author | lcp |
Thu, 24 Nov 1994 10:23:41 +0100 | |
changeset 737 | 436019ca97d7 |
parent 687 | 91bc4b9eee1d |
child 760 | f0200e91b272 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/domrange |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Converse, domain, range of a relation or function |
|
7 |
*) |
|
8 |
||
9 |
(*** converse ***) |
|
10 |
||
687 | 11 |
val converse_iff = prove_goalw ZF.thy [converse_def] |
12 |
"<a,b>: converse(r) <-> <b,a>:r" |
|
13 |
(fn _ => [ (fast_tac pair_cs 1) ]); |
|
14 |
||
0 | 15 |
val converseI = prove_goalw ZF.thy [converse_def] |
16 |
"!!a b r. <a,b>:r ==> <b,a>:converse(r)" |
|
17 |
(fn _ => [ (fast_tac pair_cs 1) ]); |
|
18 |
||
19 |
val converseD = prove_goalw ZF.thy [converse_def] |
|
20 |
"!!a b r. <a,b> : converse(r) ==> <b,a> : r" |
|
21 |
(fn _ => [ (fast_tac pair_cs 1) ]); |
|
22 |
||
23 |
val converseE = prove_goalw ZF.thy [converse_def] |
|
24 |
"[| yx : converse(r); \ |
|
25 |
\ !!x y. [| yx=<y,x>; <x,y>:r |] ==> P \ |
|
26 |
\ |] ==> P" |
|
27 |
(fn [major,minor]=> |
|
28 |
[ (rtac (major RS ReplaceE) 1), |
|
29 |
(REPEAT (eresolve_tac [exE, conjE, minor] 1)), |
|
30 |
(hyp_subst_tac 1), |
|
31 |
(assume_tac 1) ]); |
|
32 |
||
33 |
val converse_cs = pair_cs addSIs [converseI] |
|
34 |
addSEs [converseD,converseE]; |
|
35 |
||
36 |
val converse_of_converse = prove_goal ZF.thy |
|
37 |
"!!A B r. r<=Sigma(A,B) ==> converse(converse(r)) = r" |
|
38 |
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]); |
|
39 |
||
40 |
val converse_type = prove_goal ZF.thy "!!A B r. r<=A*B ==> converse(r)<=B*A" |
|
41 |
(fn _ => [ (fast_tac converse_cs 1) ]); |
|
42 |
||
43 |
val converse_of_prod = prove_goal ZF.thy "converse(A*B) = B*A" |
|
44 |
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]); |
|
45 |
||
46 |
val converse_empty = prove_goal ZF.thy "converse(0) = 0" |
|
47 |
(fn _ => [ (fast_tac (converse_cs addSIs [equalityI]) 1) ]); |
|
48 |
||
49 |
(*** domain ***) |
|
50 |
||
51 |
val domain_iff = prove_goalw ZF.thy [domain_def] |
|
52 |
"a: domain(r) <-> (EX y. <a,y>: r)" |
|
53 |
(fn _=> [ (fast_tac pair_cs 1) ]); |
|
54 |
||
55 |
val domainI = prove_goal ZF.thy "!!a b r. <a,b>: r ==> a: domain(r)" |
|
56 |
(fn _ => [ (etac (exI RS (domain_iff RS iffD2)) 1) ]); |
|
57 |
||
58 |
val domainE = prove_goal ZF.thy |
|
59 |
"[| a : domain(r); !!y. <a,y>: r ==> P |] ==> P" |
|
60 |
(fn prems=> |
|
61 |
[ (rtac (domain_iff RS iffD1 RS exE) 1), |
|
62 |
(REPEAT (ares_tac prems 1)) ]); |
|
63 |
||
64 |
val domain_subset = prove_goal ZF.thy "domain(Sigma(A,B)) <= A" |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
14
diff
changeset
|
65 |
(fn _ => [ (rtac subsetI 1), (etac domainE 1), (etac SigmaD1 1) ]); |
0 | 66 |
|
67 |
||
68 |
(*** range ***) |
|
69 |
||
70 |
val rangeI = prove_goalw ZF.thy [range_def] "!!a b r.<a,b>: r ==> b : range(r)" |
|
71 |
(fn _ => [ (etac (converseI RS domainI) 1) ]); |
|
72 |
||
73 |
val rangeE = prove_goalw ZF.thy [range_def] |
|
74 |
"[| b : range(r); !!x. <x,b>: r ==> P |] ==> P" |
|
75 |
(fn major::prems=> |
|
76 |
[ (rtac (major RS domainE) 1), |
|
77 |
(resolve_tac prems 1), |
|
78 |
(etac converseD 1) ]); |
|
79 |
||
80 |
val range_subset = prove_goalw ZF.thy [range_def] "range(A*B) <= B" |
|
81 |
(fn _ => |
|
82 |
[ (rtac (converse_of_prod RS ssubst) 1), |
|
83 |
(rtac domain_subset 1) ]); |
|
84 |
||
85 |
||
86 |
(*** field ***) |
|
87 |
||
88 |
val fieldI1 = prove_goalw ZF.thy [field_def] "<a,b>: r ==> a : field(r)" |
|
89 |
(fn [prem]=> |
|
90 |
[ (rtac (prem RS domainI RS UnI1) 1) ]); |
|
91 |
||
92 |
val fieldI2 = prove_goalw ZF.thy [field_def] "<a,b>: r ==> b : field(r)" |
|
93 |
(fn [prem]=> |
|
94 |
[ (rtac (prem RS rangeI RS UnI2) 1) ]); |
|
95 |
||
96 |
val fieldCI = prove_goalw ZF.thy [field_def] |
|
97 |
"(~ <c,a>:r ==> <a,b>: r) ==> a : field(r)" |
|
98 |
(fn [prem]=> |
|
99 |
[ (rtac (prem RS domainI RS UnCI) 1), |
|
100 |
(swap_res_tac [rangeI] 1), |
|
101 |
(etac notnotD 1) ]); |
|
102 |
||
103 |
val fieldE = prove_goalw ZF.thy [field_def] |
|
104 |
"[| a : field(r); \ |
|
105 |
\ !!x. <a,x>: r ==> P; \ |
|
106 |
\ !!x. <x,a>: r ==> P |] ==> P" |
|
107 |
(fn major::prems=> |
|
108 |
[ (rtac (major RS UnE) 1), |
|
109 |
(REPEAT (eresolve_tac (prems@[domainE,rangeE]) 1)) ]); |
|
110 |
||
111 |
val field_subset = prove_goal ZF.thy "field(A*B) <= A Un B" |
|
112 |
(fn _ => [ (fast_tac (pair_cs addIs [fieldCI] addSEs [fieldE]) 1) ]); |
|
113 |
||
114 |
val domain_subset_field = prove_goalw ZF.thy [field_def] |
|
115 |
"domain(r) <= field(r)" |
|
116 |
(fn _ => [ (rtac Un_upper1 1) ]); |
|
117 |
||
118 |
val range_subset_field = prove_goalw ZF.thy [field_def] |
|
119 |
"range(r) <= field(r)" |
|
120 |
(fn _ => [ (rtac Un_upper2 1) ]); |
|
121 |
||
122 |
val domain_times_range = prove_goal ZF.thy |
|
123 |
"!!A B r. r <= Sigma(A,B) ==> r <= domain(r)*range(r)" |
|
124 |
(fn _ => [ (fast_tac (pair_cs addIs [domainI,rangeI]) 1) ]); |
|
125 |
||
126 |
val field_times_field = prove_goal ZF.thy |
|
127 |
"!!A B r. r <= Sigma(A,B) ==> r <= field(r)*field(r)" |
|
128 |
(fn _ => [ (fast_tac (pair_cs addIs [fieldI1,fieldI2]) 1) ]); |
|
129 |
||
130 |
||
131 |
(*** Image of a set under a function/relation ***) |
|
132 |
||
133 |
val image_iff = prove_goalw ZF.thy [image_def] |
|
134 |
"b : r``A <-> (EX x:A. <x,b>:r)" |
|
135 |
(fn _ => [ fast_tac (pair_cs addIs [rangeI]) 1 ]); |
|
136 |
||
137 |
val image_singleton_iff = prove_goal ZF.thy |
|
138 |
"b : r``{a} <-> <a,b>:r" |
|
139 |
(fn _ => [ rtac (image_iff RS iff_trans) 1, |
|
140 |
fast_tac pair_cs 1 ]); |
|
141 |
||
142 |
val imageI = prove_goalw ZF.thy [image_def] |
|
143 |
"!!a b r. [| <a,b>: r; a:A |] ==> b : r``A" |
|
144 |
(fn _ => [ (REPEAT (ares_tac [CollectI,rangeI,bexI] 1)) ]); |
|
145 |
||
146 |
val imageE = prove_goalw ZF.thy [image_def] |
|
147 |
"[| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P" |
|
148 |
(fn major::prems=> |
|
149 |
[ (rtac (major RS CollectE) 1), |
|
150 |
(REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ]); |
|
151 |
||
152 |
val image_subset = prove_goal ZF.thy |
|
14
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
0
diff
changeset
|
153 |
"!!A B r. r <= A*B ==> r``C <= B" |
674 | 154 |
(fn _ => [ (fast_tac (pair_cs addSEs [imageE]) 1) ]); |
0 | 155 |
|
156 |
||
157 |
(*** Inverse image of a set under a function/relation ***) |
|
158 |
||
159 |
val vimage_iff = prove_goalw ZF.thy [vimage_def,image_def,converse_def] |
|
160 |
"a : r-``B <-> (EX y:B. <a,y>:r)" |
|
161 |
(fn _ => [ fast_tac (pair_cs addIs [rangeI]) 1 ]); |
|
162 |
||
163 |
val vimage_singleton_iff = prove_goal ZF.thy |
|
164 |
"a : r-``{b} <-> <a,b>:r" |
|
165 |
(fn _ => [ rtac (vimage_iff RS iff_trans) 1, |
|
166 |
fast_tac pair_cs 1 ]); |
|
167 |
||
168 |
val vimageI = prove_goalw ZF.thy [vimage_def] |
|
169 |
"!!A B r. [| <a,b>: r; b:B |] ==> a : r-``B" |
|
170 |
(fn _ => [ (REPEAT (ares_tac [converseI RS imageI] 1)) ]); |
|
171 |
||
172 |
val vimageE = prove_goalw ZF.thy [vimage_def] |
|
173 |
"[| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P" |
|
174 |
(fn major::prems=> |
|
175 |
[ (rtac (major RS imageE) 1), |
|
176 |
(REPEAT (etac converseD 1 ORELSE ares_tac prems 1)) ]); |
|
177 |
||
178 |
val vimage_subset = prove_goalw ZF.thy [vimage_def] |
|
14
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
0
diff
changeset
|
179 |
"!!A B r. r <= A*B ==> r-``C <= A" |
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
0
diff
changeset
|
180 |
(fn _ => [ (etac (converse_type RS image_subset) 1) ]); |
0 | 181 |
|
182 |
||
183 |
(** Theorem-proving for ZF set theory **) |
|
184 |
||
185 |
val ZF_cs = pair_cs |
|
186 |
addSIs [converseI] |
|
187 |
addIs [imageI, vimageI, domainI, rangeI, fieldCI] |
|
188 |
addSEs [imageE, vimageE, domainE, rangeE, fieldE, converseD, converseE]; |
|
189 |
||
190 |
val eq_cs = ZF_cs addSIs [equalityI]; |
|
191 |
||
192 |
(** The Union of a set of relations is a relation -- Lemma for fun_Union **) |
|
193 |
goal ZF.thy "!!S. (ALL x:S. EX A B. x <= A*B) ==> \ |
|
194 |
\ Union(S) <= domain(Union(S)) * range(Union(S))"; |
|
195 |
by (fast_tac ZF_cs 1); |
|
196 |
val rel_Union = result(); |
|
197 |
||
198 |
(** The Union of 2 relations is a relation (Lemma for fun_Un) **) |
|
199 |
val rel_Un = prove_goal ZF.thy |
|
200 |
"!!r s. [| r <= A*B; s <= C*D |] ==> (r Un s) <= (A Un C) * (B Un D)" |
|
201 |
(fn _ => [ (fast_tac ZF_cs 1) ]); |
|
202 |
||
203 |