author | nipkow |
Mon, 07 Jul 2014 17:01:11 +0200 | |
changeset 57530 | 439f881c8744 |
parent 48891 | c0eafbd55de3 |
child 58022 | 464c1815fde9 |
permissions | -rw-r--r-- |
23146 | 1 |
(* Title: ZF/Bin.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1994 University of Cambridge |
|
4 |
||
5 |
The sign Pls stands for an infinite string of leading 0's. |
|
6 |
The sign Min stands for an infinite string of leading 1's. |
|
7 |
||
8 |
A number can have multiple representations, namely leading 0's with sign |
|
9 |
Pls and leading 1's with sign Min. See twos-compl.ML/int_of_binary for |
|
10 |
the numerical interpretation. |
|
11 |
||
12 |
The representation expects that (m mod 2) is 0 or 1, even if m is negative; |
|
13 |
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1 |
|
14 |
*) |
|
15 |
||
16 |
header{*Arithmetic on Binary Integers*} |
|
17 |
||
18 |
theory Bin |
|
26056
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
24893
diff
changeset
|
19 |
imports Int_ZF Datatype_ZF |
23146 | 20 |
begin |
21 |
||
22 |
consts bin :: i |
|
23 |
datatype |
|
24 |
"bin" = Pls |
|
25 |
| Min |
|
46953 | 26 |
| Bit ("w \<in> bin", "b \<in> bool") (infixl "BIT" 90) |
23146 | 27 |
|
28 |
consts |
|
29 |
integ_of :: "i=>i" |
|
30 |
NCons :: "[i,i]=>i" |
|
31 |
bin_succ :: "i=>i" |
|
32 |
bin_pred :: "i=>i" |
|
33 |
bin_minus :: "i=>i" |
|
34 |
bin_adder :: "i=>i" |
|
35 |
bin_mult :: "[i,i]=>i" |
|
36 |
||
37 |
primrec |
|
38 |
integ_of_Pls: "integ_of (Pls) = $# 0" |
|
39 |
integ_of_Min: "integ_of (Min) = $-($#1)" |
|
40 |
integ_of_BIT: "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)" |
|
41 |
||
42 |
(** recall that cond(1,b,c)=b and cond(0,b,c)=0 **) |
|
43 |
||
44 |
primrec (*NCons adds a bit, suppressing leading 0s and 1s*) |
|
45 |
NCons_Pls: "NCons (Pls,b) = cond(b,Pls BIT b,Pls)" |
|
46 |
NCons_Min: "NCons (Min,b) = cond(b,Min,Min BIT b)" |
|
47 |
NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b" |
|
48 |
||
49 |
primrec (*successor. If a BIT, can change a 0 to a 1 without recursion.*) |
|
50 |
bin_succ_Pls: "bin_succ (Pls) = Pls BIT 1" |
|
51 |
bin_succ_Min: "bin_succ (Min) = Pls" |
|
52 |
bin_succ_BIT: "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))" |
|
53 |
||
54 |
primrec (*predecessor*) |
|
55 |
bin_pred_Pls: "bin_pred (Pls) = Min" |
|
56 |
bin_pred_Min: "bin_pred (Min) = Min BIT 0" |
|
57 |
bin_pred_BIT: "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)" |
|
58 |
||
59 |
primrec (*unary negation*) |
|
60 |
bin_minus_Pls: |
|
61 |
"bin_minus (Pls) = Pls" |
|
62 |
bin_minus_Min: |
|
63 |
"bin_minus (Min) = Pls BIT 1" |
|
64 |
bin_minus_BIT: |
|
65 |
"bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)), |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26190
diff
changeset
|
66 |
bin_minus(w) BIT 0)" |
23146 | 67 |
|
68 |
primrec (*sum*) |
|
69 |
bin_adder_Pls: |
|
46820 | 70 |
"bin_adder (Pls) = (\<lambda>w\<in>bin. w)" |
23146 | 71 |
bin_adder_Min: |
46820 | 72 |
"bin_adder (Min) = (\<lambda>w\<in>bin. bin_pred(w))" |
23146 | 73 |
bin_adder_BIT: |
46820 | 74 |
"bin_adder (v BIT x) = |
75 |
(\<lambda>w\<in>bin. |
|
76 |
bin_case (v BIT x, bin_pred(v BIT x), |
|
77 |
%w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w), |
|
23146 | 78 |
x xor y), |
79 |
w))" |
|
80 |
||
81 |
(*The bin_case above replaces the following mutually recursive function: |
|
82 |
primrec |
|
83 |
"adding (v,x,Pls) = v BIT x" |
|
84 |
"adding (v,x,Min) = bin_pred(v BIT x)" |
|
46820 | 85 |
"adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)), |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26190
diff
changeset
|
86 |
x xor y)" |
23146 | 87 |
*) |
88 |
||
24893 | 89 |
definition |
90 |
bin_add :: "[i,i]=>i" where |
|
23146 | 91 |
"bin_add(v,w) == bin_adder(v)`w" |
92 |
||
93 |
||
94 |
primrec |
|
95 |
bin_mult_Pls: |
|
96 |
"bin_mult (Pls,w) = Pls" |
|
97 |
bin_mult_Min: |
|
98 |
"bin_mult (Min,w) = bin_minus(w)" |
|
99 |
bin_mult_BIT: |
|
100 |
"bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w), |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26190
diff
changeset
|
101 |
NCons(bin_mult(v,w),0))" |
23146 | 102 |
|
35112
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32960
diff
changeset
|
103 |
syntax |
45703
c7a13ce60161
renamed inner syntax categories "num" to "num_token" and "xnum" to "xnum_token";
wenzelm
parents:
35123
diff
changeset
|
104 |
"_Int" :: "xnum_token => i" ("_") |
35112
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32960
diff
changeset
|
105 |
|
48891 | 106 |
ML_file "Tools/numeral_syntax.ML" |
35123 | 107 |
setup Numeral_Syntax.setup |
23146 | 108 |
|
109 |
||
110 |
declare bin.intros [simp,TC] |
|
111 |
||
112 |
lemma NCons_Pls_0: "NCons(Pls,0) = Pls" |
|
113 |
by simp |
|
114 |
||
115 |
lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1" |
|
116 |
by simp |
|
117 |
||
118 |
lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0" |
|
119 |
by simp |
|
120 |
||
121 |
lemma NCons_Min_1: "NCons(Min,1) = Min" |
|
122 |
by simp |
|
123 |
||
124 |
lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b" |
|
125 |
by (simp add: bin.case_eqns) |
|
126 |
||
46820 | 127 |
lemmas NCons_simps [simp] = |
23146 | 128 |
NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT |
129 |
||
130 |
||
131 |
||
132 |
(** Type checking **) |
|
133 |
||
46953 | 134 |
lemma integ_of_type [TC]: "w \<in> bin ==> integ_of(w) \<in> int" |
23146 | 135 |
apply (induct_tac "w") |
136 |
apply (simp_all add: bool_into_nat) |
|
137 |
done |
|
138 |
||
46953 | 139 |
lemma NCons_type [TC]: "[| w \<in> bin; b \<in> bool |] ==> NCons(w,b) \<in> bin" |
23146 | 140 |
by (induct_tac "w", auto) |
141 |
||
46953 | 142 |
lemma bin_succ_type [TC]: "w \<in> bin ==> bin_succ(w) \<in> bin" |
23146 | 143 |
by (induct_tac "w", auto) |
144 |
||
46953 | 145 |
lemma bin_pred_type [TC]: "w \<in> bin ==> bin_pred(w) \<in> bin" |
23146 | 146 |
by (induct_tac "w", auto) |
147 |
||
46953 | 148 |
lemma bin_minus_type [TC]: "w \<in> bin ==> bin_minus(w) \<in> bin" |
23146 | 149 |
by (induct_tac "w", auto) |
150 |
||
151 |
(*This proof is complicated by the mutual recursion*) |
|
152 |
lemma bin_add_type [rule_format,TC]: |
|
46953 | 153 |
"v \<in> bin ==> \<forall>w\<in>bin. bin_add(v,w) \<in> bin" |
23146 | 154 |
apply (unfold bin_add_def) |
155 |
apply (induct_tac "v") |
|
156 |
apply (rule_tac [3] ballI) |
|
157 |
apply (rename_tac [3] "w'") |
|
158 |
apply (induct_tac [3] "w'") |
|
159 |
apply (simp_all add: NCons_type) |
|
160 |
done |
|
161 |
||
46953 | 162 |
lemma bin_mult_type [TC]: "[| v \<in> bin; w \<in> bin |] ==> bin_mult(v,w) \<in> bin" |
23146 | 163 |
by (induct_tac "v", auto) |
164 |
||
165 |
||
46820 | 166 |
subsubsection{*The Carry and Borrow Functions, |
23146 | 167 |
@{term bin_succ} and @{term bin_pred}*} |
168 |
||
169 |
(*NCons preserves the integer value of its argument*) |
|
170 |
lemma integ_of_NCons [simp]: |
|
46953 | 171 |
"[| w \<in> bin; b \<in> bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)" |
23146 | 172 |
apply (erule bin.cases) |
46820 | 173 |
apply (auto elim!: boolE) |
23146 | 174 |
done |
175 |
||
176 |
lemma integ_of_succ [simp]: |
|
46953 | 177 |
"w \<in> bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)" |
23146 | 178 |
apply (erule bin.induct) |
46820 | 179 |
apply (auto simp add: zadd_ac elim!: boolE) |
23146 | 180 |
done |
181 |
||
182 |
lemma integ_of_pred [simp]: |
|
46953 | 183 |
"w \<in> bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)" |
23146 | 184 |
apply (erule bin.induct) |
46820 | 185 |
apply (auto simp add: zadd_ac elim!: boolE) |
23146 | 186 |
done |
187 |
||
188 |
||
189 |
subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*} |
|
190 |
||
46953 | 191 |
lemma integ_of_minus: "w \<in> bin ==> integ_of(bin_minus(w)) = $- integ_of(w)" |
23146 | 192 |
apply (erule bin.induct) |
46820 | 193 |
apply (auto simp add: zadd_ac zminus_zadd_distrib elim!: boolE) |
23146 | 194 |
done |
195 |
||
196 |
||
197 |
subsubsection{*@{term bin_add}: Binary Addition*} |
|
198 |
||
46953 | 199 |
lemma bin_add_Pls [simp]: "w \<in> bin ==> bin_add(Pls,w) = w" |
23146 | 200 |
by (unfold bin_add_def, simp) |
201 |
||
46953 | 202 |
lemma bin_add_Pls_right: "w \<in> bin ==> bin_add(w,Pls) = w" |
23146 | 203 |
apply (unfold bin_add_def) |
204 |
apply (erule bin.induct, auto) |
|
205 |
done |
|
206 |
||
46953 | 207 |
lemma bin_add_Min [simp]: "w \<in> bin ==> bin_add(Min,w) = bin_pred(w)" |
23146 | 208 |
by (unfold bin_add_def, simp) |
209 |
||
46953 | 210 |
lemma bin_add_Min_right: "w \<in> bin ==> bin_add(w,Min) = bin_pred(w)" |
23146 | 211 |
apply (unfold bin_add_def) |
212 |
apply (erule bin.induct, auto) |
|
213 |
done |
|
214 |
||
215 |
lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x" |
|
216 |
by (unfold bin_add_def, simp) |
|
217 |
||
218 |
lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)" |
|
219 |
by (unfold bin_add_def, simp) |
|
220 |
||
221 |
lemma bin_add_BIT_BIT [simp]: |
|
46953 | 222 |
"[| w \<in> bin; y \<in> bool |] |
46820 | 223 |
==> bin_add(v BIT x, w BIT y) = |
23146 | 224 |
NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)" |
225 |
by (unfold bin_add_def, simp) |
|
226 |
||
227 |
lemma integ_of_add [rule_format]: |
|
46953 | 228 |
"v \<in> bin ==> |
46820 | 229 |
\<forall>w\<in>bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)" |
23146 | 230 |
apply (erule bin.induct, simp, simp) |
231 |
apply (rule ballI) |
|
232 |
apply (induct_tac "wa") |
|
46820 | 233 |
apply (auto simp add: zadd_ac elim!: boolE) |
23146 | 234 |
done |
235 |
||
236 |
(*Subtraction*) |
|
46820 | 237 |
lemma diff_integ_of_eq: |
46953 | 238 |
"[| v \<in> bin; w \<in> bin |] |
23146 | 239 |
==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))" |
240 |
apply (unfold zdiff_def) |
|
241 |
apply (simp add: integ_of_add integ_of_minus) |
|
242 |
done |
|
243 |
||
244 |
||
245 |
subsubsection{*@{term bin_mult}: Binary Multiplication*} |
|
246 |
||
247 |
lemma integ_of_mult: |
|
46953 | 248 |
"[| v \<in> bin; w \<in> bin |] |
23146 | 249 |
==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)" |
250 |
apply (induct_tac "v", simp) |
|
251 |
apply (simp add: integ_of_minus) |
|
46820 | 252 |
apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib elim!: boolE) |
23146 | 253 |
done |
254 |
||
255 |
||
256 |
subsection{*Computations*} |
|
257 |
||
258 |
(** extra rules for bin_succ, bin_pred **) |
|
259 |
||
260 |
lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0" |
|
261 |
by simp |
|
262 |
||
263 |
lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)" |
|
264 |
by simp |
|
265 |
||
266 |
lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)" |
|
267 |
by simp |
|
268 |
||
269 |
lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1" |
|
270 |
by simp |
|
271 |
||
272 |
(** extra rules for bin_minus **) |
|
273 |
||
274 |
lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))" |
|
275 |
by simp |
|
276 |
||
277 |
lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0" |
|
278 |
by simp |
|
279 |
||
280 |
(** extra rules for bin_add **) |
|
281 |
||
46953 | 282 |
lemma bin_add_BIT_11: "w \<in> bin ==> bin_add(v BIT 1, w BIT 1) = |
23146 | 283 |
NCons(bin_add(v, bin_succ(w)), 0)" |
284 |
by simp |
|
285 |
||
46953 | 286 |
lemma bin_add_BIT_10: "w \<in> bin ==> bin_add(v BIT 1, w BIT 0) = |
23146 | 287 |
NCons(bin_add(v,w), 1)" |
288 |
by simp |
|
289 |
||
46953 | 290 |
lemma bin_add_BIT_0: "[| w \<in> bin; y \<in> bool |] |
23146 | 291 |
==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)" |
292 |
by simp |
|
293 |
||
294 |
(** extra rules for bin_mult **) |
|
295 |
||
296 |
lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)" |
|
297 |
by simp |
|
298 |
||
299 |
lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)" |
|
300 |
by simp |
|
301 |
||
302 |
||
303 |
(** Simplification rules with integer constants **) |
|
304 |
||
305 |
lemma int_of_0: "$#0 = #0" |
|
306 |
by simp |
|
307 |
||
308 |
lemma int_of_succ: "$# succ(n) = #1 $+ $#n" |
|
309 |
by (simp add: int_of_add [symmetric] natify_succ) |
|
310 |
||
311 |
lemma zminus_0 [simp]: "$- #0 = #0" |
|
312 |
by simp |
|
313 |
||
314 |
lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)" |
|
315 |
by simp |
|
316 |
||
317 |
lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)" |
|
318 |
by simp |
|
319 |
||
320 |
lemma zmult_1_intify [simp]: "#1 $* z = intify(z)" |
|
321 |
by simp |
|
322 |
||
323 |
lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)" |
|
324 |
by (subst zmult_commute, simp) |
|
325 |
||
326 |
lemma zmult_0 [simp]: "#0 $* z = #0" |
|
327 |
by simp |
|
328 |
||
329 |
lemma zmult_0_right [simp]: "z $* #0 = #0" |
|
330 |
by (subst zmult_commute, simp) |
|
331 |
||
332 |
lemma zmult_minus1 [simp]: "#-1 $* z = $-z" |
|
333 |
by (simp add: zcompare_rls) |
|
334 |
||
335 |
lemma zmult_minus1_right [simp]: "z $* #-1 = $-z" |
|
336 |
apply (subst zmult_commute) |
|
337 |
apply (rule zmult_minus1) |
|
338 |
done |
|
339 |
||
340 |
||
341 |
subsection{*Simplification Rules for Comparison of Binary Numbers*} |
|
342 |
text{*Thanks to Norbert Voelker*} |
|
343 |
||
344 |
(** Equals (=) **) |
|
345 |
||
46820 | 346 |
lemma eq_integ_of_eq: |
46953 | 347 |
"[| v \<in> bin; w \<in> bin |] |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
348 |
==> ((integ_of(v)) = integ_of(w)) \<longleftrightarrow> |
23146 | 349 |
iszero (integ_of (bin_add (v, bin_minus(w))))" |
350 |
apply (unfold iszero_def) |
|
351 |
apply (simp add: zcompare_rls integ_of_add integ_of_minus) |
|
352 |
done |
|
353 |
||
354 |
lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))" |
|
355 |
by (unfold iszero_def, simp) |
|
356 |
||
357 |
||
358 |
lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))" |
|
359 |
apply (unfold iszero_def) |
|
360 |
apply (simp add: zminus_equation) |
|
361 |
done |
|
362 |
||
46820 | 363 |
lemma iszero_integ_of_BIT: |
46953 | 364 |
"[| w \<in> bin; x \<in> bool |] |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
365 |
==> iszero (integ_of (w BIT x)) \<longleftrightarrow> (x=0 & iszero (integ_of(w)))" |
23146 | 366 |
apply (unfold iszero_def, simp) |
46820 | 367 |
apply (subgoal_tac "integ_of (w) \<in> int") |
23146 | 368 |
apply typecheck |
369 |
apply (drule int_cases) |
|
370 |
apply (safe elim!: boolE) |
|
371 |
apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric] |
|
372 |
int_of_add [symmetric]) |
|
373 |
done |
|
374 |
||
375 |
lemma iszero_integ_of_0: |
|
46953 | 376 |
"w \<in> bin ==> iszero (integ_of (w BIT 0)) \<longleftrightarrow> iszero (integ_of(w))" |
46820 | 377 |
by (simp only: iszero_integ_of_BIT, blast) |
23146 | 378 |
|
46953 | 379 |
lemma iszero_integ_of_1: "w \<in> bin ==> ~ iszero (integ_of (w BIT 1))" |
23146 | 380 |
by (simp only: iszero_integ_of_BIT, blast) |
381 |
||
382 |
||
383 |
||
384 |
(** Less-than (<) **) |
|
385 |
||
46820 | 386 |
lemma less_integ_of_eq_neg: |
46953 | 387 |
"[| v \<in> bin; w \<in> bin |] |
46820 | 388 |
==> integ_of(v) $< integ_of(w) |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
389 |
\<longleftrightarrow> znegative (integ_of (bin_add (v, bin_minus(w))))" |
23146 | 390 |
apply (unfold zless_def zdiff_def) |
391 |
apply (simp add: integ_of_minus integ_of_add) |
|
392 |
done |
|
393 |
||
394 |
lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))" |
|
395 |
by simp |
|
396 |
||
397 |
lemma neg_integ_of_Min: "znegative (integ_of(Min))" |
|
398 |
by simp |
|
399 |
||
400 |
lemma neg_integ_of_BIT: |
|
46953 | 401 |
"[| w \<in> bin; x \<in> bool |] |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
402 |
==> znegative (integ_of (w BIT x)) \<longleftrightarrow> znegative (integ_of(w))" |
23146 | 403 |
apply simp |
46820 | 404 |
apply (subgoal_tac "integ_of (w) \<in> int") |
23146 | 405 |
apply typecheck |
406 |
apply (drule int_cases) |
|
407 |
apply (auto elim!: boolE simp add: int_of_add [symmetric] zcompare_rls) |
|
46820 | 408 |
apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def |
23146 | 409 |
int_of_add [symmetric]) |
410 |
apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ") |
|
411 |
apply (simp add: zdiff_def) |
|
412 |
apply (simp add: equation_zminus int_of_diff [symmetric]) |
|
413 |
done |
|
414 |
||
415 |
(** Less-than-or-equals (<=) **) |
|
416 |
||
417 |
lemma le_integ_of_eq_not_less: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
418 |
"(integ_of(x) $<= (integ_of(w))) \<longleftrightarrow> ~ (integ_of(w) $< (integ_of(x)))" |
23146 | 419 |
by (simp add: not_zless_iff_zle [THEN iff_sym]) |
420 |
||
421 |
||
422 |
(*Delete the original rewrites, with their clumsy conditional expressions*) |
|
46820 | 423 |
declare bin_succ_BIT [simp del] |
424 |
bin_pred_BIT [simp del] |
|
23146 | 425 |
bin_minus_BIT [simp del] |
426 |
NCons_Pls [simp del] |
|
427 |
NCons_Min [simp del] |
|
428 |
bin_adder_BIT [simp del] |
|
429 |
bin_mult_BIT [simp del] |
|
430 |
||
431 |
(*Hide the binary representation of integer constants*) |
|
432 |
declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del] |
|
433 |
||
434 |
||
435 |
lemmas bin_arith_extra_simps = |
|
46820 | 436 |
integ_of_add [symmetric] |
437 |
integ_of_minus [symmetric] |
|
438 |
integ_of_mult [symmetric] |
|
439 |
bin_succ_1 bin_succ_0 |
|
440 |
bin_pred_1 bin_pred_0 |
|
441 |
bin_minus_1 bin_minus_0 |
|
23146 | 442 |
bin_add_Pls_right bin_add_Min_right |
443 |
bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11 |
|
444 |
diff_integ_of_eq |
|
445 |
bin_mult_1 bin_mult_0 NCons_simps |
|
446 |
||
447 |
||
448 |
(*For making a minimal simpset, one must include these default simprules |
|
449 |
of thy. Also include simp_thms, or at least (~False)=True*) |
|
450 |
lemmas bin_arith_simps = |
|
451 |
bin_pred_Pls bin_pred_Min |
|
452 |
bin_succ_Pls bin_succ_Min |
|
453 |
bin_add_Pls bin_add_Min |
|
454 |
bin_minus_Pls bin_minus_Min |
|
46820 | 455 |
bin_mult_Pls bin_mult_Min |
23146 | 456 |
bin_arith_extra_simps |
457 |
||
458 |
(*Simplification of relational operations*) |
|
459 |
lemmas bin_rel_simps = |
|
460 |
eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min |
|
461 |
iszero_integ_of_0 iszero_integ_of_1 |
|
462 |
less_integ_of_eq_neg |
|
463 |
not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT |
|
464 |
le_integ_of_eq_not_less |
|
465 |
||
466 |
declare bin_arith_simps [simp] |
|
467 |
declare bin_rel_simps [simp] |
|
468 |
||
469 |
||
470 |
(** Simplification of arithmetic when nested to the right **) |
|
471 |
||
472 |
lemma add_integ_of_left [simp]: |
|
46953 | 473 |
"[| v \<in> bin; w \<in> bin |] |
23146 | 474 |
==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)" |
475 |
by (simp add: zadd_assoc [symmetric]) |
|
476 |
||
477 |
lemma mult_integ_of_left [simp]: |
|
46953 | 478 |
"[| v \<in> bin; w \<in> bin |] |
23146 | 479 |
==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)" |
480 |
by (simp add: zmult_assoc [symmetric]) |
|
481 |
||
46820 | 482 |
lemma add_integ_of_diff1 [simp]: |
46953 | 483 |
"[| v \<in> bin; w \<in> bin |] |
23146 | 484 |
==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)" |
485 |
apply (unfold zdiff_def) |
|
486 |
apply (rule add_integ_of_left, auto) |
|
487 |
done |
|
488 |
||
489 |
lemma add_integ_of_diff2 [simp]: |
|
46953 | 490 |
"[| v \<in> bin; w \<in> bin |] |
46820 | 491 |
==> integ_of(v) $+ (c $- integ_of(w)) = |
23146 | 492 |
integ_of (bin_add (v, bin_minus(w))) $+ (c)" |
493 |
apply (subst diff_integ_of_eq [symmetric]) |
|
494 |
apply (simp_all add: zdiff_def zadd_ac) |
|
495 |
done |
|
496 |
||
497 |
||
498 |
(** More for integer constants **) |
|
499 |
||
500 |
declare int_of_0 [simp] int_of_succ [simp] |
|
501 |
||
502 |
lemma zdiff0 [simp]: "#0 $- x = $-x" |
|
503 |
by (simp add: zdiff_def) |
|
504 |
||
505 |
lemma zdiff0_right [simp]: "x $- #0 = intify(x)" |
|
506 |
by (simp add: zdiff_def) |
|
507 |
||
508 |
lemma zdiff_self [simp]: "x $- x = #0" |
|
509 |
by (simp add: zdiff_def) |
|
510 |
||
46953 | 511 |
lemma znegative_iff_zless_0: "k \<in> int ==> znegative(k) \<longleftrightarrow> k $< #0" |
23146 | 512 |
by (simp add: zless_def) |
513 |
||
46953 | 514 |
lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k \<in> int|] ==> znegative($-k)" |
23146 | 515 |
by (simp add: zless_def) |
516 |
||
517 |
lemma zero_zle_int_of [simp]: "#0 $<= $# n" |
|
518 |
by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym]) |
|
519 |
||
520 |
lemma nat_of_0 [simp]: "nat_of(#0) = 0" |
|
521 |
by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of) |
|
522 |
||
46953 | 523 |
lemma nat_le_int0_lemma: "[| z $<= $#0; z \<in> int |] ==> nat_of(z) = 0" |
23146 | 524 |
by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of) |
525 |
||
526 |
lemma nat_le_int0: "z $<= $#0 ==> nat_of(z) = 0" |
|
527 |
apply (subgoal_tac "nat_of (intify (z)) = 0") |
|
528 |
apply (rule_tac [2] nat_le_int0_lemma, auto) |
|
529 |
done |
|
530 |
||
531 |
lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0" |
|
532 |
by (rule not_znegative_imp_zero, auto) |
|
533 |
||
534 |
lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0" |
|
535 |
by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int) |
|
536 |
||
537 |
lemma int_of_nat_of: "#0 $<= z ==> $# nat_of(z) = intify(z)" |
|
538 |
apply (rule not_zneg_nat_of_intify) |
|
539 |
apply (simp add: znegative_iff_zless_0 not_zless_iff_zle) |
|
540 |
done |
|
541 |
||
542 |
declare int_of_nat_of [simp] nat_of_zminus_int_of [simp] |
|
543 |
||
544 |
lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $<= z then intify(z) else #0)" |
|
545 |
by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless) |
|
546 |
||
46953 | 547 |
lemma zless_nat_iff_int_zless: "[| m \<in> nat; z \<in> int |] ==> (m < nat_of(z)) \<longleftrightarrow> ($#m $< z)" |
23146 | 548 |
apply (case_tac "znegative (z) ") |
549 |
apply (erule_tac [2] not_zneg_nat_of [THEN subst]) |
|
550 |
apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans] |
|
551 |
simp add: znegative_iff_zless_0) |
|
552 |
done |
|
553 |
||
554 |
||
555 |
(** nat_of and zless **) |
|
556 |
||
46820 | 557 |
(*An alternative condition is @{term"$#0 \<subseteq> w"} *) |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
558 |
lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) \<longleftrightarrow> (w $< z)" |
23146 | 559 |
apply (rule iff_trans) |
560 |
apply (rule zless_int_of [THEN iff_sym]) |
|
561 |
apply (auto simp add: int_of_nat_of_if simp del: zless_int_of) |
|
562 |
apply (auto elim: zless_asym simp add: not_zle_iff_zless) |
|
563 |
apply (blast intro: zless_zle_trans) |
|
564 |
done |
|
565 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
566 |
lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) \<longleftrightarrow> ($#0 $< z & w $< z)" |
23146 | 567 |
apply (case_tac "$#0 $< z") |
568 |
apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle) |
|
569 |
done |
|
570 |
||
571 |
(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq |
|
572 |
unconditional! |
|
573 |
[The condition "True" is a hack to prevent looping. |
|
574 |
Conditional rewrite rules are tried after unconditional ones, so a rule |
|
575 |
like eq_nat_number_of will be tried first to eliminate #mm=#nn.] |
|
576 |
lemma integ_of_reorient [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
577 |
"True ==> (integ_of(w) = x) \<longleftrightarrow> (x = integ_of(w))" |
23146 | 578 |
by auto |
579 |
*) |
|
580 |
||
581 |
lemma integ_of_minus_reorient [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
582 |
"(integ_of(w) = $- x) \<longleftrightarrow> ($- x = integ_of(w))" |
23146 | 583 |
by auto |
584 |
||
585 |
lemma integ_of_add_reorient [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
586 |
"(integ_of(w) = x $+ y) \<longleftrightarrow> (x $+ y = integ_of(w))" |
23146 | 587 |
by auto |
588 |
||
589 |
lemma integ_of_diff_reorient [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
590 |
"(integ_of(w) = x $- y) \<longleftrightarrow> (x $- y = integ_of(w))" |
23146 | 591 |
by auto |
592 |
||
593 |
lemma integ_of_mult_reorient [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
594 |
"(integ_of(w) = x $* y) \<longleftrightarrow> (x $* y = integ_of(w))" |
23146 | 595 |
by auto |
596 |
||
597 |
end |