| author | haftmann | 
| Mon, 03 Feb 2014 08:23:21 +0100 | |
| changeset 55293 | 42cf5802d36a | 
| parent 55059 | ef2e0fb783c6 | 
| child 55604 | 42e4e8c2e8dc | 
| permissions | -rw-r--r-- | 
| 55056 | 1 | (* Title: HOL/BNF_Cardinal_Arithmetic.thy | 
| 54474 | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 3 | Copyright 2012 | |
| 4 | ||
| 55059 | 5 | Cardinal arithmetic as needed by bounded natural functors. | 
| 54474 | 6 | *) | 
| 7 | ||
| 55059 | 8 | header {* Cardinal Arithmetic as Needed by Bounded Natural Functors *}
 | 
| 54474 | 9 | |
| 55056 | 10 | theory BNF_Cardinal_Arithmetic | 
| 11 | imports BNF_Cardinal_Order_Relation | |
| 54474 | 12 | begin | 
| 13 | ||
| 14 | lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f" | |
| 15 | by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def) | |
| 16 | ||
| 17 | (*should supersede a weaker lemma from the library*) | |
| 18 | lemma dir_image_Field: "Field (dir_image r f) = f ` Field r" | |
| 54482 | 19 | unfolding dir_image_def Field_def Range_def Domain_def by fast | 
| 54474 | 20 | |
| 21 | lemma card_order_dir_image: | |
| 22 | assumes bij: "bij f" and co: "card_order r" | |
| 23 | shows "card_order (dir_image r f)" | |
| 24 | proof - | |
| 25 | from assms have "Field (dir_image r f) = UNIV" | |
| 26 | using card_order_on_Card_order[of UNIV r] unfolding bij_def dir_image_Field by auto | |
| 27 | moreover from bij have "\<And>x y. (f x = f y) = (x = y)" unfolding bij_def inj_on_def by auto | |
| 28 | with co have "Card_order (dir_image r f)" | |
| 29 | using card_order_on_Card_order[of UNIV r] Card_order_ordIso2[OF _ dir_image] by blast | |
| 30 | ultimately show ?thesis by auto | |
| 31 | qed | |
| 32 | ||
| 33 | lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r" | |
| 34 | by (rule card_order_on_ordIso) | |
| 35 | ||
| 36 | lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r" | |
| 37 | by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso) | |
| 38 | ||
| 39 | lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|" | |
| 40 | by (simp only: ordIso_refl card_of_Card_order) | |
| 41 | ||
| 42 | lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV" | |
| 43 | using card_order_on_Card_order[of UNIV r] by simp | |
| 44 | ||
| 45 | lemma card_of_Times_Plus_distrib: | |
| 46 | "|A <*> (B <+> C)| =o |A <*> B <+> A <*> C|" (is "|?RHS| =o |?LHS|") | |
| 47 | proof - | |
| 48 | let ?f = "\<lambda>(a, bc). case bc of Inl b \<Rightarrow> Inl (a, b) | Inr c \<Rightarrow> Inr (a, c)" | |
| 49 | have "bij_betw ?f ?RHS ?LHS" unfolding bij_betw_def inj_on_def by force | |
| 50 | thus ?thesis using card_of_ordIso by blast | |
| 51 | qed | |
| 52 | ||
| 53 | lemma Func_Times_Range: | |
| 54 | "|Func A (B <*> C)| =o |Func A B <*> Func A C|" (is "|?LHS| =o |?RHS|") | |
| 55 | proof - | |
| 56 | let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined, | |
| 57 | \<lambda>x. if x \<in> A then snd (fg x) else undefined)" | |
| 58 | let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined" | |
| 59 | have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def | |
| 54482 | 60 | apply safe | 
| 61 | apply (simp add: Func_def fun_eq_iff) | |
| 62 | apply (metis (no_types) pair_collapse) | |
| 63 | apply (auto simp: Func_def fun_eq_iff)[2] | |
| 64 | proof - | |
| 54474 | 65 | fix f g assume "f \<in> Func A B" "g \<in> Func A C" | 
| 66 | thus "(f, g) \<in> ?F ` Func A (B \<times> C)" | |
| 67 | by (intro image_eqI[of _ _ "?G (f, g)"]) (auto simp: Func_def) | |
| 54482 | 68 | qed | 
| 54474 | 69 | thus ?thesis using card_of_ordIso by blast | 
| 70 | qed | |
| 71 | ||
| 72 | ||
| 73 | subsection {* Zero *}
 | |
| 74 | ||
| 75 | definition czero where | |
| 76 |   "czero = card_of {}"
 | |
| 77 | ||
| 78 | lemma czero_ordIso: | |
| 79 | "czero =o czero" | |
| 80 | using card_of_empty_ordIso by (simp add: czero_def) | |
| 81 | ||
| 82 | lemma card_of_ordIso_czero_iff_empty: | |
| 83 |   "|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)"
 | |
| 84 | unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso) | |
| 85 | ||
| 86 | (* A "not czero" Cardinal predicate *) | |
| 87 | abbreviation Cnotzero where | |
| 88 | "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r" | |
| 89 | ||
| 90 | (*helper*) | |
| 91 | lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
 | |
| 92 | by (metis Card_order_iff_ordIso_card_of czero_def) | |
| 93 | ||
| 94 | lemma czeroI: | |
| 95 |   "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
 | |
| 96 | using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast | |
| 97 | ||
| 98 | lemma czeroE: | |
| 99 |   "r =o czero \<Longrightarrow> Field r = {}"
 | |
| 100 | unfolding czero_def | |
| 101 | by (drule card_of_cong) (simp only: Field_card_of card_of_empty2) | |
| 102 | ||
| 103 | lemma Cnotzero_mono: | |
| 104 | "\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q" | |
| 105 | apply (rule ccontr) | |
| 106 | apply auto | |
| 107 | apply (drule czeroE) | |
| 108 | apply (erule notE) | |
| 109 | apply (erule czeroI) | |
| 110 | apply (drule card_of_mono2) | |
| 111 | apply (simp only: card_of_empty3) | |
| 112 | done | |
| 113 | ||
| 114 | subsection {* (In)finite cardinals *}
 | |
| 115 | ||
| 116 | definition cinfinite where | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54482diff
changeset | 117 | "cinfinite r = (\<not> finite (Field r))" | 
| 54474 | 118 | |
| 119 | abbreviation Cinfinite where | |
| 120 | "Cinfinite r \<equiv> cinfinite r \<and> Card_order r" | |
| 121 | ||
| 122 | definition cfinite where | |
| 123 | "cfinite r = finite (Field r)" | |
| 124 | ||
| 125 | abbreviation Cfinite where | |
| 126 | "Cfinite r \<equiv> cfinite r \<and> Card_order r" | |
| 127 | ||
| 128 | lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s" | |
| 129 | unfolding cfinite_def cinfinite_def | |
| 130 | by (metis card_order_on_well_order_on finite_ordLess_infinite) | |
| 131 | ||
| 54581 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 132 | lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq] | 
| 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 133 | |
| 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 134 | lemma natLeq_cinfinite: "cinfinite natLeq" | 
| 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 135 | unfolding cinfinite_def Field_natLeq by (metis infinite_UNIV_nat) | 
| 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 136 | |
| 54474 | 137 | lemma natLeq_ordLeq_cinfinite: | 
| 138 | assumes inf: "Cinfinite r" | |
| 139 | shows "natLeq \<le>o r" | |
| 140 | proof - | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54482diff
changeset | 141 | from inf have "natLeq \<le>o |Field r|" by (metis cinfinite_def infinite_iff_natLeq_ordLeq) | 
| 54474 | 142 | also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric) | 
| 143 | finally show ?thesis . | |
| 144 | qed | |
| 145 | ||
| 146 | lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))" | |
| 147 | unfolding cinfinite_def by (metis czeroE finite.emptyI) | |
| 148 | ||
| 149 | lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r" | |
| 150 | by (metis cinfinite_not_czero) | |
| 151 | ||
| 152 | lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2" | |
| 153 | by (metis Card_order_ordIso2 card_of_mono2 card_of_ordLeq_infinite cinfinite_def ordIso_iff_ordLeq) | |
| 154 | ||
| 155 | lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2" | |
| 156 | by (metis card_of_mono2 card_of_ordLeq_infinite cinfinite_def) | |
| 157 | ||
| 158 | ||
| 159 | subsection {* Binary sum *}
 | |
| 160 | ||
| 161 | definition csum (infixr "+c" 65) where | |
| 162 | "r1 +c r2 \<equiv> |Field r1 <+> Field r2|" | |
| 163 | ||
| 164 | lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s" | |
| 165 | unfolding csum_def Field_card_of by auto | |
| 166 | ||
| 167 | lemma Card_order_csum: | |
| 168 | "Card_order (r1 +c r2)" | |
| 169 | unfolding csum_def by (simp add: card_of_Card_order) | |
| 170 | ||
| 171 | lemma csum_Cnotzero1: | |
| 172 | "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)" | |
| 173 | unfolding csum_def | |
| 54482 | 174 | by (metis Cnotzero_imp_not_empty Plus_eq_empty_conv card_of_Card_order card_of_ordIso_czero_iff_empty) | 
| 54474 | 175 | |
| 176 | lemma card_order_csum: | |
| 177 | assumes "card_order r1" "card_order r2" | |
| 178 | shows "card_order (r1 +c r2)" | |
| 179 | proof - | |
| 180 | have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto | |
| 181 | thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on) | |
| 182 | qed | |
| 183 | ||
| 184 | lemma cinfinite_csum: | |
| 185 | "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)" | |
| 186 | unfolding cinfinite_def csum_def by (auto simp: Field_card_of) | |
| 187 | ||
| 188 | lemma Cinfinite_csum1: | |
| 189 | "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)" | |
| 190 | unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff) | |
| 191 | ||
| 54480 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 192 | lemma Cinfinite_csum: | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 193 | "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)" | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 194 | unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff) | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 195 | |
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 196 | lemma Cinfinite_csum_strong: | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 197 | "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)" | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 198 | by (metis Cinfinite_csum) | 
| 
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
 blanchet parents: 
54474diff
changeset | 199 | |
| 54474 | 200 | lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2" | 
| 201 | by (simp only: csum_def ordIso_Plus_cong) | |
| 202 | ||
| 203 | lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q" | |
| 204 | by (simp only: csum_def ordIso_Plus_cong1) | |
| 205 | ||
| 206 | lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2" | |
| 207 | by (simp only: csum_def ordIso_Plus_cong2) | |
| 208 | ||
| 209 | lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2" | |
| 210 | by (simp only: csum_def ordLeq_Plus_mono) | |
| 211 | ||
| 212 | lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q" | |
| 213 | by (simp only: csum_def ordLeq_Plus_mono1) | |
| 214 | ||
| 215 | lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2" | |
| 216 | by (simp only: csum_def ordLeq_Plus_mono2) | |
| 217 | ||
| 218 | lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2" | |
| 219 | by (simp only: csum_def Card_order_Plus1) | |
| 220 | ||
| 221 | lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2" | |
| 222 | by (simp only: csum_def Card_order_Plus2) | |
| 223 | ||
| 224 | lemma csum_com: "p1 +c p2 =o p2 +c p1" | |
| 225 | by (simp only: csum_def card_of_Plus_commute) | |
| 226 | ||
| 227 | lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3" | |
| 228 | by (simp only: csum_def Field_card_of card_of_Plus_assoc) | |
| 229 | ||
| 230 | lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)" | |
| 231 | unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp | |
| 232 | ||
| 233 | lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)" | |
| 234 | proof - | |
| 235 | have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)" | |
| 236 | by (metis csum_assoc) | |
| 237 | also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4" | |
| 238 | by (metis csum_assoc csum_cong2 ordIso_symmetric) | |
| 239 | also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4" | |
| 240 | by (metis csum_com csum_cong1 csum_cong2) | |
| 241 | also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4" | |
| 242 | by (metis csum_assoc csum_cong2 ordIso_symmetric) | |
| 243 | also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)" | |
| 244 | by (metis csum_assoc ordIso_symmetric) | |
| 245 | finally show ?thesis . | |
| 246 | qed | |
| 247 | ||
| 248 | lemma Plus_csum: "|A <+> B| =o |A| +c |B|" | |
| 249 | by (simp only: csum_def Field_card_of card_of_refl) | |
| 250 | ||
| 251 | lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|" | |
| 252 | using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast | |
| 253 | ||
| 254 | ||
| 255 | subsection {* One *}
 | |
| 256 | ||
| 257 | definition cone where | |
| 258 |   "cone = card_of {()}"
 | |
| 259 | ||
| 260 | lemma Card_order_cone: "Card_order cone" | |
| 261 | unfolding cone_def by (rule card_of_Card_order) | |
| 262 | ||
| 263 | lemma Cfinite_cone: "Cfinite cone" | |
| 264 | unfolding cfinite_def by (simp add: Card_order_cone) | |
| 265 | ||
| 266 | lemma cone_not_czero: "\<not> (cone =o czero)" | |
| 267 | unfolding czero_def cone_def by (metis empty_not_insert card_of_empty3[of "{()}"] ordIso_iff_ordLeq)
 | |
| 268 | ||
| 269 | lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r" | |
| 270 | unfolding cone_def by (metis Card_order_singl_ordLeq czeroI) | |
| 271 | ||
| 272 | ||
| 55055 | 273 | subsection {* Two *}
 | 
| 54474 | 274 | |
| 275 | definition ctwo where | |
| 276 | "ctwo = |UNIV :: bool set|" | |
| 277 | ||
| 278 | lemma Card_order_ctwo: "Card_order ctwo" | |
| 279 | unfolding ctwo_def by (rule card_of_Card_order) | |
| 280 | ||
| 281 | lemma ctwo_not_czero: "\<not> (ctwo =o czero)" | |
| 282 | using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq | |
| 283 | unfolding czero_def ctwo_def by (metis UNIV_not_empty) | |
| 284 | ||
| 285 | lemma ctwo_Cnotzero: "Cnotzero ctwo" | |
| 286 | by (simp add: ctwo_not_czero Card_order_ctwo) | |
| 287 | ||
| 288 | ||
| 289 | subsection {* Family sum *}
 | |
| 290 | ||
| 291 | definition Csum where | |
| 292 | "Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|" | |
| 293 | ||
| 294 | (* Similar setup to the one for SIGMA from theory Big_Operators: *) | |
| 295 | syntax "_Csum" :: | |
| 296 |   "pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
 | |
| 297 |   ("(3CSUM _:_. _)" [0, 51, 10] 10)
 | |
| 298 | ||
| 299 | translations | |
| 300 | "CSUM i:r. rs" == "CONST Csum r (%i. rs)" | |
| 301 | ||
| 302 | lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )" | |
| 303 | by (auto simp: Csum_def Field_card_of) | |
| 304 | ||
| 305 | (* NB: Always, under the cardinal operator, | |
| 306 | operations on sets are reduced automatically to operations on cardinals. | |
| 307 | This should make cardinal reasoning more direct and natural. *) | |
| 308 | ||
| 309 | ||
| 310 | subsection {* Product *}
 | |
| 311 | ||
| 312 | definition cprod (infixr "*c" 80) where | |
| 313 | "r1 *c r2 = |Field r1 <*> Field r2|" | |
| 314 | ||
| 315 | lemma card_order_cprod: | |
| 316 | assumes "card_order r1" "card_order r2" | |
| 317 | shows "card_order (r1 *c r2)" | |
| 318 | proof - | |
| 319 | have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto | |
| 320 | thus ?thesis by (auto simp: cprod_def card_of_card_order_on) | |
| 321 | qed | |
| 322 | ||
| 323 | lemma Card_order_cprod: "Card_order (r1 *c r2)" | |
| 324 | by (simp only: cprod_def Field_card_of card_of_card_order_on) | |
| 325 | ||
| 326 | lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q" | |
| 327 | by (simp only: cprod_def ordLeq_Times_mono1) | |
| 328 | ||
| 329 | lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2" | |
| 330 | by (simp only: cprod_def ordLeq_Times_mono2) | |
| 331 | ||
| 332 | lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2" | |
| 333 | unfolding cprod_def by (metis Card_order_Times2 czeroI) | |
| 334 | ||
| 335 | lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)" | |
| 336 | by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product) | |
| 337 | ||
| 338 | lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)" | |
| 339 | by (metis cinfinite_mono ordLeq_cprod2) | |
| 340 | ||
| 341 | lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)" | |
| 342 | by (blast intro: cinfinite_cprod2 Card_order_cprod) | |
| 343 | ||
| 344 | lemma cprod_com: "p1 *c p2 =o p2 *c p1" | |
| 345 | by (simp only: cprod_def card_of_Times_commute) | |
| 346 | ||
| 347 | lemma card_of_Csum_Times: | |
| 348 | "\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|" | |
| 349 | by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_Times) | |
| 350 | ||
| 351 | lemma card_of_Csum_Times': | |
| 352 | assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r" | |
| 353 | shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r" | |
| 354 | proof - | |
| 355 | from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique) | |
| 356 | with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans) | |
| 357 | hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times) | |
| 358 | also from * have "|I| *c |Field r| \<le>o |I| *c r" | |
| 359 | by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq) | |
| 360 | finally show ?thesis . | |
| 361 | qed | |
| 362 | ||
| 363 | lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)" | |
| 364 | unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric) | |
| 365 | ||
| 366 | lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2" | |
| 367 | unfolding csum_def by (metis Card_order_Plus_infinite cinfinite_def cinfinite_mono) | |
| 368 | ||
| 369 | lemma csum_absorb1': | |
| 370 | assumes card: "Card_order r2" | |
| 371 | and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2" | |
| 372 | shows "r2 +c r1 =o r2" | |
| 373 | by (rule ordIso_transitive, rule csum_com, rule csum_absorb2', (simp only: assms)+) | |
| 374 | ||
| 375 | lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2" | |
| 376 | by (rule csum_absorb1') auto | |
| 377 | ||
| 378 | ||
| 379 | subsection {* Exponentiation *}
 | |
| 380 | ||
| 381 | definition cexp (infixr "^c" 90) where | |
| 382 | "r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|" | |
| 383 | ||
| 384 | lemma Card_order_cexp: "Card_order (r1 ^c r2)" | |
| 385 | unfolding cexp_def by (rule card_of_Card_order) | |
| 386 | ||
| 387 | lemma cexp_mono': | |
| 388 | assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2" | |
| 389 |   and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
 | |
| 390 | shows "p1 ^c p2 \<le>o r1 ^c r2" | |
| 391 | proof(cases "Field p1 = {}")
 | |
| 392 | case True | |
| 393 | hence "|Field |Func (Field p2) (Field p1)|| \<le>o cone" | |
| 394 | unfolding cone_def Field_card_of | |
| 395 |     by (cases "Field p2 = {}", auto intro: card_of_ordLeqI2 simp: Func_empty)
 | |
| 396 | (metis Func_is_emp card_of_empty ex_in_conv) | |
| 397 | hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def) | |
| 398 | hence "p1 ^c p2 \<le>o cone" unfolding cexp_def . | |
| 399 | thus ?thesis | |
| 400 |   proof (cases "Field p2 = {}")
 | |
| 401 | case True | |
| 402 |     with n have "Field r2 = {}" .
 | |
| 403 | hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def by (auto intro: card_of_ordLeqI) | |
| 404 | thus ?thesis using `p1 ^c p2 \<le>o cone` ordLeq_transitive by auto | |
| 405 | next | |
| 406 | case False with True have "|Field (p1 ^c p2)| =o czero" | |
| 407 | unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto | |
| 408 | thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of | |
| 409 | by (simp add: card_of_empty) | |
| 410 | qed | |
| 411 | next | |
| 412 | case False | |
| 413 | have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|" | |
| 414 | using 1 2 by (auto simp: card_of_mono2) | |
| 415 | obtain f1 where f1: "f1 ` Field r1 = Field p1" | |
| 416 | using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto | |
| 417 | obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2" | |
| 418 | using 2 unfolding card_of_ordLeq[symmetric] by blast | |
| 419 | have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)" | |
| 420 | unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] . | |
| 421 |   have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp
 | |
| 422 | using False by simp | |
| 423 | show ?thesis | |
| 424 | using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast | |
| 425 | qed | |
| 426 | ||
| 427 | lemma cexp_mono: | |
| 428 | assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2" | |
| 429 | and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2" | |
| 430 | shows "p1 ^c p2 \<le>o r1 ^c r2" | |
| 431 | by (metis (full_types) "1" "2" card cexp_mono' czeroE czeroI n) | |
| 432 | ||
| 433 | lemma cexp_mono1: | |
| 434 | assumes 1: "p1 \<le>o r1" and q: "Card_order q" | |
| 435 | shows "p1 ^c q \<le>o r1 ^c q" | |
| 436 | using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q) | |
| 437 | ||
| 438 | lemma cexp_mono2': | |
| 439 | assumes 2: "p2 \<le>o r2" and q: "Card_order q" | |
| 440 |   and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
 | |
| 441 | shows "q ^c p2 \<le>o q ^c r2" | |
| 442 | using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto | |
| 443 | ||
| 444 | lemma cexp_mono2: | |
| 445 | assumes 2: "p2 \<le>o r2" and q: "Card_order q" | |
| 446 | and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2" | |
| 447 | shows "q ^c p2 \<le>o q ^c r2" | |
| 448 | using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto | |
| 449 | ||
| 450 | lemma cexp_mono2_Cnotzero: | |
| 451 | assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2" | |
| 452 | shows "q ^c p2 \<le>o q ^c r2" | |
| 453 | by (metis assms cexp_mono2' czeroI) | |
| 454 | ||
| 455 | lemma cexp_cong: | |
| 456 | assumes 1: "p1 =o r1" and 2: "p2 =o r2" | |
| 457 | and Cr: "Card_order r2" | |
| 458 | and Cp: "Card_order p2" | |
| 459 | shows "p1 ^c p2 =o r1 ^c r2" | |
| 460 | proof - | |
| 461 | obtain f where "bij_betw f (Field p2) (Field r2)" | |
| 462 | using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto | |
| 463 |   hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
 | |
| 464 | have r: "p2 =o czero \<Longrightarrow> r2 =o czero" | |
| 465 | and p: "r2 =o czero \<Longrightarrow> p2 =o czero" | |
| 466 | using 0 Cr Cp czeroE czeroI by auto | |
| 467 | show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq | |
| 54482 | 468 | using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by metis | 
| 54474 | 469 | qed | 
| 470 | ||
| 471 | lemma cexp_cong1: | |
| 472 | assumes 1: "p1 =o r1" and q: "Card_order q" | |
| 473 | shows "p1 ^c q =o r1 ^c q" | |
| 474 | by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q]) | |
| 475 | ||
| 476 | lemma cexp_cong2: | |
| 477 | assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2" | |
| 478 | shows "q ^c p2 =o q ^c r2" | |
| 479 | by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p) | |
| 480 | ||
| 481 | lemma cexp_cone: | |
| 482 | assumes "Card_order r" | |
| 483 | shows "r ^c cone =o r" | |
| 484 | proof - | |
| 485 | have "r ^c cone =o |Field r|" | |
| 486 | unfolding cexp_def cone_def Field_card_of Func_empty | |
| 487 | card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def | |
| 488 | by (rule exI[of _ "\<lambda>f. f ()"]) auto | |
| 489 | also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms]) | |
| 490 | finally show ?thesis . | |
| 491 | qed | |
| 492 | ||
| 493 | lemma cexp_cprod: | |
| 494 | assumes r1: "Card_order r1" | |
| 495 | shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R") | |
| 496 | proof - | |
| 497 | have "?L =o r1 ^c (r3 *c r2)" | |
| 498 | unfolding cprod_def cexp_def Field_card_of | |
| 499 | using card_of_Func_Times by(rule ordIso_symmetric) | |
| 500 | also have "r1 ^c (r3 *c r2) =o ?R" | |
| 501 | apply(rule cexp_cong2) using cprod_com r1 by (auto simp: Card_order_cprod) | |
| 502 | finally show ?thesis . | |
| 503 | qed | |
| 504 | ||
| 505 | lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r" | |
| 506 | unfolding cinfinite_def cprod_def | |
| 507 | by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+ | |
| 508 | ||
| 509 | lemma cexp_cprod_ordLeq: | |
| 510 | assumes r1: "Card_order r1" and r2: "Cinfinite r2" | |
| 511 | and r3: "Cnotzero r3" "r3 \<le>o r2" | |
| 512 | shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R") | |
| 513 | proof- | |
| 514 | have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] . | |
| 515 | also have "r1 ^c (r2 *c r3) =o ?R" | |
| 516 | apply(rule cexp_cong2) | |
| 517 | apply(rule cprod_infinite1'[OF r2 r3]) using r1 r2 by (fastforce simp: Card_order_cprod)+ | |
| 518 | finally show ?thesis . | |
| 519 | qed | |
| 520 | ||
| 521 | lemma Cnotzero_UNIV: "Cnotzero |UNIV|" | |
| 522 | by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty) | |
| 523 | ||
| 524 | lemma ordLess_ctwo_cexp: | |
| 525 | assumes "Card_order r" | |
| 526 | shows "r <o ctwo ^c r" | |
| 527 | proof - | |
| 528 | have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow) | |
| 529 | also have "|Pow (Field r)| =o ctwo ^c r" | |
| 530 | unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func) | |
| 531 | finally show ?thesis . | |
| 532 | qed | |
| 533 | ||
| 534 | lemma ordLeq_cexp1: | |
| 535 | assumes "Cnotzero r" "Card_order q" | |
| 536 | shows "q \<le>o q ^c r" | |
| 537 | proof (cases "q =o (czero :: 'a rel)") | |
| 538 | case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans) | |
| 539 | next | |
| 540 | case False | |
| 541 | thus ?thesis | |
| 542 | apply - | |
| 543 | apply (rule ordIso_ordLeq_trans) | |
| 544 | apply (rule ordIso_symmetric) | |
| 545 | apply (rule cexp_cone) | |
| 546 | apply (rule assms(2)) | |
| 547 | apply (rule cexp_mono2) | |
| 548 | apply (rule cone_ordLeq_Cnotzero) | |
| 549 | apply (rule assms(1)) | |
| 550 | apply (rule assms(2)) | |
| 551 | apply (rule notE) | |
| 552 | apply (rule cone_not_czero) | |
| 553 | apply assumption | |
| 554 | apply (rule Card_order_cone) | |
| 555 | done | |
| 556 | qed | |
| 557 | ||
| 558 | lemma ordLeq_cexp2: | |
| 559 | assumes "ctwo \<le>o q" "Card_order r" | |
| 560 | shows "r \<le>o q ^c r" | |
| 561 | proof (cases "r =o (czero :: 'a rel)") | |
| 562 | case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans) | |
| 563 | next | |
| 564 | case False thus ?thesis | |
| 565 | apply - | |
| 566 | apply (rule ordLess_imp_ordLeq) | |
| 567 | apply (rule ordLess_ordLeq_trans) | |
| 568 | apply (rule ordLess_ctwo_cexp) | |
| 569 | apply (rule assms(2)) | |
| 570 | apply (rule cexp_mono1) | |
| 571 | apply (rule assms(1)) | |
| 572 | apply (rule assms(2)) | |
| 573 | done | |
| 574 | qed | |
| 575 | ||
| 576 | lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)" | |
| 577 | by (metis assms cinfinite_mono ordLeq_cexp2) | |
| 578 | ||
| 579 | lemma Cinfinite_cexp: | |
| 580 | "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)" | |
| 581 | by (simp add: cinfinite_cexp Card_order_cexp) | |
| 582 | ||
| 583 | lemma ctwo_ordLess_natLeq: "ctwo <o natLeq" | |
| 54581 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 584 | unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order | 
| 
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
 traytel parents: 
54578diff
changeset | 585 | by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order) | 
| 54474 | 586 | |
| 587 | lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r" | |
| 588 | by (metis ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite ordLess_ordLeq_trans) | |
| 589 | ||
| 590 | lemma ctwo_ordLeq_Cinfinite: | |
| 591 | assumes "Cinfinite r" | |
| 592 | shows "ctwo \<le>o r" | |
| 593 | by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]]) | |
| 594 | ||
| 595 | lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r" | |
| 596 | by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field) | |
| 597 | ||
| 598 | lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r" | |
| 599 | by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def) | |
| 600 | ||
| 601 | lemma csum_cinfinite_bound: | |
| 602 | assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r" | |
| 603 | shows "p +c q \<le>o r" | |
| 604 | proof - | |
| 605 | from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r" | |
| 606 | unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+ | |
| 607 | with assms show ?thesis unfolding cinfinite_def csum_def | |
| 608 | by (blast intro: card_of_Plus_ordLeq_infinite_Field) | |
| 609 | qed | |
| 610 | ||
| 611 | lemma cprod_cinfinite_bound: | |
| 612 | assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r" | |
| 613 | shows "p *c q \<le>o r" | |
| 614 | proof - | |
| 615 | from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r" | |
| 616 | unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+ | |
| 617 | with assms show ?thesis unfolding cinfinite_def cprod_def | |
| 618 | by (blast intro: card_of_Times_ordLeq_infinite_Field) | |
| 619 | qed | |
| 620 | ||
| 621 | lemma cprod_csum_cexp: | |
| 622 | "r1 *c r2 \<le>o (r1 +c r2) ^c ctwo" | |
| 623 | unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of | |
| 624 | proof - | |
| 625 | let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b" | |
| 626 | have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS") | |
| 627 | by (auto simp: inj_on_def fun_eq_iff split: bool.split) | |
| 628 | moreover | |
| 629 | have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS") | |
| 630 | by (auto simp: Func_def) | |
| 631 | ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast | |
| 632 | qed | |
| 633 | ||
| 634 | lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s" | |
| 635 | by (intro cprod_cinfinite_bound) | |
| 636 | (auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite]) | |
| 637 | ||
| 638 | lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t" | |
| 639 | unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range) | |
| 640 | ||
| 641 | lemma cprod_cexp_csum_cexp_Cinfinite: | |
| 642 | assumes t: "Cinfinite t" | |
| 643 | shows "(r *c s) ^c t \<le>o (r +c s) ^c t" | |
| 644 | proof - | |
| 645 | have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t" | |
| 646 | by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]]) | |
| 647 | also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)" | |
| 648 | by (rule cexp_cprod[OF Card_order_csum]) | |
| 649 | also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)" | |
| 650 | by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod]) | |
| 651 | also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo" | |
| 652 | by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]]) | |
| 653 | also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t" | |
| 654 | by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]]) | |
| 655 | finally show ?thesis . | |
| 656 | qed | |
| 657 | ||
| 658 | lemma Cfinite_cexp_Cinfinite: | |
| 659 | assumes s: "Cfinite s" and t: "Cinfinite t" | |
| 660 | shows "s ^c t \<le>o ctwo ^c t" | |
| 661 | proof (cases "s \<le>o ctwo") | |
| 662 | case True thus ?thesis using t by (blast intro: cexp_mono1) | |
| 663 | next | |
| 664 | case False | |
| 665 | hence "ctwo \<le>o s" by (metis card_order_on_well_order_on ctwo_Cnotzero ordLeq_total s) | |
| 666 | hence "Cnotzero s" by (metis Cnotzero_mono ctwo_Cnotzero s) | |
| 667 | hence st: "Cnotzero (s *c t)" by (metis Cinfinite_cprod2 cinfinite_not_czero t) | |
| 668 | have "s ^c t \<le>o (ctwo ^c s) ^c t" | |
| 669 | using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp]) | |
| 670 | also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)" | |
| 671 | by (blast intro: Card_order_ctwo cexp_cprod) | |
| 672 | also have "ctwo ^c (s *c t) \<le>o ctwo ^c t" | |
| 673 | using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo) | |
| 674 | finally show ?thesis . | |
| 675 | qed | |
| 676 | ||
| 677 | lemma csum_Cfinite_cexp_Cinfinite: | |
| 678 | assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t" | |
| 679 | shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t" | |
| 680 | proof (cases "Cinfinite r") | |
| 681 | case True | |
| 682 | hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s) | |
| 683 | hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1) | |
| 684 | also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r) | |
| 685 | finally show ?thesis . | |
| 686 | next | |
| 687 | case False | |
| 688 | with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto | |
| 689 | hence "Cfinite (r +c s)" by (intro Cfinite_csum s) | |
| 690 | hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t) | |
| 691 | also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t | |
| 692 | by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo) | |
| 693 | finally show ?thesis . | |
| 694 | qed | |
| 695 | ||
| 696 | (* cardSuc *) | |
| 697 | ||
| 698 | lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)" | |
| 699 | by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite) | |
| 700 | ||
| 701 | lemma cardSuc_UNION_Cinfinite: | |
| 702 | assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (UN i : Field (cardSuc r). As i)" "|B| <=o r" | |
| 703 | shows "EX i : Field (cardSuc r). B \<le> As i" | |
| 704 | using cardSuc_UNION assms unfolding cinfinite_def by blast | |
| 705 | ||
| 706 | end |