| author | paulson <lp15@cam.ac.uk> |
| Tue, 12 Jun 2018 16:08:57 +0100 | |
| changeset 68443 | 43055b016688 |
| parent 67443 | 3abf6a722518 |
| child 68445 | c183a6a69f2d |
| permissions | -rw-r--r-- |
| 14706 | 1 |
(* Title: HOL/Algebra/Coset.thy |
| 35849 | 2 |
Author: Florian Kammueller |
3 |
Author: L C Paulson |
|
4 |
Author: Stephan Hohe |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
5 |
*) |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
6 |
|
| 35849 | 7 |
theory Coset |
8 |
imports Group |
|
9 |
begin |
|
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
10 |
|
| 61382 | 11 |
section \<open>Cosets and Quotient Groups\<close> |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
12 |
|
| 35847 | 13 |
definition |
| 14963 | 14 |
r_coset :: "[_, 'a set, 'a] \<Rightarrow> 'a set" (infixl "#>\<index>" 60) |
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
15 |
where "H #>\<^bsub>G\<^esub> a = (\<Union>h\<in>H. {h \<otimes>\<^bsub>G\<^esub> a})"
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
16 |
|
| 35847 | 17 |
definition |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
18 |
l_coset :: "[_, 'a, 'a set] \<Rightarrow> 'a set" (infixl "<#\<index>" 60) |
|
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
19 |
where "a <#\<^bsub>G\<^esub> H = (\<Union>h\<in>H. {a \<otimes>\<^bsub>G\<^esub> h})"
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
20 |
|
| 35847 | 21 |
definition |
| 14963 | 22 |
RCOSETS :: "[_, 'a set] \<Rightarrow> ('a set)set" ("rcosets\<index> _" [81] 80)
|
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
23 |
where "rcosets\<^bsub>G\<^esub> H = (\<Union>a\<in>carrier G. {H #>\<^bsub>G\<^esub> a})"
|
| 14963 | 24 |
|
| 35847 | 25 |
definition |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
26 |
set_mult :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60) |
|
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
27 |
where "H <#>\<^bsub>G\<^esub> K = (\<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes>\<^bsub>G\<^esub> k})"
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
28 |
|
| 35847 | 29 |
definition |
| 14963 | 30 |
SET_INV :: "[_,'a set] \<Rightarrow> 'a set" ("set'_inv\<index> _" [81] 80)
|
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
31 |
where "set_inv\<^bsub>G\<^esub> H = (\<Union>h\<in>H. {inv\<^bsub>G\<^esub> h})"
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
32 |
|
| 14963 | 33 |
|
34 |
locale normal = subgroup + group + |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
35 |
assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
36 |
|
| 19380 | 37 |
abbreviation |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20318
diff
changeset
|
38 |
normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool" (infixl "\<lhd>" 60) where
|
| 19380 | 39 |
"H \<lhd> G \<equiv> normal H G" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
40 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
41 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
42 |
(* Next two lemmas contributed by Martin Baillon. *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
43 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
44 |
lemma l_coset_eq_set_mult: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
45 |
fixes G (structure) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
46 |
shows "x <# H = {x} <#> H"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
47 |
unfolding l_coset_def set_mult_def by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
48 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
49 |
lemma r_coset_eq_set_mult: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
50 |
fixes G (structure) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
51 |
shows "H #> x = H <#> {x}"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
52 |
unfolding r_coset_def set_mult_def by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
53 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
54 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
55 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
56 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
57 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
58 |
(* Next five lemmas contributed by Paulo Emílio de Vilhena. *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
59 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
60 |
lemma (in subgroup) rcosets_not_empty: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
61 |
assumes "R \<in> rcosets H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
62 |
shows "R \<noteq> {}"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
63 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
64 |
obtain g where "g \<in> carrier G" "R = H #> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
65 |
using assms unfolding RCOSETS_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
66 |
hence "\<one> \<otimes> g \<in> R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
67 |
using one_closed unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
68 |
thus ?thesis by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
69 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
70 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
71 |
lemma (in group) diff_neutralizes: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
72 |
assumes "subgroup H G" "R \<in> rcosets H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
73 |
shows "\<And>r1 r2. \<lbrakk> r1 \<in> R; r2 \<in> R \<rbrakk> \<Longrightarrow> r1 \<otimes> (inv r2) \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
74 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
75 |
fix r1 r2 assume r1: "r1 \<in> R" and r2: "r2 \<in> R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
76 |
obtain g where g: "g \<in> carrier G" "R = H #> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
77 |
using assms unfolding RCOSETS_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
78 |
then obtain h1 h2 where h1: "h1 \<in> H" "r1 = h1 \<otimes> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
79 |
and h2: "h2 \<in> H" "r2 = h2 \<otimes> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
80 |
using r1 r2 unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
81 |
hence "r1 \<otimes> (inv r2) = (h1 \<otimes> g) \<otimes> ((inv g) \<otimes> (inv h2))" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
82 |
using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by fastforce |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
83 |
also have " ... = (h1 \<otimes> (g \<otimes> inv g) \<otimes> inv h2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
84 |
using h1 h2 assms(1) g(1) inv_closed m_closed monoid.m_assoc |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
85 |
monoid_axioms subgroup.mem_carrier by smt |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
86 |
finally have "r1 \<otimes> inv r2 = h1 \<otimes> inv h2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
87 |
using assms(1) g(1) h1(1) subgroup.mem_carrier by fastforce |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
88 |
thus "r1 \<otimes> inv r2 \<in> H" by (metis assms(1) h1(1) h2(1) subgroup_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
89 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
90 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
91 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
92 |
subsection \<open>Stable Operations for Subgroups\<close> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
93 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
94 |
lemma (in group) subgroup_set_mult_equality[simp]: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
95 |
assumes "subgroup H G" "I \<subseteq> H" "J \<subseteq> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
96 |
shows "I <#>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> J = I <#> J" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
97 |
unfolding set_mult_def subgroup_mult_equality[OF assms(1)] by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
98 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
99 |
lemma (in group) subgroup_rcos_equality[simp]: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
100 |
assumes "subgroup H G" "I \<subseteq> H" "h \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
101 |
shows "I #>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> h = I #> h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
102 |
using subgroup_set_mult_equality by (simp add: r_coset_eq_set_mult assms) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
103 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
104 |
lemma (in group) subgroup_lcos_equality[simp]: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
105 |
assumes "subgroup H G" "I \<subseteq> H" "h \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
106 |
shows "h <#\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> I = h <# I" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
107 |
using subgroup_set_mult_equality by (simp add: l_coset_eq_set_mult assms) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
108 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
109 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
110 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
111 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
112 |
subsection \<open>Basic Properties of set_mult\<close> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
113 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
114 |
lemma (in group) setmult_subset_G: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
115 |
assumes "H \<subseteq> carrier G" "K \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
116 |
shows "H <#> K \<subseteq> carrier G" using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
117 |
by (auto simp add: set_mult_def subsetD) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
118 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
119 |
lemma (in monoid) set_mult_closed: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
120 |
assumes "H \<subseteq> carrier G" "K \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
121 |
shows "H <#> K \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
122 |
using assms by (auto simp add: set_mult_def subsetD) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
123 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
124 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
125 |
(* Next lemma contributed by Martin Baillon. *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
126 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
127 |
lemma (in group) set_mult_assoc: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
128 |
assumes "M \<subseteq> carrier G" "H \<subseteq> carrier G" "K \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
129 |
shows "(M <#> H) <#> K = M <#> (H <#> K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
130 |
proof |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
131 |
show "(M <#> H) <#> K \<subseteq> M <#> (H <#> K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
132 |
proof |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
133 |
fix x assume "x \<in> (M <#> H) <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
134 |
then obtain m h k where x: "m \<in> M" "h \<in> H" "k \<in> K" "x = (m \<otimes> h) \<otimes> k" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
135 |
unfolding set_mult_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
136 |
hence "x = m \<otimes> (h \<otimes> k)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
137 |
using assms m_assoc by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
138 |
thus "x \<in> M <#> (H <#> K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
139 |
unfolding set_mult_def using x by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
140 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
141 |
next |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
142 |
show "M <#> (H <#> K) \<subseteq> (M <#> H) <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
143 |
proof |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
144 |
fix x assume "x \<in> M <#> (H <#> K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
145 |
then obtain m h k where x: "m \<in> M" "h \<in> H" "k \<in> K" "x = m \<otimes> (h \<otimes> k)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
146 |
unfolding set_mult_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
147 |
hence "x = (m \<otimes> h) \<otimes> k" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
148 |
using assms m_assoc rev_subsetD by metis |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
149 |
thus "x \<in> (M <#> H) <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
150 |
unfolding set_mult_def using x by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
151 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
152 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
153 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
154 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
155 |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
156 |
|
| 61382 | 157 |
subsection \<open>Basic Properties of Cosets\<close> |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
158 |
|
| 14747 | 159 |
lemma (in group) coset_mult_assoc: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
160 |
assumes "M \<subseteq> carrier G" "g \<in> carrier G" "h \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
161 |
shows "(M #> g) #> h = M #> (g \<otimes> h)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
162 |
using assms by (force simp add: r_coset_def m_assoc) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
163 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
164 |
lemma (in group) coset_assoc: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
165 |
assumes "x \<in> carrier G" "y \<in> carrier G" "H \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
166 |
shows "x <# (H #> y) = (x <# H) #> y" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
167 |
using set_mult_assoc[of "{x}" H "{y}"]
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
168 |
by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult assms) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
169 |
|
| 14747 | 170 |
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M" |
171 |
by (force simp add: r_coset_def) |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
172 |
|
| 14747 | 173 |
lemma (in group) coset_mult_inv1: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
174 |
assumes "M #> (x \<otimes> (inv y)) = M" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
175 |
and "x \<in> carrier G" "y \<in> carrier G" "M \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
176 |
shows "M #> x = M #> y" using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
177 |
by (metis coset_mult_assoc group.inv_solve_right is_group subgroup_def subgroup_self) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
178 |
|
| 14747 | 179 |
lemma (in group) coset_mult_inv2: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
180 |
assumes "M #> x = M #> y" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
181 |
and "x \<in> carrier G" "y \<in> carrier G" "M \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
182 |
shows "M #> (x \<otimes> (inv y)) = M " using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
183 |
by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group r_inv) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
184 |
|
| 14747 | 185 |
lemma (in group) coset_join1: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
186 |
assumes "H #> x = H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
187 |
and "x \<in> carrier G" "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
188 |
shows "x \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
189 |
using assms r_coset_def l_one subgroup.one_closed sym by fastforce |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
190 |
|
| 14747 | 191 |
lemma (in group) solve_equation: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
192 |
assumes "subgroup H G" "x \<in> H" "y \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
193 |
shows "\<exists>h \<in> H. y = h \<otimes> x" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
194 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
195 |
have "y = (y \<otimes> (inv x)) \<otimes> x" using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
196 |
by (simp add: m_assoc subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
197 |
moreover have "y \<otimes> (inv x) \<in> H" using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
198 |
by (simp add: subgroup_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
199 |
ultimately show ?thesis by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
200 |
qed |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
201 |
|
| 14963 | 202 |
lemma (in group) repr_independence: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
203 |
assumes "y \<in> H #> x" "x \<in> carrier G" "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
204 |
shows "H #> x = H #> y" using assms |
| 14963 | 205 |
by (auto simp add: r_coset_def m_assoc [symmetric] |
206 |
subgroup.subset [THEN subsetD] |
|
207 |
subgroup.m_closed solve_equation) |
|
208 |
||
| 14747 | 209 |
lemma (in group) coset_join2: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
210 |
assumes "x \<in> carrier G" "subgroup H G" "x \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
211 |
shows "H #> x = H" using assms |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67091
diff
changeset
|
212 |
\<comment> \<open>Alternative proof is to put @{term "x=\<one>"} in \<open>repr_independence\<close>.\<close>
|
| 14963 | 213 |
by (force simp add: subgroup.m_closed r_coset_def solve_equation) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
214 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
215 |
lemma (in group) coset_join3: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
216 |
assumes "x \<in> carrier G" "subgroup H G" "x \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
217 |
shows "x <# H = H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
218 |
proof |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
219 |
have "\<And>h. h \<in> H \<Longrightarrow> x \<otimes> h \<in> H" using assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
220 |
by (simp add: subgroup.m_closed) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
221 |
thus "x <# H \<subseteq> H" unfolding l_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
222 |
next |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
223 |
have "\<And>h. h \<in> H \<Longrightarrow> x \<otimes> ((inv x) \<otimes> h) = h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
224 |
by (smt assms inv_closed l_one m_assoc r_inv subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
225 |
moreover have "\<And>h. h \<in> H \<Longrightarrow> (inv x) \<otimes> h \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
226 |
by (simp add: assms subgroup.m_closed subgroup.m_inv_closed) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
227 |
ultimately show "H \<subseteq> x <# H" unfolding l_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
228 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
229 |
|
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
230 |
lemma (in monoid) r_coset_subset_G: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
231 |
"\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> H #> x \<subseteq> carrier G" |
| 14747 | 232 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
233 |
|
| 14747 | 234 |
lemma (in group) rcosI: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
235 |
"\<lbrakk> h \<in> H; H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> h \<otimes> x \<in> H #> x" |
| 14747 | 236 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
237 |
|
| 14963 | 238 |
lemma (in group) rcosetsI: |
239 |
"\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H" |
|
240 |
by (auto simp add: RCOSETS_def) |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
241 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
242 |
lemma (in group) rcos_self: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
243 |
"\<lbrakk> x \<in> carrier G; subgroup H G \<rbrakk> \<Longrightarrow> x \<in> H #> x" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
244 |
by (metis l_one rcosI subgroup_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
245 |
|
| 61382 | 246 |
text (in group) \<open>Opposite of @{thm [source] "repr_independence"}\<close>
|
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
247 |
lemma (in group) repr_independenceD: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
248 |
assumes "subgroup H G" "y \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
249 |
and "H #> x = H #> y" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
250 |
shows "y \<in> H #> x" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
251 |
using assms by (simp add: rcos_self) |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
252 |
|
| 61382 | 253 |
text \<open>Elements of a right coset are in the carrier\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
254 |
lemma (in subgroup) elemrcos_carrier: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
255 |
assumes "group G" "a \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
256 |
and "a' \<in> H #> a" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
257 |
shows "a' \<in> carrier G" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
258 |
by (meson assms group.is_monoid monoid.r_coset_subset_G subset subsetCE) |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
259 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
260 |
lemma (in subgroup) rcos_const: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
261 |
assumes "group G" "h \<in> H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
262 |
shows "H #> h = H" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
263 |
using group.coset_join2[OF assms(1), of h H] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
264 |
by (simp add: assms(2) subgroup_axioms) |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
265 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
266 |
lemma (in subgroup) rcos_module_imp: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
267 |
assumes "group G" "x \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
268 |
and "x' \<in> H #> x" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
269 |
shows "(x' \<otimes> inv x) \<in> H" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
270 |
proof - |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
271 |
obtain h where h: "h \<in> H" "x' = h \<otimes> x" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
272 |
using assms(3) unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
273 |
hence "x' \<otimes> inv x = h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
274 |
by (metis assms elemrcos_carrier group.inv_solve_right mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
275 |
thus ?thesis using h by blast |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
276 |
qed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
277 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
278 |
lemma (in subgroup) rcos_module_rev: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
279 |
assumes "group G" "x \<in> carrier G" "x' \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
280 |
and "(x' \<otimes> inv x) \<in> H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
281 |
shows "x' \<in> H #> x" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
282 |
proof - |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
283 |
obtain h where h: "h \<in> H" "x' \<otimes> inv x = h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
284 |
using assms(4) unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
285 |
hence "x' = h \<otimes> x" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
286 |
by (metis assms group.inv_solve_right mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
287 |
thus ?thesis using h unfolding r_coset_def by blast |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
288 |
qed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
289 |
|
| 61382 | 290 |
text \<open>Module property of right cosets\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
291 |
lemma (in subgroup) rcos_module: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
292 |
assumes "group G" "x \<in> carrier G" "x' \<in> carrier G" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
293 |
shows "(x' \<in> H #> x) = (x' \<otimes> inv x \<in> H)" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
294 |
using rcos_module_rev rcos_module_imp assms by blast |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
295 |
|
| 61382 | 296 |
text \<open>Right cosets are subsets of the carrier.\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
297 |
lemma (in subgroup) rcosets_carrier: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
298 |
assumes "group G" "X \<in> rcosets H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
299 |
shows "X \<subseteq> carrier G" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
300 |
using assms elemrcos_carrier singletonD |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
301 |
subset_eq unfolding RCOSETS_def by force |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
302 |
|
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
303 |
|
| 61382 | 304 |
text \<open>Multiplication of general subsets\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
305 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
306 |
lemma (in comm_group) mult_subgroups: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
307 |
assumes "subgroup H G" and "subgroup K G" |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
308 |
shows "subgroup (H <#> K) G" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
309 |
proof (rule subgroup.intro) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
310 |
show "H <#> K \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
311 |
by (simp add: setmult_subset_G assms subgroup_imp_subset) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
312 |
next |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
313 |
have "\<one> \<otimes> \<one> \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
314 |
unfolding set_mult_def using assms subgroup.one_closed by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
315 |
thus "\<one> \<in> H <#> K" by simp |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
316 |
next |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
317 |
show "\<And>x. x \<in> H <#> K \<Longrightarrow> inv x \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
318 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
319 |
fix x assume "x \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
320 |
then obtain h k where hk: "h \<in> H" "k \<in> K" "x = h \<otimes> k" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
321 |
unfolding set_mult_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
322 |
hence "inv x = (inv k) \<otimes> (inv h)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
323 |
by (meson inv_mult_group assms subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
324 |
hence "inv x = (inv h) \<otimes> (inv k)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
325 |
by (metis hk inv_mult assms subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
326 |
thus "inv x \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
327 |
unfolding set_mult_def using hk assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
328 |
by (metis (no_types, lifting) UN_iff singletonI subgroup_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
329 |
qed |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
330 |
next |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
331 |
show "\<And>x y. x \<in> H <#> K \<Longrightarrow> y \<in> H <#> K \<Longrightarrow> x \<otimes> y \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
332 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
333 |
fix x y assume "x \<in> H <#> K" "y \<in> H <#> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
334 |
then obtain h1 k1 h2 k2 where h1k1: "h1 \<in> H" "k1 \<in> K" "x = h1 \<otimes> k1" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
335 |
and h2k2: "h2 \<in> H" "k2 \<in> K" "y = h2 \<otimes> k2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
336 |
unfolding set_mult_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
337 |
hence "x \<otimes> y = (h1 \<otimes> k1) \<otimes> (h2 \<otimes> k2)" by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
338 |
also have " ... = h1 \<otimes> (k1 \<otimes> h2) \<otimes> k2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
339 |
by (smt h1k1 h2k2 m_assoc m_closed assms subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
340 |
also have " ... = h1 \<otimes> (h2 \<otimes> k1) \<otimes> k2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
341 |
by (metis (no_types, hide_lams) assms m_comm h1k1(2) h2k2(1) subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
342 |
finally have "x \<otimes> y = (h1 \<otimes> h2) \<otimes> (k1 \<otimes> k2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
343 |
by (smt assms h1k1 h2k2 m_assoc monoid.m_closed monoid_axioms subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
344 |
thus "x \<otimes> y \<in> H <#> K" unfolding set_mult_def |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
345 |
using subgroup.m_closed[OF assms(1) h1k1(1) h2k2(1)] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
346 |
subgroup.m_closed[OF assms(2) h1k1(2) h2k2(2)] by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
347 |
qed |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
348 |
qed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
349 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
350 |
lemma (in subgroup) lcos_module_rev: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
351 |
assumes "group G" "x \<in> carrier G" "x' \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
352 |
and "(inv x \<otimes> x') \<in> H" |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
353 |
shows "x' \<in> x <# H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
354 |
proof - |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
355 |
obtain h where h: "h \<in> H" "inv x \<otimes> x' = h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
356 |
using assms(4) unfolding l_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
357 |
hence "x' = x \<otimes> h" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
358 |
by (metis assms group.inv_solve_left mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
359 |
thus ?thesis using h unfolding l_coset_def by blast |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
360 |
qed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
361 |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
362 |
|
| 61382 | 363 |
subsection \<open>Normal subgroups\<close> |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
364 |
|
| 14963 | 365 |
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G" |
366 |
by (simp add: normal_def subgroup_def) |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
367 |
|
| 14963 | 368 |
lemma (in group) normalI: |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
369 |
"subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G" |
| 41528 | 370 |
by (simp add: normal_def normal_axioms_def is_group) |
| 14963 | 371 |
|
372 |
lemma (in normal) inv_op_closed1: |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
373 |
assumes "x \<in> carrier G" and "h \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
374 |
shows "(inv x) \<otimes> h \<otimes> x \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
375 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
376 |
have "h \<otimes> x \<in> x <# H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
377 |
using assms coset_eq assms(1) unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
378 |
then obtain h' where "h' \<in> H" "h \<otimes> x = x \<otimes> h'" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
379 |
unfolding l_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
380 |
thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
381 |
qed |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
382 |
|
| 14963 | 383 |
lemma (in normal) inv_op_closed2: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
384 |
assumes "x \<in> carrier G" and "h \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
385 |
shows "x \<otimes> h \<otimes> (inv x) \<in> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
386 |
using assms inv_op_closed1 by (metis inv_closed inv_inv) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
387 |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
388 |
|
| 61382 | 389 |
text\<open>Alternative characterization of normal subgroups\<close> |
| 14747 | 390 |
lemma (in group) normal_inv_iff: |
391 |
"(N \<lhd> G) = |
|
| 67091 | 392 |
(subgroup N G \<and> (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))" |
| 14747 | 393 |
(is "_ = ?rhs") |
394 |
proof |
|
395 |
assume N: "N \<lhd> G" |
|
396 |
show ?rhs |
|
| 14963 | 397 |
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup) |
| 14747 | 398 |
next |
399 |
assume ?rhs |
|
400 |
hence sg: "subgroup N G" |
|
| 14963 | 401 |
and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto |
| 14747 | 402 |
hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset) |
403 |
show "N \<lhd> G" |
|
| 14963 | 404 |
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify) |
| 14747 | 405 |
fix x |
406 |
assume x: "x \<in> carrier G" |
|
| 15120 | 407 |
show "(\<Union>h\<in>N. {h \<otimes> x}) = (\<Union>h\<in>N. {x \<otimes> h})"
|
| 14747 | 408 |
proof |
| 15120 | 409 |
show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})"
|
| 14747 | 410 |
proof clarify |
411 |
fix n |
|
412 |
assume n: "n \<in> N" |
|
| 15120 | 413 |
show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})"
|
| 14747 | 414 |
proof |
| 14963 | 415 |
from closed [of "inv x"] |
416 |
show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n) |
|
417 |
show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}"
|
|
| 14747 | 418 |
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD]) |
419 |
qed |
|
420 |
qed |
|
421 |
next |
|
| 15120 | 422 |
show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})"
|
| 14747 | 423 |
proof clarify |
424 |
fix n |
|
425 |
assume n: "n \<in> N" |
|
| 15120 | 426 |
show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})"
|
| 14747 | 427 |
proof |
| 14963 | 428 |
show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed) |
429 |
show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}"
|
|
| 14747 | 430 |
by (simp add: x n m_assoc sb [THEN subsetD]) |
431 |
qed |
|
432 |
qed |
|
433 |
qed |
|
434 |
qed |
|
435 |
qed |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
436 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
437 |
corollary (in group) normal_invI: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
438 |
assumes "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
439 |
shows "N \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
440 |
using assms normal_inv_iff by blast |
| 14963 | 441 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
442 |
corollary (in group) normal_invE: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
443 |
assumes "N \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
444 |
shows "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
445 |
using assms normal_inv_iff apply blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
446 |
by (simp add: assms normal.inv_op_closed2) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
447 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
448 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
449 |
lemma (in group) one_is_normal : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
450 |
"{\<one>} \<lhd> G"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
451 |
proof(intro normal_invI ) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
452 |
show "subgroup {\<one>} G"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
453 |
by (simp add: subgroup_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
454 |
show "\<And>x h. x \<in> carrier G \<Longrightarrow> h \<in> {\<one>} \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> {\<one>}" by simp
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
455 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
456 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
457 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
458 |
subsection\<open>More Properties of Left Cosets\<close> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
459 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
460 |
lemma (in group) l_repr_independence: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
461 |
assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
462 |
shows "x <# H = y <# H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
463 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
464 |
obtain h' where h': "h' \<in> H" "y = x \<otimes> h'" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
465 |
using assms(1) unfolding l_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
466 |
hence "\<And> h. h \<in> H \<Longrightarrow> x \<otimes> h = y \<otimes> ((inv h') \<otimes> h)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
467 |
by (smt assms(2-3) inv_closed inv_solve_right m_assoc m_closed subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
468 |
hence "\<And> xh. xh \<in> x <# H \<Longrightarrow> xh \<in> y <# H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
469 |
unfolding l_coset_def by (metis (no_types, lifting) UN_iff assms(3) h'(1) subgroup_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
470 |
moreover have "\<And> h. h \<in> H \<Longrightarrow> y \<otimes> h = x \<otimes> (h' \<otimes> h)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
471 |
using h' by (meson assms(2) assms(3) m_assoc subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
472 |
hence "\<And> yh. yh \<in> y <# H \<Longrightarrow> yh \<in> x <# H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
473 |
unfolding l_coset_def using subgroup.m_closed[OF assms(3) h'(1)] by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
474 |
ultimately show ?thesis by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
475 |
qed |
| 14803 | 476 |
|
| 14747 | 477 |
lemma (in group) lcos_m_assoc: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
478 |
"\<lbrakk> M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G \<rbrakk> \<Longrightarrow> g <# (h <# M) = (g \<otimes> h) <# M" |
| 14747 | 479 |
by (force simp add: l_coset_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
480 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
481 |
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G \<Longrightarrow> \<one> <# M = M" |
| 14747 | 482 |
by (force simp add: l_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
483 |
|
| 14747 | 484 |
lemma (in group) l_coset_subset_G: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
485 |
"\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> x <# H \<subseteq> carrier G" |
| 14747 | 486 |
by (auto simp add: l_coset_def subsetD) |
487 |
||
488 |
lemma (in group) l_coset_carrier: |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
489 |
"\<lbrakk> y \<in> x <# H; x \<in> carrier G; subgroup H G \<rbrakk> \<Longrightarrow> y \<in> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
490 |
by (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD] subgroup.m_closed) |
| 14530 | 491 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
492 |
lemma (in group) l_coset_swap: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
493 |
assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
494 |
shows "x \<in> y <# H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
495 |
using assms(2) l_repr_independence[OF assms] subgroup.one_closed[OF assms(3)] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
496 |
unfolding l_coset_def by fastforce |
| 14530 | 497 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
498 |
lemma (in group) subgroup_mult_id: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
499 |
assumes "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
500 |
shows "H <#> H = H" |
| 14666 | 501 |
proof |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
502 |
show "H <#> H \<subseteq> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
503 |
unfolding set_mult_def using subgroup.m_closed[OF assms] by (simp add: UN_subset_iff) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
504 |
show "H \<subseteq> H <#> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
505 |
proof |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
506 |
fix x assume x: "x \<in> H" thus "x \<in> H <#> H" unfolding set_mult_def |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
507 |
using subgroup.m_closed[OF assms subgroup.one_closed[OF assms] x] subgroup.one_closed[OF assms] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
508 |
by (smt UN_iff assms coset_join3 l_coset_def subgroup.mem_carrier) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
509 |
qed |
| 14530 | 510 |
qed |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
511 |
|
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
512 |
|
| 63167 | 513 |
subsubsection \<open>Set of Inverses of an \<open>r_coset\<close>.\<close> |
| 14666 | 514 |
|
| 14963 | 515 |
lemma (in normal) rcos_inv: |
516 |
assumes x: "x \<in> carrier G" |
|
517 |
shows "set_inv (H #> x) = H #> (inv x)" |
|
518 |
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe) |
|
519 |
fix h |
|
| 41528 | 520 |
assume h: "h \<in> H" |
| 15120 | 521 |
show "inv x \<otimes> inv h \<in> (\<Union>j\<in>H. {j \<otimes> inv x})"
|
| 14963 | 522 |
proof |
523 |
show "inv x \<otimes> inv h \<otimes> x \<in> H" |
|
| 41528 | 524 |
by (simp add: inv_op_closed1 h x) |
| 14963 | 525 |
show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}"
|
| 41528 | 526 |
by (simp add: h x m_assoc) |
| 14963 | 527 |
qed |
| 15120 | 528 |
show "h \<otimes> inv x \<in> (\<Union>j\<in>H. {inv x \<otimes> inv j})"
|
| 14963 | 529 |
proof |
530 |
show "x \<otimes> inv h \<otimes> inv x \<in> H" |
|
| 41528 | 531 |
by (simp add: inv_op_closed2 h x) |
| 14963 | 532 |
show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}"
|
| 41528 | 533 |
by (simp add: h x m_assoc [symmetric] inv_mult_group) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
534 |
qed |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
535 |
qed |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
536 |
|
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
537 |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
538 |
subsubsection \<open>Theorems for \<open><#>\<close> with \<open>#>\<close> or \<open><#\<close>.\<close> |
| 14666 | 539 |
|
| 14747 | 540 |
lemma (in group) setmult_rcos_assoc: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
541 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
542 |
H <#> (K #> x) = (H <#> K) #> x" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
543 |
using set_mult_assoc[of H K "{x}"] by (simp add: r_coset_eq_set_mult)
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
544 |
|
| 14747 | 545 |
lemma (in group) rcos_assoc_lcos: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
546 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
547 |
(H #> x) <#> K = H <#> (x <# K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
548 |
using set_mult_assoc[of H "{x}" K]
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
549 |
by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
550 |
|
| 14963 | 551 |
lemma (in normal) rcos_mult_step1: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
552 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
553 |
(H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
554 |
by (simp add: setmult_rcos_assoc r_coset_subset_G |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
555 |
subset l_coset_subset_G rcos_assoc_lcos) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
556 |
|
| 14963 | 557 |
lemma (in normal) rcos_mult_step2: |
558 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
559 |
\<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y" |
| 14963 | 560 |
by (insert coset_eq, simp add: normal_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
561 |
|
| 14963 | 562 |
lemma (in normal) rcos_mult_step3: |
563 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
564 |
\<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)" |
| 14963 | 565 |
by (simp add: setmult_rcos_assoc coset_mult_assoc |
| 41528 | 566 |
subgroup_mult_id normal.axioms subset normal_axioms) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
567 |
|
| 14963 | 568 |
lemma (in normal) rcos_sum: |
569 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
570 |
\<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
571 |
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3) |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
572 |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
573 |
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M" |
| 63167 | 574 |
\<comment> \<open>generalizes \<open>subgroup_mult_id\<close>\<close> |
| 14963 | 575 |
by (auto simp add: RCOSETS_def subset |
| 41528 | 576 |
setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms) |
| 14963 | 577 |
|
578 |
||
| 61382 | 579 |
subsubsection\<open>An Equivalence Relation\<close> |
| 14963 | 580 |
|
| 35847 | 581 |
definition |
582 |
r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set" ("rcong\<index> _")
|
|
| 67091 | 583 |
where "rcong\<^bsub>G\<^esub> H = {(x,y). x \<in> carrier G \<and> y \<in> carrier G \<and> inv\<^bsub>G\<^esub> x \<otimes>\<^bsub>G\<^esub> y \<in> H}"
|
| 14963 | 584 |
|
585 |
||
586 |
lemma (in subgroup) equiv_rcong: |
|
| 27611 | 587 |
assumes "group G" |
| 14963 | 588 |
shows "equiv (carrier G) (rcong H)" |
| 27611 | 589 |
proof - |
| 29237 | 590 |
interpret group G by fact |
| 27611 | 591 |
show ?thesis |
| 40815 | 592 |
proof (intro equivI) |
| 30198 | 593 |
show "refl_on (carrier G) (rcong H)" |
594 |
by (auto simp add: r_congruent_def refl_on_def) |
|
| 27611 | 595 |
next |
596 |
show "sym (rcong H)" |
|
597 |
proof (simp add: r_congruent_def sym_def, clarify) |
|
598 |
fix x y |
|
599 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" |
|
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31727
diff
changeset
|
600 |
and "inv x \<otimes> y \<in> H" |
| 46721 | 601 |
hence "inv (inv x \<otimes> y) \<in> H" by simp |
| 27611 | 602 |
thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group) |
603 |
qed |
|
604 |
next |
|
605 |
show "trans (rcong H)" |
|
606 |
proof (simp add: r_congruent_def trans_def, clarify) |
|
607 |
fix x y z |
|
608 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31727
diff
changeset
|
609 |
and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H" |
| 27611 | 610 |
hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp |
| 27698 | 611 |
hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31727
diff
changeset
|
612 |
by (simp add: m_assoc del: r_inv Units_r_inv) |
| 27611 | 613 |
thus "inv x \<otimes> z \<in> H" by simp |
614 |
qed |
|
| 14963 | 615 |
qed |
616 |
qed |
|
617 |
||
| 63167 | 618 |
text\<open>Equivalence classes of \<open>rcong\<close> correspond to left cosets. |
| 14963 | 619 |
Was there a mistake in the definitions? I'd have expected them to |
| 61382 | 620 |
correspond to right cosets.\<close> |
| 14963 | 621 |
|
622 |
(* CB: This is correct, but subtle. |
|
623 |
We call H #> a the right coset of a relative to H. According to |
|
624 |
Jacobson, this is what the majority of group theory literature does. |
|
625 |
He then defines the notion of congruence relation ~ over monoids as |
|
626 |
equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'. |
|
627 |
Our notion of right congruence induced by K: rcong K appears only in |
|
628 |
the context where K is a normal subgroup. Jacobson doesn't name it. |
|
629 |
But in this context left and right cosets are identical. |
|
630 |
*) |
|
631 |
||
632 |
lemma (in subgroup) l_coset_eq_rcong: |
|
| 27611 | 633 |
assumes "group G" |
| 14963 | 634 |
assumes a: "a \<in> carrier G" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
635 |
shows "a <# H = (rcong H) `` {a}"
|
| 27611 | 636 |
proof - |
| 29237 | 637 |
interpret group G by fact |
| 27611 | 638 |
show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) |
639 |
qed |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
640 |
|
| 35849 | 641 |
|
| 61382 | 642 |
subsubsection\<open>Two Distinct Right Cosets are Disjoint\<close> |
| 14803 | 643 |
|
644 |
lemma (in group) rcos_equation: |
|
| 27611 | 645 |
assumes "subgroup H G" |
646 |
assumes p: "ha \<otimes> a = h \<otimes> b" "a \<in> carrier G" "b \<in> carrier G" "h \<in> H" "ha \<in> H" "hb \<in> H" |
|
647 |
shows "hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})"
|
|
648 |
proof - |
|
| 29237 | 649 |
interpret subgroup H G by fact |
| 27611 | 650 |
from p show ?thesis apply (rule_tac UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"]) |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
651 |
apply blast by (simp add: inv_solve_left m_assoc) |
| 27611 | 652 |
qed |
| 14803 | 653 |
|
654 |
lemma (in group) rcos_disjoint: |
|
| 27611 | 655 |
assumes "subgroup H G" |
656 |
assumes p: "a \<in> rcosets H" "b \<in> rcosets H" "a\<noteq>b" |
|
657 |
shows "a \<inter> b = {}"
|
|
658 |
proof - |
|
| 29237 | 659 |
interpret subgroup H G by fact |
| 41528 | 660 |
from p show ?thesis |
661 |
apply (simp add: RCOSETS_def r_coset_def) |
|
662 |
apply (blast intro: rcos_equation assms sym) |
|
| 27611 | 663 |
done |
664 |
qed |
|
| 14803 | 665 |
|
| 35849 | 666 |
|
| 63167 | 667 |
subsection \<open>Further lemmas for \<open>r_congruent\<close>\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
668 |
|
| 61382 | 669 |
text \<open>The relation is a congruence\<close> |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
670 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
671 |
lemma (in normal) congruent_rcong: |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
672 |
shows "congruent2 (rcong H) (rcong H) (\<lambda>a b. a \<otimes> b <# H)" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
673 |
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
674 |
fix a b c |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
675 |
assume abrcong: "(a, b) \<in> rcong H" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
676 |
and ccarr: "c \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
677 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
678 |
from abrcong |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
679 |
have acarr: "a \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
680 |
and bcarr: "b \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
681 |
and abH: "inv a \<otimes> b \<in> H" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
682 |
unfolding r_congruent_def |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
683 |
by fast+ |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
684 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
685 |
note carr = acarr bcarr ccarr |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
686 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
687 |
from ccarr and abH |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
688 |
have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c \<in> H" by (rule inv_op_closed1) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
689 |
moreover |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
690 |
from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
691 |
have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c = (inv c \<otimes> inv a) \<otimes> (b \<otimes> c)" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
692 |
by (force cong: m_assoc) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
693 |
moreover |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
694 |
from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
695 |
have "\<dots> = (inv (a \<otimes> c)) \<otimes> (b \<otimes> c)" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
696 |
by (simp add: inv_mult_group) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
697 |
ultimately |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
698 |
have "(inv (a \<otimes> c)) \<otimes> (b \<otimes> c) \<in> H" by simp |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
699 |
from carr and this |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
700 |
have "(b \<otimes> c) \<in> (a \<otimes> c) <# H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
701 |
by (simp add: lcos_module_rev[OF is_group]) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
702 |
from carr and this and is_subgroup |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
703 |
show "(a \<otimes> c) <# H = (b \<otimes> c) <# H" by (intro l_repr_independence, simp+) |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
704 |
next |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
705 |
fix a b c |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
706 |
assume abrcong: "(a, b) \<in> rcong H" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
707 |
and ccarr: "c \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
708 |
|
| 46721 | 709 |
from ccarr have "c \<in> Units G" by simp |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
710 |
hence cinvc_one: "inv c \<otimes> c = \<one>" by (rule Units_l_inv) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
711 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
712 |
from abrcong |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
713 |
have acarr: "a \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
714 |
and bcarr: "b \<in> carrier G" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
715 |
and abH: "inv a \<otimes> b \<in> H" |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
716 |
by (unfold r_congruent_def, fast+) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
717 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
718 |
note carr = acarr bcarr ccarr |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
719 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
720 |
from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
721 |
have "inv a \<otimes> b = inv a \<otimes> (\<one> \<otimes> b)" by simp |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
722 |
also from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
723 |
have "\<dots> = inv a \<otimes> (inv c \<otimes> c) \<otimes> b" by simp |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
724 |
also from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
725 |
have "\<dots> = (inv a \<otimes> inv c) \<otimes> (c \<otimes> b)" by (force cong: m_assoc) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
726 |
also from carr and inv_closed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
727 |
have "\<dots> = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" by (simp add: inv_mult_group) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
728 |
finally |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
729 |
have "inv a \<otimes> b = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" . |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
730 |
from abH and this |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
731 |
have "inv (c \<otimes> a) \<otimes> (c \<otimes> b) \<in> H" by simp |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
732 |
|
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
733 |
from carr and this |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
734 |
have "(c \<otimes> b) \<in> (c \<otimes> a) <# H" |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
735 |
by (simp add: lcos_module_rev[OF is_group]) |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
736 |
from carr and this and is_subgroup |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
737 |
show "(c \<otimes> a) <# H = (c \<otimes> b) <# H" by (intro l_repr_independence, simp+) |
|
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
738 |
qed |
|
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
19931
diff
changeset
|
739 |
|
| 14803 | 740 |
|
| 61382 | 741 |
subsection \<open>Order of a Group and Lagrange's Theorem\<close> |
| 14803 | 742 |
|
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
743 |
definition |
|
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
744 |
order :: "('a, 'b) monoid_scheme \<Rightarrow> nat"
|
|
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
745 |
where "order S = card (carrier S)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
746 |
|
| 61628 | 747 |
lemma (in monoid) order_gt_0_iff_finite: "0 < order G \<longleftrightarrow> finite (carrier G)" |
748 |
by(auto simp add: order_def card_gt_0_iff) |
|
749 |
||
| 14963 | 750 |
lemma (in group) rcosets_part_G: |
| 27611 | 751 |
assumes "subgroup H G" |
| 14963 | 752 |
shows "\<Union>(rcosets H) = carrier G" |
| 27611 | 753 |
proof - |
| 29237 | 754 |
interpret subgroup H G by fact |
| 27611 | 755 |
show ?thesis |
756 |
apply (rule equalityI) |
|
757 |
apply (force simp add: RCOSETS_def r_coset_def) |
|
| 41528 | 758 |
apply (auto simp add: RCOSETS_def intro: rcos_self assms) |
| 27611 | 759 |
done |
760 |
qed |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
761 |
|
| 14747 | 762 |
lemma (in group) cosets_finite: |
| 14963 | 763 |
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite (carrier G)\<rbrakk> \<Longrightarrow> finite c" |
764 |
apply (auto simp add: RCOSETS_def) |
|
765 |
apply (simp add: r_coset_subset_G [THEN finite_subset]) |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
766 |
done |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
767 |
|
| 63167 | 768 |
text\<open>The next two lemmas support the proof of \<open>card_cosets_equal\<close>.\<close> |
| 14747 | 769 |
lemma (in group) inj_on_f: |
| 14963 | 770 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
771 |
apply (rule inj_onI) |
| 67091 | 772 |
apply (subgoal_tac "x \<in> carrier G \<and> y \<in> carrier G") |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
773 |
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD]) |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
774 |
apply (simp add: subsetD) |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
775 |
done |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
776 |
|
| 14747 | 777 |
lemma (in group) inj_on_g: |
| 14963 | 778 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
779 |
by (force simp add: inj_on_def subsetD) |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
780 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
781 |
(* ************************************************************************** *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
782 |
|
| 14747 | 783 |
lemma (in group) card_cosets_equal: |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
784 |
assumes "R \<in> rcosets H" "H \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
785 |
shows "\<exists>f. bij_betw f H R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
786 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
787 |
obtain g where g: "g \<in> carrier G" "R = H #> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
788 |
using assms(1) unfolding RCOSETS_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
789 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
790 |
let ?f = "\<lambda>h. h \<otimes> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
791 |
have "\<And>r. r \<in> R \<Longrightarrow> \<exists>h \<in> H. ?f h = r" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
792 |
proof - |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
793 |
fix r assume "r \<in> R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
794 |
then obtain h where "h \<in> H" "r = h \<otimes> g" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
795 |
using g unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
796 |
thus "\<exists>h \<in> H. ?f h = r" by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
797 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
798 |
hence "R \<subseteq> ?f ` H" by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
799 |
moreover have "?f ` H \<subseteq> R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
800 |
using g unfolding r_coset_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
801 |
ultimately show ?thesis using inj_on_g unfolding bij_betw_def |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
802 |
using assms(2) g(1) by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
803 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
804 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
805 |
corollary (in group) card_rcosets_equal: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
806 |
assumes "R \<in> rcosets H" "H \<subseteq> carrier G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
807 |
shows "card H = card R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
808 |
using card_cosets_equal assms bij_betw_same_card by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
809 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
810 |
corollary (in group) rcosets_finite: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
811 |
assumes "R \<in> rcosets H" "H \<subseteq> carrier G" "finite H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
812 |
shows "finite R" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
813 |
using card_cosets_equal assms bij_betw_finite is_group by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
814 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
815 |
(* ************************************************************************** *) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
816 |
|
| 14963 | 817 |
lemma (in group) rcosets_subset_PowG: |
818 |
"subgroup H G \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)" |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
819 |
using rcosets_part_G by auto |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
820 |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
821 |
proposition (in group) lagrange_finite: |
| 14963 | 822 |
"\<lbrakk>finite(carrier G); subgroup H G\<rbrakk> |
823 |
\<Longrightarrow> card(rcosets H) * card(H) = order(G)" |
|
824 |
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric]) |
|
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
46721
diff
changeset
|
825 |
apply (subst mult.commute) |
| 14803 | 826 |
apply (rule card_partition) |
| 14963 | 827 |
apply (simp add: rcosets_subset_PowG [THEN finite_subset]) |
828 |
apply (simp add: rcosets_part_G) |
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
829 |
apply (simp add: card_rcosets_equal subgroup_imp_subset) |
| 14803 | 830 |
apply (simp add: rcos_disjoint) |
831 |
done |
|
832 |
||
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
833 |
theorem (in group) lagrange: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
834 |
assumes "subgroup H G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
835 |
shows "card (rcosets H) * card H = order G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
836 |
proof (cases "finite (carrier G)") |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
837 |
case True thus ?thesis using lagrange_finite assms by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
838 |
next |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
839 |
case False note inf_G = this |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
840 |
thus ?thesis |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
841 |
proof (cases "finite H") |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
842 |
case False thus ?thesis using inf_G by (simp add: order_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
843 |
next |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
844 |
case True note finite_H = this |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
845 |
have "infinite (rcosets H)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
846 |
proof (rule ccontr) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
847 |
assume "\<not> infinite (rcosets H)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
848 |
hence finite_rcos: "finite (rcosets H)" by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
849 |
hence "card (\<Union>(rcosets H)) = (\<Sum>R\<in>(rcosets H). card R)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
850 |
using card_Union_disjoint[of "rcosets H"] finite_H rcos_disjoint[OF assms(1)] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
851 |
rcosets_finite[where ?H = H] by (simp add: assms subgroup_imp_subset) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
852 |
hence "order G = (\<Sum>R\<in>(rcosets H). card R)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
853 |
by (simp add: assms order_def rcosets_part_G) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
854 |
hence "order G = (\<Sum>R\<in>(rcosets H). card H)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
855 |
using card_rcosets_equal by (simp add: assms subgroup_imp_subset) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
856 |
hence "order G = (card H) * (card (rcosets H))" by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
857 |
hence "order G \<noteq> 0" using finite_rcos finite_H assms ex_in_conv |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
858 |
rcosets_part_G subgroup.one_closed by fastforce |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
859 |
thus False using inf_G order_gt_0_iff_finite by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
860 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
861 |
thus ?thesis using inf_G by (simp add: order_def) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
862 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
863 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
864 |
|
| 14803 | 865 |
|
| 61382 | 866 |
subsection \<open>Quotient Groups: Factorization of a Group\<close> |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
867 |
|
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
868 |
definition |
|
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
869 |
FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "Mod" 65)
|
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67091
diff
changeset
|
870 |
\<comment> \<open>Actually defined for groups rather than monoids\<close> |
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
871 |
where "FactGroup G H = \<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>" |
| 14747 | 872 |
|
| 14963 | 873 |
lemma (in normal) setmult_closed: |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
874 |
"\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H" |
| 14963 | 875 |
by (auto simp add: rcos_sum RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
876 |
|
| 14963 | 877 |
lemma (in normal) setinv_closed: |
878 |
"K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H" |
|
879 |
by (auto simp add: rcos_inv RCOSETS_def) |
|
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
880 |
|
| 14963 | 881 |
lemma (in normal) rcosets_assoc: |
882 |
"\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk> |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
883 |
\<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)" |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
884 |
by (simp add: group.set_mult_assoc is_group rcosets_carrier) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
885 |
|
| 14963 | 886 |
lemma (in subgroup) subgroup_in_rcosets: |
| 27611 | 887 |
assumes "group G" |
| 14963 | 888 |
shows "H \<in> rcosets H" |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
889 |
proof - |
| 29237 | 890 |
interpret group G by fact |
| 26203 | 891 |
from _ subgroup_axioms have "H #> \<one> = H" |
| 23350 | 892 |
by (rule coset_join2) auto |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
893 |
then show ?thesis |
| 14963 | 894 |
by (auto simp add: RCOSETS_def) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
895 |
qed |
|
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
896 |
|
| 14963 | 897 |
lemma (in normal) rcosets_inv_mult_group_eq: |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
898 |
"M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H" |
| 41528 | 899 |
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms normal_axioms) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
900 |
|
| 14963 | 901 |
theorem (in normal) factorgroup_is_group: |
902 |
"group (G Mod H)" |
|
| 14666 | 903 |
apply (simp add: FactGroup_def) |
| 13936 | 904 |
apply (rule groupI) |
| 14747 | 905 |
apply (simp add: setmult_closed) |
| 14963 | 906 |
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group]) |
907 |
apply (simp add: restrictI setmult_closed rcosets_assoc) |
|
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
908 |
apply (simp add: normal_imp_subgroup |
| 14963 | 909 |
subgroup_in_rcosets rcosets_mult_eq) |
910 |
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed) |
|
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
911 |
done |
|
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
912 |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
913 |
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'" |
| 14803 | 914 |
by (simp add: FactGroup_def) |
915 |
||
| 14963 | 916 |
lemma (in normal) inv_FactGroup: |
917 |
"X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X" |
|
| 14747 | 918 |
apply (rule group.inv_equality [OF factorgroup_is_group]) |
| 14963 | 919 |
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq) |
| 14747 | 920 |
done |
921 |
||
| 61382 | 922 |
text\<open>The coset map is a homomorphism from @{term G} to the quotient group
|
923 |
@{term "G Mod H"}\<close>
|
|
| 14963 | 924 |
lemma (in normal) r_coset_hom_Mod: |
925 |
"(\<lambda>a. H #> a) \<in> hom G (G Mod H)" |
|
926 |
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum) |
|
| 14747 | 927 |
|
| 14963 | 928 |
|
| 61382 | 929 |
subsection\<open>The First Isomorphism Theorem\<close> |
| 14803 | 930 |
|
| 61382 | 931 |
text\<open>The quotient by the kernel of a homomorphism is isomorphic to the |
932 |
range of that homomorphism.\<close> |
|
| 14803 | 933 |
|
|
35848
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
934 |
definition |
|
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
wenzelm
parents:
35847
diff
changeset
|
935 |
kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set"
|
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67091
diff
changeset
|
936 |
\<comment> \<open>the kernel of a homomorphism\<close> |
| 67091 | 937 |
where "kernel G H h = {x. x \<in> carrier G \<and> h x = \<one>\<^bsub>H\<^esub>}"
|
| 14803 | 938 |
|
939 |
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G" |
|
| 14963 | 940 |
apply (rule subgroup.intro) |
| 41528 | 941 |
apply (auto simp add: kernel_def group.intro is_group) |
| 14803 | 942 |
done |
943 |
||
| 61382 | 944 |
text\<open>The kernel of a homomorphism is a normal subgroup\<close> |
| 14963 | 945 |
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G" |
|
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
946 |
apply (simp add: G.normal_inv_iff subgroup_kernel) |
|
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
947 |
apply (simp add: kernel_def) |
| 14803 | 948 |
done |
949 |
||
950 |
lemma (in group_hom) FactGroup_nonempty: |
|
951 |
assumes X: "X \<in> carrier (G Mod kernel G H h)" |
|
952 |
shows "X \<noteq> {}"
|
|
953 |
proof - |
|
954 |
from X |
|
955 |
obtain g where "g \<in> carrier G" |
|
956 |
and "X = kernel G H h #> g" |
|
| 14963 | 957 |
by (auto simp add: FactGroup_def RCOSETS_def) |
| 14803 | 958 |
thus ?thesis |
| 14963 | 959 |
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one) |
| 14803 | 960 |
qed |
961 |
||
962 |
||
| 39910 | 963 |
lemma (in group_hom) FactGroup_the_elem_mem: |
| 14803 | 964 |
assumes X: "X \<in> carrier (G Mod (kernel G H h))" |
| 39910 | 965 |
shows "the_elem (h`X) \<in> carrier H" |
| 14803 | 966 |
proof - |
967 |
from X |
|
968 |
obtain g where g: "g \<in> carrier G" |
|
969 |
and "X = kernel G H h #> g" |
|
| 14963 | 970 |
by (auto simp add: FactGroup_def RCOSETS_def) |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
971 |
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!: imageI)
|
| 14803 | 972 |
thus ?thesis by (auto simp add: g) |
973 |
qed |
|
974 |
||
975 |
lemma (in group_hom) FactGroup_hom: |
|
| 39910 | 976 |
"(\<lambda>X. the_elem (h`X)) \<in> hom (G Mod (kernel G H h)) H" |
977 |
apply (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed) |
|
| 31727 | 978 |
proof (intro ballI) |
| 14803 | 979 |
fix X and X' |
980 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
981 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
982 |
then |
|
983 |
obtain g and g' |
|
984 |
where "g \<in> carrier G" and "g' \<in> carrier G" |
|
985 |
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'" |
|
| 14963 | 986 |
by (auto simp add: FactGroup_def RCOSETS_def) |
| 14803 | 987 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
988 |
and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G" |
|
989 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
990 |
hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
|
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
991 |
by (auto dest!: FactGroup_nonempty intro!: image_eqI |
|
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
992 |
simp add: set_mult_def |
| 14803 | 993 |
subsetD [OF Xsub] subsetD [OF X'sub]) |
|
65035
b46fe5138cb0
backed out unintended effects of 8355a6e2df79 in src/HOL/Algebra
haftmann
parents:
64587
diff
changeset
|
994 |
then show "the_elem (h ` (X <#> X')) = the_elem (h ` X) \<otimes>\<^bsub>H\<^esub> the_elem (h ` X')" |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
995 |
by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique) |
| 14803 | 996 |
qed |
997 |
||
| 14963 | 998 |
|
| 61382 | 999 |
text\<open>Lemma for the following injectivity result\<close> |
| 14803 | 1000 |
lemma (in group_hom) FactGroup_subset: |
| 14963 | 1001 |
"\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk> |
1002 |
\<Longrightarrow> kernel G H h #> g \<subseteq> kernel G H h #> g'" |
|
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1003 |
apply (clarsimp simp add: kernel_def r_coset_def) |
| 14803 | 1004 |
apply (rename_tac y) |
1005 |
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) |
|
| 26310 | 1006 |
apply (simp add: G.m_assoc) |
| 14803 | 1007 |
done |
1008 |
||
1009 |
lemma (in group_hom) FactGroup_inj_on: |
|
| 39910 | 1010 |
"inj_on (\<lambda>X. the_elem (h ` X)) (carrier (G Mod kernel G H h))" |
| 14803 | 1011 |
proof (simp add: inj_on_def, clarify) |
1012 |
fix X and X' |
|
1013 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
1014 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
1015 |
then |
|
1016 |
obtain g and g' |
|
1017 |
where gX: "g \<in> carrier G" "g' \<in> carrier G" |
|
1018 |
"X = kernel G H h #> g" "X' = kernel G H h #> g'" |
|
| 14963 | 1019 |
by (auto simp add: FactGroup_def RCOSETS_def) |
| 14803 | 1020 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
1021 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
| 39910 | 1022 |
assume "the_elem (h ` X) = the_elem (h ` X')" |
| 14803 | 1023 |
hence h: "h g = h g'" |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1024 |
by (simp add: all FactGroup_nonempty X X' the_elem_image_unique) |
| 14803 | 1025 |
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX) |
1026 |
qed |
|
1027 |
||
| 61382 | 1028 |
text\<open>If the homomorphism @{term h} is onto @{term H}, then so is the
|
1029 |
homomorphism from the quotient group\<close> |
|
| 14803 | 1030 |
lemma (in group_hom) FactGroup_onto: |
1031 |
assumes h: "h ` carrier G = carrier H" |
|
| 39910 | 1032 |
shows "(\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h) = carrier H" |
| 14803 | 1033 |
proof |
| 39910 | 1034 |
show "(\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H" |
1035 |
by (auto simp add: FactGroup_the_elem_mem) |
|
1036 |
show "carrier H \<subseteq> (\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)" |
|
| 14803 | 1037 |
proof |
1038 |
fix y |
|
1039 |
assume y: "y \<in> carrier H" |
|
1040 |
with h obtain g where g: "g \<in> carrier G" "h g = y" |
|
| 26310 | 1041 |
by (blast elim: equalityE) |
| 15120 | 1042 |
hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}"
|
| 14803 | 1043 |
by (auto simp add: y kernel_def r_coset_def) |
| 39910 | 1044 |
with g show "y \<in> (\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)" |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1045 |
apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def) |
|
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1046 |
apply (subst the_elem_image_unique) |
|
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1047 |
apply auto |
|
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61628
diff
changeset
|
1048 |
done |
| 14803 | 1049 |
qed |
1050 |
qed |
|
1051 |
||
1052 |
||
| 61382 | 1053 |
text\<open>If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
|
1054 |
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.\<close>
|
|
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1055 |
theorem (in group_hom) FactGroup_iso_set: |
| 14803 | 1056 |
"h ` carrier G = carrier H |
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1057 |
\<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> iso (G Mod (kernel G H h)) H" |
| 14803 | 1058 |
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def |
1059 |
FactGroup_onto) |
|
1060 |
||
|
68443
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1061 |
corollary (in group_hom) FactGroup_iso : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1062 |
"h ` carrier G = carrier H |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1063 |
\<Longrightarrow> (G Mod (kernel G H h))\<cong> H" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1064 |
using FactGroup_iso_set unfolding is_iso_def by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1065 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1066 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1067 |
(* Next two lemmas contributed by Paulo Emílio de Vilhena. *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1068 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1069 |
lemma (in group_hom) trivial_hom_iff: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1070 |
"(h ` (carrier G) = { \<one>\<^bsub>H\<^esub> }) = (kernel G H h = carrier G)"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1071 |
unfolding kernel_def using one_closed by force |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1072 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1073 |
lemma (in group_hom) trivial_ker_imp_inj: |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1074 |
assumes "kernel G H h = { \<one> }"
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1075 |
shows "inj_on h (carrier G)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1076 |
proof (rule inj_onI) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1077 |
fix g1 g2 assume A: "g1 \<in> carrier G" "g2 \<in> carrier G" "h g1 = h g2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1078 |
hence "h (g1 \<otimes> (inv g2)) = \<one>\<^bsub>H\<^esub>" by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1079 |
hence "g1 \<otimes> (inv g2) = \<one>" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1080 |
using A assms unfolding kernel_def by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1081 |
thus "g1 = g2" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1082 |
using A G.inv_equality G.inv_inv by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1083 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1084 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1085 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1086 |
(* Next subsection contributed by Martin Baillon. *) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1087 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1088 |
subsection \<open>Theorems about Factor Groups and Direct product\<close> |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1089 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1090 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1091 |
lemma (in group) DirProd_normal : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1092 |
assumes "group K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1093 |
and "H \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1094 |
and "N \<lhd> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1095 |
shows "H \<times> N \<lhd> G \<times>\<times> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1096 |
proof (intro group.normal_invI[OF DirProd_group[OF group_axioms assms(1)]]) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1097 |
show sub : "subgroup (H \<times> N) (G \<times>\<times> K)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1098 |
using DirProd_subgroups[OF group_axioms normal_imp_subgroup[OF assms(2)]assms(1) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1099 |
normal_imp_subgroup[OF assms(3)]]. |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1100 |
show "\<And>x h. x \<in> carrier (G\<times>\<times>K) \<Longrightarrow> h \<in> H\<times>N \<Longrightarrow> x \<otimes>\<^bsub>G\<times>\<times>K\<^esub> h \<otimes>\<^bsub>G\<times>\<times>K\<^esub> inv\<^bsub>G\<times>\<times>K\<^esub> x \<in> H\<times>N" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1101 |
proof- |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1102 |
fix x h assume xGK : "x \<in> carrier (G \<times>\<times> K)" and hHN : " h \<in> H \<times> N" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1103 |
hence hGK : "h \<in> carrier (G \<times>\<times> K)" using subgroup_imp_subset[OF sub] by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1104 |
from xGK obtain x1 x2 where x1x2 :"x1 \<in> carrier G" "x2 \<in> carrier K" "x = (x1,x2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1105 |
unfolding DirProd_def by fastforce |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1106 |
from hHN obtain h1 h2 where h1h2 : "h1 \<in> H" "h2 \<in> N" "h = (h1,h2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1107 |
unfolding DirProd_def by fastforce |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1108 |
hence h1h2GK : "h1 \<in> carrier G" "h2 \<in> carrier K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1109 |
using normal_imp_subgroup subgroup_imp_subset assms apply blast+. |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1110 |
have "inv\<^bsub>G \<times>\<times> K\<^esub> x = (inv\<^bsub>G\<^esub> x1,inv\<^bsub>K\<^esub> x2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1111 |
using inv_DirProd[OF group_axioms assms(1) x1x2(1)x1x2(2)] x1x2 by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1112 |
hence "x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x = (x1 \<otimes> h1 \<otimes> inv x1,x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1113 |
using h1h2 x1x2 h1h2GK by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1114 |
moreover have "x1 \<otimes> h1 \<otimes> inv x1 \<in> H" "x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2 \<in> N" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1115 |
using normal_invE group.normal_invE[OF assms(1)] assms x1x2 h1h2 apply auto. |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1116 |
hence "(x1 \<otimes> h1 \<otimes> inv x1, x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)\<in> H \<times> N" by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1117 |
ultimately show " x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x \<in> H \<times> N" by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1118 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1119 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1120 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1121 |
lemma (in group) FactGroup_DirProd_multiplication_iso_set : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1122 |
assumes "group K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1123 |
and "H \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1124 |
and "N \<lhd> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1125 |
shows "(\<lambda> (X, Y). X \<times> Y) \<in> iso ((G Mod H) \<times>\<times> (K Mod N)) (G \<times>\<times> K Mod H \<times> N)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1126 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1127 |
proof- |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1128 |
have R :"(\<lambda>(X, Y). X \<times> Y) \<in> carrier (G Mod H) \<times> carrier (K Mod N) \<rightarrow> carrier (G \<times>\<times> K Mod H \<times> N)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1129 |
unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def apply simp by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1130 |
moreover have "(\<forall>x\<in>carrier (G Mod H). \<forall>y\<in>carrier (K Mod N). \<forall>xa\<in>carrier (G Mod H). |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1131 |
\<forall>ya\<in>carrier (K Mod N). (x <#> xa) \<times> (y <#>\<^bsub>K\<^esub> ya) = x \<times> y <#>\<^bsub>G \<times>\<times> K\<^esub> xa \<times> ya)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1132 |
unfolding set_mult_def apply auto apply blast+. |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1133 |
moreover have "(\<forall>x\<in>carrier (G Mod H). \<forall>y\<in>carrier (K Mod N). \<forall>xa\<in>carrier (G Mod H). |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1134 |
\<forall>ya\<in>carrier (K Mod N). x \<times> y = xa \<times> ya \<longrightarrow> x = xa \<and> y = ya)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1135 |
unfolding FactGroup_def using times_eq_iff subgroup.rcosets_not_empty |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1136 |
by (metis assms(2) assms(3) normal_def partial_object.select_convs(1)) |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1137 |
moreover have "(\<lambda>(X, Y). X \<times> Y) ` (carrier (G Mod H) \<times> carrier (K Mod N)) = |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1138 |
carrier (G \<times>\<times> K Mod H \<times> N)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1139 |
unfolding image_def apply auto using R apply force |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1140 |
unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def apply auto apply force. |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1141 |
ultimately show ?thesis |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1142 |
unfolding iso_def hom_def bij_betw_def inj_on_def by simp |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1143 |
qed |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1144 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1145 |
corollary (in group) FactGroup_DirProd_multiplication_iso_1 : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1146 |
assumes "group K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1147 |
and "H \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1148 |
and "N \<lhd> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1149 |
shows " ((G Mod H) \<times>\<times> (K Mod N)) \<cong> (G \<times>\<times> K Mod H \<times> N)" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1150 |
unfolding is_iso_def using FactGroup_DirProd_multiplication_iso_set assms by auto |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1151 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1152 |
corollary (in group) FactGroup_DirProd_multiplication_iso_2 : |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1153 |
assumes "group K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1154 |
and "H \<lhd> G" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1155 |
and "N \<lhd> K" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1156 |
shows "(G \<times>\<times> K Mod H \<times> N) \<cong> ((G Mod H) \<times>\<times> (K Mod N))" |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1157 |
using FactGroup_DirProd_multiplication_iso_1 group.iso_sym assms |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1158 |
DirProd_group[OF normal.factorgroup_is_group normal.factorgroup_is_group] |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1159 |
by blast |
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1160 |
|
|
43055b016688
New material from Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
67443
diff
changeset
|
1161 |
|
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
1162 |
end |