_is_bex [simp]: "(\<exists>x[##A]. P(x)) <-> (\<exists>x\<in>A. P(x))" | 
| 13298 | 354 | by auto | 
| 355 | ||
| 356 | ||
| 13169 | 357 | ML | 
| 358 | {*
 | |
| 359 | val Ord_atomize = | |
| 24893 | 360 |     atomize ([("OrdQuant.oall", [@{thm ospec}]),("OrdQuant.rall", [@{thm rspec}])]@
 | 
| 13298 | 361 | ZF_conn_pairs, | 
| 13253 | 362 | ZF_mem_pairs); | 
| 26339 | 363 | *} | 
| 364 | declaration {* fn _ =>
 | |
| 45625 
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
 wenzelm parents: 
42459diff
changeset | 365 | Simplifier.map_ss (Simplifier.set_mksimps (K (map mk_eq o Ord_atomize o gen_all))) | 
| 13169 | 366 | *} | 
| 367 | ||
| 13462 | 368 | text {* Setting up the one-point-rule simproc *}
 | 
| 13253 | 369 | |
| 46820 | 370 | simproc_setup defined_rex ("\<exists>x[M]. P(x) & Q(x)") = {*
 | 
| 42455 | 371 | let | 
| 372 |     val unfold_rex_tac = unfold_tac @{thms rex_def};
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
46953diff
changeset | 373 | fun prove_rex_tac ctxt = unfold_rex_tac ctxt THEN Quantifier1.prove_one_point_ex_tac; | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
46953diff
changeset | 374 | in fn _ => fn ctxt => Quantifier1.rearrange_bex (prove_rex_tac ctxt) ctxt end | 
| 42455 | 375 | *} | 
| 13253 | 376 | |
| 46820 | 377 | simproc_setup defined_rall ("\<forall>x[M]. P(x) \<longrightarrow> Q(x)") = {*
 | 
| 42455 | 378 | let | 
| 379 |     val unfold_rall_tac = unfold_tac @{thms rall_def};
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
46953diff
changeset | 380 | fun prove_rall_tac ctxt = unfold_rall_tac ctxt THEN Quantifier1.prove_one_point_all_tac; | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
46953diff
changeset | 381 | in fn _ => fn ctxt => Quantifier1.rearrange_ball (prove_rall_tac ctxt) ctxt end | 
| 13253 | 382 | *} | 
| 383 | ||
| 2469 | 384 | end |