| author | wenzelm | 
| Sun, 12 May 2024 14:41:13 +0200 | |
| changeset 80178 | 438d583ab378 | 
| parent 76299 | 0ad6f6508274 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 32631 | 1 | (* Author: Giampaolo Bella, Catania University | 
| 18886 | 2 | *) | 
| 3 | ||
| 61830 | 4 | section\<open>Theory of smartcards\<close> | 
| 18886 | 5 | |
| 32631 | 6 | theory Smartcard | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
39246diff
changeset | 7 | imports EventSC "../All_Symmetric" | 
| 32631 | 8 | begin | 
| 18886 | 9 | |
| 61830 | 10 | text\<open> | 
| 18886 | 11 | As smartcards handle long-term (symmetric) keys, this theoy extends and | 
| 12 | supersedes theory Private.thy | |
| 13 | ||
| 14 | An agent is bad if she reveals her PIN to the spy, not the shared key that | |
| 15 | is embedded in her card. An agent's being bad implies nothing about her | |
| 16 | smartcard, which independently may be stolen or cloned. | |
| 61830 | 17 | \<close> | 
| 18886 | 18 | |
| 41774 | 19 | axiomatization | 
| 20 | shrK :: "agent => key" and (*long-term keys saved in smart cards*) | |
| 21 | crdK :: "card => key" and (*smart cards' symmetric keys*) | |
| 22 | pin :: "agent => key" and (*pin to activate the smart cards*) | |
| 18886 | 23 | |
| 24 | (*Mostly for Shoup-Rubin*) | |
| 41774 | 25 | Pairkey :: "agent * agent => nat" and | 
| 18886 | 26 | pairK :: "agent * agent => key" | 
| 41774 | 27 | where | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 28 | inj_shrK: "inj shrK" and \<comment> \<open>No two smartcards store the same key\<close> | 
| 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 29 | inj_crdK: "inj crdK" and \<comment> \<open>Nor do two cards\<close> | 
| 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 30 | inj_pin : "inj pin" and \<comment> \<open>Nor do two agents have the same pin\<close> | 
| 18886 | 31 | |
| 32 | (*pairK is injective on each component, if we assume encryption to be a PRF | |
| 33 | or at least collision free *) | |
| 41774 | 34 | inj_pairK [iff]: "(pairK(A,B) = pairK(A',B')) = (A = A' & B = B')" and | 
| 35 | comm_Pairkey [iff]: "Pairkey(A,B) = Pairkey(B,A)" and | |
| 18886 | 36 | |
| 37 | (*long-term keys differ from each other*) | |
| 41774 | 38 | pairK_disj_crdK [iff]: "pairK(A,B) \<noteq> crdK C" and | 
| 39 | pairK_disj_shrK [iff]: "pairK(A,B) \<noteq> shrK P" and | |
| 40 | pairK_disj_pin [iff]: "pairK(A,B) \<noteq> pin P" and | |
| 41 | shrK_disj_crdK [iff]: "shrK P \<noteq> crdK C" and | |
| 42 | shrK_disj_pin [iff]: "shrK P \<noteq> pin Q" and | |
| 18886 | 43 | crdK_disj_pin [iff]: "crdK C \<noteq> pin P" | 
| 44 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 45 | definition legalUse :: "card => bool" ("legalUse (_)") where
 | 
| 18886 | 46 | "legalUse C == C \<notin> stolen" | 
| 47 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 48 | primrec illegalUse :: "card => bool" where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 49 | illegalUse_def: "illegalUse (Card A) = ( (Card A \<in> stolen \<and> A \<in> bad) \<or> Card A \<in> cloned )" | 
| 18886 | 50 | |
| 51 | ||
| 61830 | 52 | text\<open>initState must be defined with care\<close> | 
| 39246 | 53 | |
| 54 | overloading | |
| 55 | initState \<equiv> initState | |
| 56 | begin | |
| 57 | ||
| 58 | primrec initState where | |
| 18886 | 59 | (*Server knows all long-term keys; adding cards' keys may be redundant but | 
| 60 | helps prove crdK_in_initState and crdK_in_used to distinguish cards' keys | |
| 61 | from fresh (session) keys*) | |
| 62 | initState_Server: "initState Server = | |
| 63 | (Key`(range shrK \<union> range crdK \<union> range pin \<union> range pairK)) \<union> | |
| 39246 | 64 | (Nonce`(range Pairkey))" | | 
| 18886 | 65 | |
| 66 | (*Other agents know only their own*) | |
| 39246 | 67 |   initState_Friend:  "initState (Friend i) = {Key (pin (Friend i))}" |
 | 
| 18886 | 68 | |
| 69 | (*Spy knows bad agents' pins, cloned cards' keys, pairKs, and Pairkeys *) | |
| 70 | initState_Spy: "initState Spy = | |
| 71 |                  (Key`((pin`bad) \<union> (pin `{A. Card A \<in> cloned}) \<union> 
 | |
| 72 |                                       (shrK`{A. Card A \<in> cloned}) \<union> 
 | |
| 73 | (crdK`cloned) \<union> | |
| 74 |                         (pairK`{(X,A). Card A \<in> cloned})))
 | |
| 75 |            \<union> (Nonce`(Pairkey`{(A,B). Card A \<in> cloned & Card B \<in> cloned}))"
 | |
| 76 | ||
| 39246 | 77 | end | 
| 18886 | 78 | |
| 61830 | 79 | text\<open>Still relying on axioms\<close> | 
| 41774 | 80 | axiomatization where | 
| 81 | Key_supply_ax: "finite KK \<Longrightarrow> \<exists> K. K \<notin> KK & Key K \<notin> used evs" and | |
| 18886 | 82 | |
| 83 | (*Needed because of Spy's knowledge of Pairkeys*) | |
| 84 | Nonce_supply_ax: "finite NN \<Longrightarrow> \<exists> N. N \<notin> NN & Nonce N \<notin> used evs" | |
| 85 | ||
| 86 | ||
| 87 | ||
| 88 | ||
| 89 | ||
| 90 | ||
| 91 | ||
| 61830 | 92 | subsection\<open>Basic properties of shrK\<close> | 
| 18886 | 93 | |
| 94 | (*Injectiveness: Agents' long-term keys are distinct.*) | |
| 95 | declare inj_shrK [THEN inj_eq, iff] | |
| 96 | declare inj_crdK [THEN inj_eq, iff] | |
| 97 | declare inj_pin [THEN inj_eq, iff] | |
| 98 | ||
| 99 | lemma invKey_K [simp]: "invKey K = K" | |
| 100 | apply (insert isSym_keys) | |
| 101 | apply (simp add: symKeys_def) | |
| 102 | done | |
| 103 | ||
| 104 | ||
| 105 | lemma analz_Decrypt' [dest]: | |
| 106 | "\<lbrakk> Crypt K X \<in> analz H; Key K \<in> analz H \<rbrakk> \<Longrightarrow> X \<in> analz H" | |
| 107 | by auto | |
| 108 | ||
| 61830 | 109 | text\<open>Now cancel the \<open>dest\<close> attribute given to | 
| 110 | \<open>analz.Decrypt\<close> in its declaration.\<close> | |
| 18886 | 111 | declare analz.Decrypt [rule del] | 
| 112 | ||
| 69597 | 113 | text\<open>Rewrites should not refer to \<^term>\<open>initState(Friend i)\<close> because | 
| 61830 | 114 | that expression is not in normal form.\<close> | 
| 18886 | 115 | |
| 61830 | 116 | text\<open>Added to extend initstate with set of nonces\<close> | 
| 18886 | 117 | lemma parts_image_Nonce [simp]: "parts (Nonce`N) = Nonce`N" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61830diff
changeset | 118 | by auto | 
| 18886 | 119 | |
| 120 | lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | |
| 76290 
64d29ebb7d3d
Mostly, removing the unfold method
 paulson <lp15@cam.ac.uk> parents: 
69597diff
changeset | 121 | unfolding keysFor_def | 
| 18886 | 122 | apply (induct_tac "C", auto) | 
| 123 | done | |
| 124 | ||
| 125 | (*Specialized to shared-key model: no @{term invKey}*)
 | |
| 126 | lemma keysFor_parts_insert: | |
| 127 | "\<lbrakk> K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) \<rbrakk> | |
| 41774 | 128 | \<Longrightarrow> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H" | 
| 18886 | 129 | by (force dest: EventSC.keysFor_parts_insert) | 
| 130 | ||
| 131 | lemma Crypt_imp_keysFor: "Crypt K X \<in> H \<Longrightarrow> K \<in> keysFor H" | |
| 132 | by (drule Crypt_imp_invKey_keysFor, simp) | |
| 133 | ||
| 134 | ||
| 61830 | 135 | subsection\<open>Function "knows"\<close> | 
| 18886 | 136 | |
| 137 | (*Spy knows the pins of bad agents!*) | |
| 138 | lemma Spy_knows_bad [intro!]: "A \<in> bad \<Longrightarrow> Key (pin A) \<in> knows Spy evs" | |
| 139 | apply (induct_tac "evs") | |
| 63648 | 140 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 18886 | 141 | done | 
| 142 | ||
| 143 | (*Spy knows the long-term keys of cloned cards!*) | |
| 144 | lemma Spy_knows_cloned [intro!]: | |
| 145 | "Card A \<in> cloned \<Longrightarrow> Key (crdK (Card A)) \<in> knows Spy evs & | |
| 146 | Key (shrK A) \<in> knows Spy evs & | |
| 147 | Key (pin A) \<in> knows Spy evs & | |
| 148 | (\<forall> B. Key (pairK(B,A)) \<in> knows Spy evs)" | |
| 149 | apply (induct_tac "evs") | |
| 63648 | 150 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 18886 | 151 | done | 
| 152 | ||
| 153 | lemma Spy_knows_cloned1 [intro!]: "C \<in> cloned \<Longrightarrow> Key (crdK C) \<in> knows Spy evs" | |
| 154 | apply (induct_tac "evs") | |
| 63648 | 155 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 18886 | 156 | done | 
| 157 | ||
| 158 | lemma Spy_knows_cloned2 [intro!]: "\<lbrakk> Card A \<in> cloned; Card B \<in> cloned \<rbrakk> | |
| 159 | \<Longrightarrow> Nonce (Pairkey(A,B))\<in> knows Spy evs" | |
| 160 | apply (induct_tac "evs") | |
| 63648 | 161 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 18886 | 162 | done | 
| 163 | ||
| 164 | (*Spy only knows pins of bad agents!*) | |
| 165 | lemma Spy_knows_Spy_bad [intro!]: "A\<in> bad \<Longrightarrow> Key (pin A) \<in> knows Spy evs" | |
| 166 | apply (induct_tac "evs") | |
| 63648 | 167 | apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split) | 
| 18886 | 168 | done | 
| 169 | ||
| 170 | ||
| 171 | (*For case analysis on whether or not an agent is compromised*) | |
| 172 | lemma Crypt_Spy_analz_bad: | |
| 173 | "\<lbrakk> Crypt (pin A) X \<in> analz (knows Spy evs); A\<in>bad \<rbrakk> | |
| 174 | \<Longrightarrow> X \<in> analz (knows Spy evs)" | |
| 175 | apply (force dest!: analz.Decrypt) | |
| 176 | done | |
| 177 | ||
| 178 | (** Fresh keys never clash with other keys **) | |
| 179 | ||
| 180 | lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState Server" | |
| 181 | apply (induct_tac "A") | |
| 182 | apply auto | |
| 183 | done | |
| 184 | ||
| 185 | lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs" | |
| 186 | apply (rule initState_into_used) | |
| 187 | apply blast | |
| 188 | done | |
| 189 | ||
| 190 | lemma crdK_in_initState [iff]: "Key (crdK A) \<in> initState Server" | |
| 191 | apply (induct_tac "A") | |
| 192 | apply auto | |
| 193 | done | |
| 194 | ||
| 195 | lemma crdK_in_used [iff]: "Key (crdK A) \<in> used evs" | |
| 196 | apply (rule initState_into_used) | |
| 197 | apply blast | |
| 198 | done | |
| 199 | ||
| 200 | lemma pin_in_initState [iff]: "Key (pin A) \<in> initState A" | |
| 201 | apply (induct_tac "A") | |
| 202 | apply auto | |
| 203 | done | |
| 204 | ||
| 205 | lemma pin_in_used [iff]: "Key (pin A) \<in> used evs" | |
| 206 | apply (rule initState_into_used) | |
| 207 | apply blast | |
| 208 | done | |
| 209 | ||
| 210 | lemma pairK_in_initState [iff]: "Key (pairK X) \<in> initState Server" | |
| 211 | apply (induct_tac "X") | |
| 212 | apply auto | |
| 213 | done | |
| 214 | ||
| 215 | lemma pairK_in_used [iff]: "Key (pairK X) \<in> used evs" | |
| 216 | apply (rule initState_into_used) | |
| 217 | apply blast | |
| 218 | done | |
| 219 | ||
| 220 | ||
| 221 | ||
| 222 | (*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys | |
| 223 | from long-term shared keys*) | |
| 224 | lemma Key_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range shrK" | |
| 225 | by blast | |
| 226 | ||
| 227 | lemma shrK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> shrK B \<noteq> K" | |
| 228 | by blast | |
| 229 | ||
| 230 | lemma crdK_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range crdK" | |
| 231 | apply clarify | |
| 232 | done | |
| 233 | ||
| 234 | lemma crdK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> crdK C \<noteq> K" | |
| 235 | apply clarify | |
| 236 | done | |
| 237 | ||
| 238 | lemma pin_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range pin" | |
| 239 | apply clarify | |
| 240 | done | |
| 241 | ||
| 242 | lemma pin_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> pin A \<noteq> K" | |
| 243 | apply clarify | |
| 244 | done | |
| 245 | ||
| 246 | lemma pairK_not_used [simp]: "Key K \<notin> used evs \<Longrightarrow> K \<notin> range pairK" | |
| 247 | apply clarify | |
| 248 | done | |
| 249 | ||
| 250 | lemma pairK_neq [simp]: "Key K \<notin> used evs \<Longrightarrow> pairK(A,B) \<noteq> K" | |
| 251 | apply clarify | |
| 252 | done | |
| 253 | ||
| 254 | declare shrK_neq [THEN not_sym, simp] | |
| 255 | declare crdK_neq [THEN not_sym, simp] | |
| 256 | declare pin_neq [THEN not_sym, simp] | |
| 257 | declare pairK_neq [THEN not_sym, simp] | |
| 258 | ||
| 259 | ||
| 61830 | 260 | subsection\<open>Fresh nonces\<close> | 
| 18886 | 261 | |
| 262 | lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState (Friend i))" | |
| 263 | by auto | |
| 264 | ||
| 265 | ||
| 266 | (*This lemma no longer holds of smartcard protocols, where the cards can store | |
| 267 | nonces. | |
| 268 | ||
| 269 | lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" | |
| 76299 | 270 | unfolding used_Nil | 
| 18886 | 271 | done | 
| 272 | ||
| 273 | So, we must use old-style supply fresh nonce theorems relying on the appropriate axiom*) | |
| 274 | ||
| 275 | ||
| 61830 | 276 | subsection\<open>Supply fresh nonces for possibility theorems.\<close> | 
| 18886 | 277 | |
| 278 | ||
| 279 | lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" | |
| 22265 | 280 | apply (rule finite.emptyI [THEN Nonce_supply_ax, THEN exE], blast) | 
| 18886 | 281 | done | 
| 282 | ||
| 283 | lemma Nonce_supply2: | |
| 284 | "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'" | |
| 22265 | 285 | apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax]) | 
| 18886 | 286 | apply (erule exE) | 
| 22265 | 287 | apply (cut_tac evs = evs' in finite.emptyI [THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 288 | apply auto | 
| 289 | done | |
| 290 | ||
| 291 | ||
| 292 | lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & | |
| 293 | Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''" | |
| 22265 | 294 | apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax]) | 
| 18886 | 295 | apply (erule exE) | 
| 22265 | 296 | apply (cut_tac evs = evs' and a1 = N in finite.emptyI [THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 297 | apply (erule exE) | 
| 22265 | 298 | apply (cut_tac evs = evs'' and a1 = Na and a2 = N in finite.emptyI [THEN finite.insertI, THEN finite.insertI, THEN Nonce_supply_ax]) | 
| 18886 | 299 | apply blast | 
| 300 | done | |
| 301 | ||
| 67613 | 302 | lemma Nonce_supply: "Nonce (SOME N. Nonce N \<notin> used evs) \<notin> used evs" | 
| 22265 | 303 | apply (rule finite.emptyI [THEN Nonce_supply_ax, THEN exE]) | 
| 18886 | 304 | apply (rule someI, blast) | 
| 305 | done | |
| 306 | ||
| 307 | ||
| 308 | ||
| 61830 | 309 | text\<open>Unlike the corresponding property of nonces, we cannot prove | 
| 69597 | 310 | \<^term>\<open>finite KK \<Longrightarrow> \<exists>K. K \<notin> KK & Key K \<notin> used evs\<close>. | 
| 18886 | 311 | We have infinitely many agents and there is nothing to stop their | 
| 312 | long-term keys from exhausting all the natural numbers. Instead, | |
| 61830 | 313 | possibility theorems must assume the existence of a few keys.\<close> | 
| 18886 | 314 | |
| 315 | ||
| 69597 | 316 | subsection\<open>Specialized Rewriting for Theorems About \<^term>\<open>analz\<close> and Image\<close> | 
| 18886 | 317 | |
| 318 | lemma subset_Compl_range_shrK: "A \<subseteq> - (range shrK) \<Longrightarrow> shrK x \<notin> A" | |
| 319 | by blast | |
| 320 | ||
| 321 | lemma subset_Compl_range_crdK: "A \<subseteq> - (range crdK) \<Longrightarrow> crdK x \<notin> A" | |
| 322 | apply blast | |
| 323 | done | |
| 324 | ||
| 325 | lemma subset_Compl_range_pin: "A \<subseteq> - (range pin) \<Longrightarrow> pin x \<notin> A" | |
| 326 | apply blast | |
| 327 | done | |
| 328 | ||
| 329 | lemma subset_Compl_range_pairK: "A \<subseteq> - (range pairK) \<Longrightarrow> pairK x \<notin> A" | |
| 330 | apply blast | |
| 331 | done | |
| 332 | lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | |
| 333 | by blast | |
| 334 | ||
| 335 | lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C" | |
| 336 | by blast | |
| 337 | ||
| 338 | (** Reverse the normal simplification of "image" to build up (not break down) | |
| 339 | the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to | |
| 340 | erase occurrences of forwarded message components (X). **) | |
| 341 | ||
| 342 | lemmas analz_image_freshK_simps = | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63648diff
changeset | 343 | simp_thms mem_simps \<comment> \<open>these two allow its use with \<open>only:\<close>\<close> | 
| 18886 | 344 | disj_comms | 
| 345 | image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset | |
| 346 | analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD] | |
| 347 | insert_Key_singleton subset_Compl_range_shrK subset_Compl_range_crdK | |
| 348 | subset_Compl_range_pin subset_Compl_range_pairK | |
| 349 | Key_not_used insert_Key_image Un_assoc [THEN sym] | |
| 350 | ||
| 351 | (*Lemma for the trivial direction of the if-and-only-if*) | |
| 352 | lemma analz_image_freshK_lemma: | |
| 353 | "(Key K \<in> analz (Key`nE \<union> H)) \<longrightarrow> (K \<in> nE | Key K \<in> analz H) \<Longrightarrow> | |
| 354 | (Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)" | |
| 355 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 356 | ||
| 24122 | 357 | |
| 61830 | 358 | subsection\<open>Tactics for possibility theorems\<close> | 
| 24122 | 359 | |
| 18886 | 360 | ML | 
| 61830 | 361 | \<open> | 
| 24122 | 362 | structure Smartcard = | 
| 363 | struct | |
| 364 | ||
| 365 | (*Omitting used_Says makes the tactic much faster: it leaves expressions | |
| 366 | such as Nonce ?N \<notin> used evs that match Nonce_supply*) | |
| 367 | fun possibility_tac ctxt = | |
| 368 | (REPEAT | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41774diff
changeset | 369 | (ALLGOALS (simp_tac (ctxt | 
| 53428 | 370 |       delsimps @{thms used_Cons_simps}
 | 
| 24122 | 371 | setSolver safe_solver)) | 
| 372 | THEN | |
| 373 | REPEAT_FIRST (eq_assume_tac ORELSE' | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 374 |                    resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}])))
 | 
| 24122 | 375 | |
| 376 | (*For harder protocols (such as Recur) where we have to set up some | |
| 377 | nonces and keys initially*) | |
| 378 | fun basic_possibility_tac ctxt = | |
| 379 | REPEAT | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41774diff
changeset | 380 | (ALLGOALS (asm_simp_tac (ctxt setSolver safe_solver)) | 
| 24122 | 381 | THEN | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 382 | REPEAT_FIRST (resolve_tac ctxt [refl, conjI])) | 
| 18886 | 383 | |
| 384 | val analz_image_freshK_ss = | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41774diff
changeset | 385 | simpset_of | 
| 69597 | 386 | (\<^context> delsimps [image_insert, image_Un] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32631diff
changeset | 387 |                delsimps [@{thm imp_disjL}]    (*reduces blow-up*)
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
41774diff
changeset | 388 |                addsimps @{thms analz_image_freshK_simps})
 | 
| 24122 | 389 | end | 
| 61830 | 390 | \<close> | 
| 18886 | 391 | |
| 392 | ||
| 393 | (*Lets blast_tac perform this step without needing the simplifier*) | |
| 394 | lemma invKey_shrK_iff [iff]: | |
| 395 | "(Key (invKey K) \<in> X) = (Key K \<in> X)" | |
| 396 | by auto | |
| 397 | ||
| 398 | (*Specialized methods*) | |
| 399 | ||
| 61830 | 400 | method_setup analz_freshK = \<open> | 
| 30549 | 401 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
24122diff
changeset | 402 | (SIMPLE_METHOD | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 403 | (EVERY [REPEAT_FIRST (resolve_tac ctxt [allI, ballI, impI]), | 
| 60754 | 404 |           REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
 | 
| 61830 | 405 | ALLGOALS (asm_simp_tac (put_simpset Smartcard.analz_image_freshK_ss ctxt))])))\<close> | 
| 18886 | 406 | "for proving the Session Key Compromise theorem" | 
| 407 | ||
| 61830 | 408 | method_setup possibility = \<open> | 
| 30549 | 409 | Scan.succeed (fn ctxt => | 
| 61830 | 410 | SIMPLE_METHOD (Smartcard.possibility_tac ctxt))\<close> | 
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 411 | "for proving possibility theorems" | 
| 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 412 | |
| 61830 | 413 | method_setup basic_possibility = \<open> | 
| 30549 | 414 | Scan.succeed (fn ctxt => | 
| 61830 | 415 | SIMPLE_METHOD (Smartcard.basic_possibility_tac ctxt))\<close> | 
| 18886 | 416 | "for proving possibility theorems" | 
| 417 | ||
| 418 | lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)" | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
22265diff
changeset | 419 | by (induct e) (auto simp: knows_Cons) | 
| 18886 | 420 | |
| 421 | (*Needed for actual protocols that will follow*) | |
| 422 | declare shrK_disj_crdK[THEN not_sym, iff] | |
| 423 | declare shrK_disj_pin[THEN not_sym, iff] | |
| 424 | declare pairK_disj_shrK[THEN not_sym, iff] | |
| 425 | declare pairK_disj_crdK[THEN not_sym, iff] | |
| 426 | declare pairK_disj_pin[THEN not_sym, iff] | |
| 427 | declare crdK_disj_pin[THEN not_sym, iff] | |
| 428 | ||
| 429 | declare legalUse_def [iff] illegalUse_def [iff] | |
| 430 | ||
| 431 | end |