| author | wenzelm | 
| Sat, 01 Mar 2014 13:05:46 +0100 | |
| changeset 55821 | 44055f07cbd8 | 
| parent 55413 | a8e96847523c | 
| child 56243 | 2e10a36b8d46 | 
| permissions | -rw-r--r-- | 
| 26169 | 1 | (* Title: HOL/Library/Countable.thy | 
| 26350 | 2 | Author: Alexander Krauss, TU Muenchen | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 3 | Author: Brian Huffman, Portland State University | 
| 26169 | 4 | *) | 
| 5 | ||
| 6 | header {* Encoding (almost) everything into natural numbers *}
 | |
| 7 | ||
| 8 | theory Countable | |
| 35700 | 9 | imports Main Rat Nat_Bijection | 
| 26169 | 10 | begin | 
| 11 | ||
| 12 | subsection {* The class of countable types *}
 | |
| 13 | ||
| 29797 | 14 | class countable = | 
| 26169 | 15 | assumes ex_inj: "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" | 
| 16 | ||
| 17 | lemma countable_classI: | |
| 18 | fixes f :: "'a \<Rightarrow> nat" | |
| 19 | assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" | |
| 20 |   shows "OFCLASS('a, countable_class)"
 | |
| 21 | proof (intro_classes, rule exI) | |
| 22 | show "inj f" | |
| 23 | by (rule injI [OF assms]) assumption | |
| 24 | qed | |
| 25 | ||
| 26 | ||
| 26585 | 27 | subsection {* Conversion functions *}
 | 
| 26169 | 28 | |
| 29 | definition to_nat :: "'a\<Colon>countable \<Rightarrow> nat" where | |
| 30 | "to_nat = (SOME f. inj f)" | |
| 31 | ||
| 32 | definition from_nat :: "nat \<Rightarrow> 'a\<Colon>countable" where | |
| 33 | "from_nat = inv (to_nat \<Colon> 'a \<Rightarrow> nat)" | |
| 34 | ||
| 35 | lemma inj_to_nat [simp]: "inj to_nat" | |
| 36 | by (rule exE_some [OF ex_inj]) (simp add: to_nat_def) | |
| 37 | ||
| 43992 | 38 | lemma inj_on_to_nat[simp, intro]: "inj_on to_nat S" | 
| 39 | using inj_to_nat by (auto simp: inj_on_def) | |
| 40 | ||
| 29910 | 41 | lemma surj_from_nat [simp]: "surj from_nat" | 
| 42 | unfolding from_nat_def by (simp add: inj_imp_surj_inv) | |
| 43 | ||
| 26169 | 44 | lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y" | 
| 45 | using injD [OF inj_to_nat] by auto | |
| 46 | ||
| 47 | lemma from_nat_to_nat [simp]: | |
| 48 | "from_nat (to_nat x) = x" | |
| 49 | by (simp add: from_nat_def) | |
| 50 | ||
| 51 | ||
| 52 | subsection {* Countable types *}
 | |
| 53 | ||
| 54 | instance nat :: countable | |
| 35700 | 55 | by (rule countable_classI [of "id"]) simp | 
| 26169 | 56 | |
| 57 | subclass (in finite) countable | |
| 28823 | 58 | proof | 
| 26169 | 59 | have "finite (UNIV\<Colon>'a set)" by (rule finite_UNIV) | 
| 31992 | 60 | with finite_conv_nat_seg_image [of "UNIV::'a set"] | 
| 26169 | 61 | obtain n and f :: "nat \<Rightarrow> 'a" | 
| 62 |     where "UNIV = f ` {i. i < n}" by auto
 | |
| 63 | then have "surj f" unfolding surj_def by auto | |
| 64 | then have "inj (inv f)" by (rule surj_imp_inj_inv) | |
| 65 | then show "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj]) | |
| 66 | qed | |
| 67 | ||
| 68 | text {* Pairs *}
 | |
| 69 | ||
| 37678 
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
 haftmann parents: 
37652diff
changeset | 70 | instance prod :: (countable, countable) countable | 
| 35700 | 71 | by (rule countable_classI [of "\<lambda>(x, y). prod_encode (to_nat x, to_nat y)"]) | 
| 72 | (auto simp add: prod_encode_eq) | |
| 26169 | 73 | |
| 74 | ||
| 75 | text {* Sums *}
 | |
| 76 | ||
| 37678 
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
 haftmann parents: 
37652diff
changeset | 77 | instance sum :: (countable, countable) countable | 
| 26169 | 78 | by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a) | 
| 79 | | Inr b \<Rightarrow> to_nat (True, to_nat b))"]) | |
| 35700 | 80 | (simp split: sum.split_asm) | 
| 26169 | 81 | |
| 82 | ||
| 83 | text {* Integers *}
 | |
| 84 | ||
| 85 | instance int :: countable | |
| 35700 | 86 | by (rule countable_classI [of "int_encode"]) | 
| 87 | (simp add: int_encode_eq) | |
| 26169 | 88 | |
| 89 | ||
| 90 | text {* Options *}
 | |
| 91 | ||
| 92 | instance option :: (countable) countable | |
| 55413 
a8e96847523c
adapted theories to '{case,rec}_{list,option}' names
 blanchet parents: 
49187diff
changeset | 93 | by (rule countable_classI [of "case_option 0 (Suc \<circ> to_nat)"]) | 
| 35700 | 94 | (simp split: option.split_asm) | 
| 26169 | 95 | |
| 96 | ||
| 97 | text {* Lists *}
 | |
| 98 | ||
| 99 | instance list :: (countable) countable | |
| 35700 | 100 | by (rule countable_classI [of "list_encode \<circ> map to_nat"]) | 
| 101 | (simp add: list_encode_eq) | |
| 26169 | 102 | |
| 26243 | 103 | |
| 37652 | 104 | text {* Further *}
 | 
| 105 | ||
| 106 | instance String.literal :: countable | |
| 39250 
548a3e5521ab
changing String.literal to a type instead of a datatype
 bulwahn parents: 
39198diff
changeset | 107 | by (rule countable_classI [of "to_nat o explode"]) | 
| 
548a3e5521ab
changing String.literal to a type instead of a datatype
 bulwahn parents: 
39198diff
changeset | 108 | (auto simp add: explode_inject) | 
| 37652 | 109 | |
| 26243 | 110 | text {* Functions *}
 | 
| 111 | ||
| 112 | instance "fun" :: (finite, countable) countable | |
| 113 | proof | |
| 114 | obtain xs :: "'a list" where xs: "set xs = UNIV" | |
| 115 | using finite_list [OF finite_UNIV] .. | |
| 116 |   show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
 | |
| 117 | proof | |
| 118 | show "inj (\<lambda>f. to_nat (map f xs))" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39250diff
changeset | 119 | by (rule injI, simp add: xs fun_eq_iff) | 
| 26243 | 120 | qed | 
| 121 | qed | |
| 122 | ||
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 123 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 124 | subsection {* The Rationals are Countably Infinite *}
 | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 125 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 126 | definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where | 
| 35700 | 127 | "nat_to_rat_surj n = (let (a,b) = prod_decode n | 
| 128 | in Fract (int_decode a) (int_decode b))" | |
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 129 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 130 | lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 131 | unfolding surj_def | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 132 | proof | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 133 | fix r::rat | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 134 | show "\<exists>n. r = nat_to_rat_surj n" | 
| 35374 | 135 | proof (cases r) | 
| 136 | fix i j assume [simp]: "r = Fract i j" and "j > 0" | |
| 35700 | 137 | have "r = (let m = int_encode i; n = int_encode j | 
| 138 | in nat_to_rat_surj(prod_encode (m,n)))" | |
| 139 | by (simp add: Let_def nat_to_rat_surj_def) | |
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 140 | thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp:Let_def) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 141 | qed | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 142 | qed | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 143 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 144 | lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj" | 
| 40702 | 145 | by (simp add: Rats_def surj_nat_to_rat_surj) | 
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 146 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 147 | context field_char_0 | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 148 | begin | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 149 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 150 | lemma Rats_eq_range_of_rat_o_nat_to_rat_surj: | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 151 | "\<rat> = range (of_rat o nat_to_rat_surj)" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 152 | using surj_nat_to_rat_surj | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 153 | by (auto simp: Rats_def image_def surj_def) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 154 | (blast intro: arg_cong[where f = of_rat]) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 155 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 156 | lemma surj_of_rat_nat_to_rat_surj: | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 157 | "r\<in>\<rat> \<Longrightarrow> \<exists>n. r = of_rat(nat_to_rat_surj n)" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 158 | by(simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 159 | |
| 26169 | 160 | end | 
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 161 | |
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 162 | instance rat :: countable | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 163 | proof | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 164 | show "\<exists>to_nat::rat \<Rightarrow> nat. inj to_nat" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 165 | proof | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 166 | have "surj nat_to_rat_surj" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 167 | by (rule surj_nat_to_rat_surj) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 168 | then show "inj (inv nat_to_rat_surj)" | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 169 | by (rule surj_imp_inj_inv) | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 170 | qed | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 171 | qed | 
| 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29797diff
changeset | 172 | |
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 173 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 174 | subsection {* Automatically proving countability of datatypes *}
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 175 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 176 | inductive finite_item :: "'a Datatype.item \<Rightarrow> bool" where | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 177 | undefined: "finite_item undefined" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 178 | | In0: "finite_item x \<Longrightarrow> finite_item (Datatype.In0 x)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 179 | | In1: "finite_item x \<Longrightarrow> finite_item (Datatype.In1 x)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 180 | | Leaf: "finite_item (Datatype.Leaf a)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 181 | | Scons: "\<lbrakk>finite_item x; finite_item y\<rbrakk> \<Longrightarrow> finite_item (Datatype.Scons x y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 182 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 183 | function | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 184 |   nth_item :: "nat \<Rightarrow> ('a::countable) Datatype.item"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 185 | where | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 186 | "nth_item 0 = undefined" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 187 | | "nth_item (Suc n) = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 188 | (case sum_decode n of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 189 | Inl i \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 190 | (case sum_decode i of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 191 | Inl j \<Rightarrow> Datatype.In0 (nth_item j) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 192 | | Inr j \<Rightarrow> Datatype.In1 (nth_item j)) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 193 | | Inr i \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 194 | (case sum_decode i of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 195 | Inl j \<Rightarrow> Datatype.Leaf (from_nat j) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 196 | | Inr j \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 197 | (case prod_decode j of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 198 | (a, b) \<Rightarrow> Datatype.Scons (nth_item a) (nth_item b))))" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 199 | by pat_completeness auto | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 200 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 201 | lemma le_sum_encode_Inl: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inl y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 202 | unfolding sum_encode_def by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 203 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 204 | lemma le_sum_encode_Inr: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inr y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 205 | unfolding sum_encode_def by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 206 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 207 | termination | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 208 | by (relation "measure id") | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 209 | (auto simp add: sum_encode_eq [symmetric] prod_encode_eq [symmetric] | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 210 | le_imp_less_Suc le_sum_encode_Inl le_sum_encode_Inr | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 211 | le_prod_encode_1 le_prod_encode_2) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 212 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 213 | lemma nth_item_covers: "finite_item x \<Longrightarrow> \<exists>n. nth_item n = x" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 214 | proof (induct set: finite_item) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 215 | case undefined | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 216 | have "nth_item 0 = undefined" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 217 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 218 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 219 | case (In0 x) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 220 | then obtain n where "nth_item n = x" by fast | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 221 | hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inl n))))) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 222 | = Datatype.In0 x" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 223 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 224 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 225 | case (In1 x) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 226 | then obtain n where "nth_item n = x" by fast | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 227 | hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inr n))))) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 228 | = Datatype.In1 x" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 229 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 230 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 231 | case (Leaf a) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 232 | have "nth_item (Suc (sum_encode (Inr (sum_encode (Inl (to_nat a)))))) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 233 | = Datatype.Leaf a" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 234 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 235 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 236 | case (Scons x y) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 237 | then obtain i j where "nth_item i = x" and "nth_item j = y" by fast | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 238 | hence "nth_item | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 239 | (Suc (sum_encode (Inr (sum_encode (Inr (prod_encode (i, j))))))) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 240 | = Datatype.Scons x y" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 241 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 242 | qed | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 243 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 244 | theorem countable_datatype: | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 245 |   fixes Rep :: "'b \<Rightarrow> ('a::countable) Datatype.item"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 246 |   fixes Abs :: "('a::countable) Datatype.item \<Rightarrow> 'b"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 247 |   fixes rep_set :: "('a::countable) Datatype.item \<Rightarrow> bool"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 248 | assumes type: "type_definition Rep Abs (Collect rep_set)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 249 | assumes finite_item: "\<And>x. rep_set x \<Longrightarrow> finite_item x" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 250 |   shows "OFCLASS('b, countable_class)"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 251 | proof | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 252 | def f \<equiv> "\<lambda>y. LEAST n. nth_item n = Rep y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 253 |   {
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 254 | fix y :: 'b | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 255 | have "rep_set (Rep y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 256 | using type_definition.Rep [OF type] by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 257 | hence "finite_item (Rep y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 258 | by (rule finite_item) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 259 | hence "\<exists>n. nth_item n = Rep y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 260 | by (rule nth_item_covers) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 261 | hence "nth_item (f y) = Rep y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 262 | unfolding f_def by (rule LeastI_ex) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 263 | hence "Abs (nth_item (f y)) = y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 264 | using type_definition.Rep_inverse [OF type] by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 265 | } | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 266 | hence "inj f" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 267 | by (rule inj_on_inverseI) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 268 | thus "\<exists>f::'b \<Rightarrow> nat. inj f" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 269 | by - (rule exI) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 270 | qed | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 271 | |
| 47432 | 272 | ML {*
 | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 273 | fun countable_tac ctxt = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 274 | SUBGOAL (fn (goal, i) => | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 275 | let | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 276 | val ty_name = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 277 | (case goal of | 
| 46998 | 278 |             (_ $ Const (@{const_name TYPE}, Type (@{type_name itself}, [Type (n, _)]))) => n
 | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 279 | | _ => raise Match) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 280 | val typedef_info = hd (Typedef.get_info ctxt ty_name) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 281 | val typedef_thm = #type_definition (snd typedef_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 282 | val pred_name = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 283 | (case HOLogic.dest_Trueprop (concl_of typedef_thm) of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 284 | (typedef $ rep $ abs $ (collect $ Const (n, _))) => n | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 285 | | _ => raise Match) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 286 | val induct_info = Inductive.the_inductive ctxt pred_name | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 287 | val pred_names = #names (fst induct_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 288 | val induct_thms = #inducts (snd induct_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 289 | val alist = pred_names ~~ induct_thms | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 290 | val induct_thm = the (AList.lookup (op =) alist pred_name) | 
| 49187 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 291 | val vars = rev (Term.add_vars (Thm.prop_of induct_thm) []) | 
| 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 292 | val thy = Proof_Context.theory_of ctxt | 
| 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 293 | val insts = vars |> map (fn (_, T) => try (Thm.cterm_of thy) | 
| 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 294 |           (Const (@{const_name Countable.finite_item}, T)))
 | 
| 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 295 | val induct_thm' = Drule.instantiate' [] insts induct_thm | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 296 |         val rules = @{thms finite_item.intros}
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 297 | in | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 298 | SOLVED' (fn i => EVERY | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 299 |           [rtac @{thm countable_datatype} i,
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 300 | rtac typedef_thm i, | 
| 49187 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 301 | etac induct_thm' i, | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 302 | REPEAT (resolve_tac rules i ORELSE atac i)]) 1 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 303 | end) | 
| 47432 | 304 | *} | 
| 305 | ||
| 306 | method_setup countable_datatype = {*
 | |
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 307 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (countable_tac ctxt)) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 308 | *} "prove countable class instances for datatypes" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 309 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 310 | hide_const (open) finite_item nth_item | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 311 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 312 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 313 | subsection {* Countable datatypes *}
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 314 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 315 | instance typerep :: countable | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 316 | by countable_datatype | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 317 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 318 | end |