437
|
1 |
(* Title: ZF/OrderArith.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Towards ordinal arithmetic
|
|
7 |
*)
|
|
8 |
|
|
9 |
OrderArith = Order + Sum +
|
|
10 |
consts
|
|
11 |
radd, rmult :: "[i,i,i,i]=>i"
|
|
12 |
rvimage :: "[i,i,i]=>i"
|
|
13 |
|
|
14 |
rules
|
|
15 |
(*disjoint sum of two relations; underlies ordinal addition*)
|
|
16 |
radd_def "radd(A,r,B,s) == \
|
|
17 |
\ {z: (A+B) * (A+B). \
|
|
18 |
\ (EX x y. z = <Inl(x), Inr(y)>) | \
|
|
19 |
\ (EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r) | \
|
|
20 |
\ (EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
|
|
21 |
|
|
22 |
(*lexicographic product of two relations; underlies ordinal multiplication*)
|
|
23 |
rmult_def "rmult(A,r,B,s) == \
|
|
24 |
\ {z: (A*B) * (A*B). \
|
|
25 |
\ EX x' y' x y. z = <<x',y'>, <x,y>> & \
|
|
26 |
\ (<x',x>: r | (x'=x & <y',y>: s))}"
|
|
27 |
|
|
28 |
(*inverse image of a relation*)
|
|
29 |
rvimage_def "rvimage(A,f,r) == {z: A*A. EX x y. z = <x,y> & <f`x,f`y>: r}"
|
|
30 |
|
|
31 |
end
|