| 0 |      1 | (*  Title: 	ZF/wf.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Tobias Nipkow and Lawrence C Paulson
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Well-founded Recursion
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
| 124 |      9 | WF = Trancl + "mono" +
 | 
| 0 |     10 | consts
 | 
|  |     11 |     wf		 ::      "i=>o"
 | 
|  |     12 |     wftrec,wfrec ::      "[i, i, [i,i]=>i] =>i"
 | 
|  |     13 |     is_recfun    ::      "[i, i, [i,i]=>i, i] =>o"
 | 
|  |     14 |     the_recfun   ::      "[i, i, [i,i]=>i] =>i"
 | 
|  |     15 | 
 | 
|  |     16 | rules
 | 
|  |     17 |   (*r is a well-founded relation*)
 | 
|  |     18 |   wf_def	 "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
 | 
|  |     19 | 
 | 
|  |     20 |   is_recfun_def  "is_recfun(r,a,H,f) == \
 | 
|  |     21 | \   			(f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
 | 
|  |     22 | 
 | 
|  |     23 |   the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
 | 
|  |     24 | 
 | 
|  |     25 |   wftrec_def  	 "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
 | 
|  |     26 | 
 | 
|  |     27 |   (*public version.  Does not require r to be transitive*)
 | 
|  |     28 |   wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
 | 
|  |     29 | 
 | 
|  |     30 | end
 |