| 
23146
 | 
     1  | 
  | 
| 
 | 
     2  | 
theory IntArith imports Bin
  | 
| 
27237
 | 
     3  | 
uses ("int_arith.ML")
 | 
| 
 | 
     4  | 
begin
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
(** To simplify inequalities involving integer negation and literals,
  | 
| 
 | 
     8  | 
    such as -x = #3
  | 
| 
 | 
     9  | 
**)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
lemmas [simp] =
  | 
| 
45602
 | 
    12  | 
  zminus_equation [where y = "integ_of(w)"]
  | 
| 
 | 
    13  | 
  equation_zminus [where x = "integ_of(w)"]
  | 
| 
 | 
    14  | 
  for w
  | 
| 
27237
 | 
    15  | 
  | 
| 
 | 
    16  | 
lemmas [iff] =
  | 
| 
45602
 | 
    17  | 
  zminus_zless [where y = "integ_of(w)"]
  | 
| 
 | 
    18  | 
  zless_zminus [where x = "integ_of(w)"]
  | 
| 
 | 
    19  | 
  for w
  | 
| 
27237
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemmas [iff] =
  | 
| 
45602
 | 
    22  | 
  zminus_zle [where y = "integ_of(w)"]
  | 
| 
 | 
    23  | 
  zle_zminus [where x = "integ_of(w)"]
  | 
| 
 | 
    24  | 
  for w
  | 
| 
27237
 | 
    25  | 
  | 
| 
 | 
    26  | 
lemmas [simp] =
  | 
| 
45602
 | 
    27  | 
  Let_def [where s = "integ_of(w)"] for w
  | 
| 
27237
 | 
    28  | 
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
(*** Simprocs for numeric literals ***)
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
(** Combining of literal coefficients in sums of products **)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma zless_iff_zdiff_zless_0: "(x $< y) <-> (x$-y $< #0)"
  | 
| 
 | 
    35  | 
  by (simp add: zcompare_rls)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma eq_iff_zdiff_eq_0: "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)"
  | 
| 
 | 
    38  | 
  by (simp add: zcompare_rls)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma zle_iff_zdiff_zle_0: "(x $<= y) <-> (x$-y $<= #0)"
  | 
| 
 | 
    41  | 
  by (simp add: zcompare_rls)
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
(** For combine_numerals **)
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma left_zadd_zmult_distrib: "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"
  | 
| 
 | 
    47  | 
  by (simp add: zadd_zmult_distrib zadd_ac)
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
(** For cancel_numerals **)
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemmas rel_iff_rel_0_rls =
  | 
| 
45602
 | 
    53  | 
  zless_iff_zdiff_zless_0 [where y = "u $+ v"]
  | 
| 
 | 
    54  | 
  eq_iff_zdiff_eq_0 [where y = "u $+ v"]
  | 
| 
 | 
    55  | 
  zle_iff_zdiff_zle_0 [where y = "u $+ v"]
  | 
| 
27237
 | 
    56  | 
  zless_iff_zdiff_zless_0 [where y = n]
  | 
| 
 | 
    57  | 
  eq_iff_zdiff_eq_0 [where y = n]
  | 
| 
 | 
    58  | 
  zle_iff_zdiff_zle_0 [where y = n]
  | 
| 
45602
 | 
    59  | 
  for u v (* FIXME n (!?) *)
  | 
| 
27237
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma eq_add_iff1: "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))"
  | 
| 
 | 
    62  | 
  apply (simp add: zdiff_def zadd_zmult_distrib)
  | 
| 
 | 
    63  | 
  apply (simp add: zcompare_rls)
  | 
| 
 | 
    64  | 
  apply (simp add: zadd_ac)
  | 
| 
 | 
    65  | 
  done
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma eq_add_iff2: "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)"
  | 
| 
 | 
    68  | 
  apply (simp add: zdiff_def zadd_zmult_distrib)
  | 
| 
 | 
    69  | 
  apply (simp add: zcompare_rls)
  | 
| 
 | 
    70  | 
  apply (simp add: zadd_ac)
  | 
| 
 | 
    71  | 
  done
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma less_add_iff1: "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)"
  | 
| 
 | 
    74  | 
  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
  | 
| 
 | 
    75  | 
  done
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
lemma less_add_iff2: "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)"
  | 
| 
 | 
    78  | 
  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
  | 
| 
 | 
    79  | 
  done
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma le_add_iff1: "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)"
  | 
| 
 | 
    82  | 
  apply (simp add: zdiff_def zadd_zmult_distrib)
  | 
| 
 | 
    83  | 
  apply (simp add: zcompare_rls)
  | 
| 
 | 
    84  | 
  apply (simp add: zadd_ac)
  | 
| 
 | 
    85  | 
  done
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma le_add_iff2: "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)"
  | 
| 
 | 
    88  | 
  apply (simp add: zdiff_def zadd_zmult_distrib)
  | 
| 
 | 
    89  | 
  apply (simp add: zcompare_rls)
  | 
| 
 | 
    90  | 
  apply (simp add: zadd_ac)
  | 
| 
 | 
    91  | 
  done
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
use "int_arith.ML"
  | 
| 
23146
 | 
    94  | 
  | 
| 
 | 
    95  | 
end
  |