author | huffman |
Wed, 17 Aug 2011 15:12:34 -0700 | |
changeset 44262 | 355d5438f5fb |
parent 43971 | 892030194015 |
child 44558 | cc878a312673 |
permissions | -rw-r--r-- |
43146 | 1 |
(* Author: Florian Haftmann, TU Muenchen *) |
2 |
||
3 |
header {* Canonical implementation of sets by distinct lists *} |
|
4 |
||
5 |
theory Dlist_Cset |
|
43241 | 6 |
imports Dlist List_Cset |
43146 | 7 |
begin |
8 |
||
9 |
definition Set :: "'a dlist \<Rightarrow> 'a Cset.set" where |
|
43971
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
10 |
"Set dxs = Cset.set (list_of_dlist dxs)" |
43146 | 11 |
|
12 |
definition Coset :: "'a dlist \<Rightarrow> 'a Cset.set" where |
|
43241 | 13 |
"Coset dxs = List_Cset.coset (list_of_dlist dxs)" |
43146 | 14 |
|
15 |
code_datatype Set Coset |
|
16 |
||
17 |
declare member_code [code del] |
|
43241 | 18 |
declare List_Cset.is_empty_set [code del] |
19 |
declare List_Cset.empty_set [code del] |
|
20 |
declare List_Cset.UNIV_set [code del] |
|
43146 | 21 |
declare insert_set [code del] |
22 |
declare remove_set [code del] |
|
23 |
declare compl_set [code del] |
|
24 |
declare compl_coset [code del] |
|
25 |
declare map_set [code del] |
|
26 |
declare filter_set [code del] |
|
27 |
declare forall_set [code del] |
|
28 |
declare exists_set [code del] |
|
29 |
declare card_set [code del] |
|
43971
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
30 |
declare List_Cset.single_set [code del] |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
31 |
declare List_Cset.bind_set [code del] |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
32 |
declare List_Cset.pred_of_cset_set [code del] |
43146 | 33 |
declare inter_project [code del] |
34 |
declare subtract_remove [code del] |
|
35 |
declare union_insert [code del] |
|
36 |
declare Infimum_inf [code del] |
|
37 |
declare Supremum_sup [code del] |
|
38 |
||
39 |
lemma Set_Dlist [simp]: |
|
40 |
"Set (Dlist xs) = Cset.Set (set xs)" |
|
41 |
by (rule Cset.set_eqI) (simp add: Set_def) |
|
42 |
||
43 |
lemma Coset_Dlist [simp]: |
|
44 |
"Coset (Dlist xs) = Cset.Set (- set xs)" |
|
45 |
by (rule Cset.set_eqI) (simp add: Coset_def) |
|
46 |
||
47 |
lemma member_Set [simp]: |
|
48 |
"Cset.member (Set dxs) = List.member (list_of_dlist dxs)" |
|
49 |
by (simp add: Set_def member_set) |
|
50 |
||
51 |
lemma member_Coset [simp]: |
|
52 |
"Cset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)" |
|
53 |
by (simp add: Coset_def member_set not_set_compl) |
|
54 |
||
55 |
lemma Set_dlist_of_list [code]: |
|
43971
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
56 |
"Cset.set xs = Set (dlist_of_list xs)" |
43146 | 57 |
by (rule Cset.set_eqI) simp |
58 |
||
59 |
lemma Coset_dlist_of_list [code]: |
|
43241 | 60 |
"List_Cset.coset xs = Coset (dlist_of_list xs)" |
43146 | 61 |
by (rule Cset.set_eqI) simp |
62 |
||
63 |
lemma is_empty_Set [code]: |
|
64 |
"Cset.is_empty (Set dxs) \<longleftrightarrow> Dlist.null dxs" |
|
65 |
by (simp add: Dlist.null_def List.null_def member_set) |
|
66 |
||
67 |
lemma bot_code [code]: |
|
68 |
"bot = Set Dlist.empty" |
|
69 |
by (simp add: empty_def) |
|
70 |
||
71 |
lemma top_code [code]: |
|
72 |
"top = Coset Dlist.empty" |
|
73 |
by (simp add: empty_def) |
|
74 |
||
75 |
lemma insert_code [code]: |
|
76 |
"Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)" |
|
77 |
"Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)" |
|
78 |
by (simp_all add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) |
|
79 |
||
80 |
lemma remove_code [code]: |
|
81 |
"Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)" |
|
82 |
"Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)" |
|
83 |
by (auto simp add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) |
|
84 |
||
85 |
lemma member_code [code]: |
|
86 |
"Cset.member (Set dxs) = Dlist.member dxs" |
|
87 |
"Cset.member (Coset dxs) = Not \<circ> Dlist.member dxs" |
|
88 |
by (simp_all add: member_def) |
|
89 |
||
90 |
lemma compl_code [code]: |
|
91 |
"- Set dxs = Coset dxs" |
|
92 |
"- Coset dxs = Set dxs" |
|
93 |
by (rule Cset.set_eqI, simp add: member_set not_set_compl)+ |
|
94 |
||
95 |
lemma map_code [code]: |
|
96 |
"Cset.map f (Set dxs) = Set (Dlist.map f dxs)" |
|
97 |
by (rule Cset.set_eqI) (simp add: member_set) |
|
98 |
||
99 |
lemma filter_code [code]: |
|
100 |
"Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)" |
|
101 |
by (rule Cset.set_eqI) (simp add: member_set) |
|
102 |
||
103 |
lemma forall_Set [code]: |
|
104 |
"Cset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)" |
|
105 |
by (simp add: member_set list_all_iff) |
|
106 |
||
107 |
lemma exists_Set [code]: |
|
108 |
"Cset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)" |
|
109 |
by (simp add: member_set list_ex_iff) |
|
110 |
||
111 |
lemma card_code [code]: |
|
112 |
"Cset.card (Set dxs) = Dlist.length dxs" |
|
113 |
by (simp add: length_def member_set distinct_card) |
|
114 |
||
115 |
lemma inter_code [code]: |
|
116 |
"inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)" |
|
117 |
"inf A (Coset xs) = Dlist.foldr Cset.remove xs A" |
|
118 |
by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) |
|
119 |
||
120 |
lemma subtract_code [code]: |
|
121 |
"A - Set xs = Dlist.foldr Cset.remove xs A" |
|
122 |
"A - Coset xs = Set (Dlist.filter (Cset.member A) xs)" |
|
123 |
by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) |
|
124 |
||
125 |
lemma union_code [code]: |
|
126 |
"sup (Set xs) A = Dlist.foldr Cset.insert xs A" |
|
127 |
"sup (Coset xs) A = Coset (Dlist.filter (Not \<circ> Cset.member A) xs)" |
|
128 |
by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) |
|
129 |
||
130 |
context complete_lattice |
|
131 |
begin |
|
132 |
||
133 |
lemma Infimum_code [code]: |
|
134 |
"Infimum (Set As) = Dlist.foldr inf As top" |
|
135 |
by (simp only: Set_def Infimum_inf foldr_def inf.commute) |
|
136 |
||
137 |
lemma Supremum_code [code]: |
|
138 |
"Supremum (Set As) = Dlist.foldr sup As bot" |
|
139 |
by (simp only: Set_def Supremum_sup foldr_def sup.commute) |
|
140 |
||
141 |
end |
|
142 |
||
43971
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
143 |
declare Cset.single_code[code] |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
144 |
|
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
145 |
lemma bind_set [code]: |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
146 |
"Cset.bind (Dlist_Cset.Set xs) f = foldl (\<lambda>A x. sup A (f x)) Cset.empty (list_of_dlist xs)" |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
147 |
by(simp add: List_Cset.bind_set Dlist_Cset.Set_def) |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
148 |
hide_fact (open) bind_set |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
149 |
|
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
150 |
lemma pred_of_cset_set [code]: |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
151 |
"pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot" |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
152 |
by(simp add: List_Cset.pred_of_cset_set Dlist_Cset.Set_def) |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
153 |
hide_fact (open) pred_of_cset_set |
892030194015
added operations to Cset with code equations in backing implementations
Andreas Lochbihler
parents:
43241
diff
changeset
|
154 |
|
43146 | 155 |
end |