| author | wenzelm | 
| Sun, 21 Aug 2011 22:04:01 +0200 | |
| changeset 44362 | 36598b3eb209 | 
| parent 38131 | df8fc03995a4 | 
| child 44655 | fe0365331566 | 
| permissions | -rw-r--r-- | 
| 35849 | 1 | (* Title: HOL/Algebra/UnivPoly.thy | 
| 2 | Author: Clemens Ballarin, started 9 December 1996 | |
| 3 | Copyright: Clemens Ballarin | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 4 | |
| 27933 | 5 | Contributions, in particular on long division, by Jesus Aransay. | 
| 13940 | 6 | *) | 
| 7 | ||
| 28823 | 8 | theory UnivPoly | 
| 9 | imports Module RingHom | |
| 10 | begin | |
| 13940 | 11 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 12 | section {* Univariate Polynomials *}
 | 
| 13940 | 13 | |
| 14553 | 14 | text {*
 | 
| 14666 | 15 | Polynomials are formalised as modules with additional operations for | 
| 16 | extracting coefficients from polynomials and for obtaining monomials | |
| 17 |   from coefficients and exponents (record @{text "up_ring"}).  The
 | |
| 18 | carrier set is a set of bounded functions from Nat to the | |
| 19 | coefficient domain. Bounded means that these functions return zero | |
| 20 | above a certain bound (the degree). There is a chapter on the | |
| 14706 | 21 |   formalisation of polynomials in the PhD thesis \cite{Ballarin:1999},
 | 
| 22 | which was implemented with axiomatic type classes. This was later | |
| 23 | ported to Locales. | |
| 14553 | 24 | *} | 
| 25 | ||
| 14666 | 26 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 27 | subsection {* The Constructor for Univariate Polynomials *}
 | 
| 13940 | 28 | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 29 | text {*
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 30 | Functions with finite support. | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 31 | *} | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 32 | |
| 14666 | 33 | locale bound = | 
| 34 | fixes z :: 'a | |
| 35 | and n :: nat | |
| 36 | and f :: "nat => 'a" | |
| 37 | assumes bound: "!!m. n < m \<Longrightarrow> f m = z" | |
| 13940 | 38 | |
| 14666 | 39 | declare bound.intro [intro!] | 
| 40 | and bound.bound [dest] | |
| 13940 | 41 | |
| 42 | lemma bound_below: | |
| 14666 | 43 | assumes bound: "bound z m f" and nonzero: "f n \<noteq> z" shows "n \<le> m" | 
| 13940 | 44 | proof (rule classical) | 
| 45 | assume "~ ?thesis" | |
| 46 | then have "m < n" by arith | |
| 47 | with bound have "f n = z" .. | |
| 48 | with nonzero show ?thesis by contradiction | |
| 49 | qed | |
| 50 | ||
| 51 | record ('a, 'p) up_ring = "('a, 'p) module" +
 | |
| 52 | monom :: "['a, nat] => 'p" | |
| 53 | coeff :: "['p, nat] => 'a" | |
| 54 | ||
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 55 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 56 |   up :: "('a, 'm) ring_scheme => (nat => 'a) set"
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 57 |   where "up R = {f. f \<in> UNIV -> carrier R & (EX n. bound \<zero>\<^bsub>R\<^esub> n f)}"
 | 
| 27933 | 58 | |
| 59 | definition UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring"
 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 60 | where "UP R = (| | 
| 27933 | 61 | carrier = up R, | 
| 62 |    mult = (%p:up R. %q:up R. %n. \<Oplus>\<^bsub>R\<^esub>i \<in> {..n}. p i \<otimes>\<^bsub>R\<^esub> q (n-i)),
 | |
| 63 | one = (%i. if i=0 then \<one>\<^bsub>R\<^esub> else \<zero>\<^bsub>R\<^esub>), | |
| 64 | zero = (%i. \<zero>\<^bsub>R\<^esub>), | |
| 65 | add = (%p:up R. %q:up R. %i. p i \<oplus>\<^bsub>R\<^esub> q i), | |
| 66 | smult = (%a:carrier R. %p:up R. %i. a \<otimes>\<^bsub>R\<^esub> p i), | |
| 67 | monom = (%a:carrier R. %n i. if i=n then a else \<zero>\<^bsub>R\<^esub>), | |
| 68 | coeff = (%p:up R. %n. p n) |)" | |
| 13940 | 69 | |
| 70 | text {*
 | |
| 71 |   Properties of the set of polynomials @{term up}.
 | |
| 72 | *} | |
| 73 | ||
| 74 | lemma mem_upI [intro]: | |
| 75 | "[| !!n. f n \<in> carrier R; EX n. bound (zero R) n f |] ==> f \<in> up R" | |
| 76 | by (simp add: up_def Pi_def) | |
| 77 | ||
| 78 | lemma mem_upD [dest]: | |
| 79 | "f \<in> up R ==> f n \<in> carrier R" | |
| 80 | by (simp add: up_def Pi_def) | |
| 81 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 82 | context ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 83 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 84 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 85 | lemma bound_upD [dest]: "f \<in> up R ==> EX n. bound \<zero> n f" by (simp add: up_def) | 
| 13940 | 86 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 87 | lemma up_one_closed: "(%n. if n = 0 then \<one> else \<zero>) \<in> up R" using up_def by force | 
| 13940 | 88 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 89 | lemma up_smult_closed: "[| a \<in> carrier R; p \<in> up R |] ==> (%i. a \<otimes> p i) \<in> up R" by force | 
| 13940 | 90 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 91 | lemma up_add_closed: | 
| 13940 | 92 | "[| p \<in> up R; q \<in> up R |] ==> (%i. p i \<oplus> q i) \<in> up R" | 
| 93 | proof | |
| 94 | fix n | |
| 95 | assume "p \<in> up R" and "q \<in> up R" | |
| 96 | then show "p n \<oplus> q n \<in> carrier R" | |
| 97 | by auto | |
| 98 | next | |
| 99 | assume UP: "p \<in> up R" "q \<in> up R" | |
| 100 | show "EX n. bound \<zero> n (%i. p i \<oplus> q i)" | |
| 101 | proof - | |
| 102 | from UP obtain n where boundn: "bound \<zero> n p" by fast | |
| 103 | from UP obtain m where boundm: "bound \<zero> m q" by fast | |
| 104 | have "bound \<zero> (max n m) (%i. p i \<oplus> q i)" | |
| 105 | proof | |
| 106 | fix i | |
| 107 | assume "max n m < i" | |
| 108 | with boundn and boundm and UP show "p i \<oplus> q i = \<zero>" by fastsimp | |
| 109 | qed | |
| 110 | then show ?thesis .. | |
| 111 | qed | |
| 112 | qed | |
| 113 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 114 | lemma up_a_inv_closed: | 
| 13940 | 115 | "p \<in> up R ==> (%i. \<ominus> (p i)) \<in> up R" | 
| 116 | proof | |
| 117 | assume R: "p \<in> up R" | |
| 118 | then obtain n where "bound \<zero> n p" by auto | |
| 119 | then have "bound \<zero> n (%i. \<ominus> p i)" by auto | |
| 120 | then show "EX n. bound \<zero> n (%i. \<ominus> p i)" by auto | |
| 121 | qed auto | |
| 122 | ||
| 27933 | 123 | lemma up_minus_closed: | 
| 124 | "[| p \<in> up R; q \<in> up R |] ==> (%i. p i \<ominus> q i) \<in> up R" | |
| 125 | using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed a_minus_def [of _ R] | |
| 126 | by auto | |
| 127 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 128 | lemma up_mult_closed: | 
| 13940 | 129 | "[| p \<in> up R; q \<in> up R |] ==> | 
| 14666 | 130 |   (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n-i)) \<in> up R"
 | 
| 13940 | 131 | proof | 
| 132 | fix n | |
| 133 | assume "p \<in> up R" "q \<in> up R" | |
| 14666 | 134 |   then show "(\<Oplus>i \<in> {..n}. p i \<otimes> q (n-i)) \<in> carrier R"
 | 
| 13940 | 135 | by (simp add: mem_upD funcsetI) | 
| 136 | next | |
| 137 | assume UP: "p \<in> up R" "q \<in> up R" | |
| 14666 | 138 |   show "EX n. bound \<zero> n (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n-i))"
 | 
| 13940 | 139 | proof - | 
| 140 | from UP obtain n where boundn: "bound \<zero> n p" by fast | |
| 141 | from UP obtain m where boundm: "bound \<zero> m q" by fast | |
| 14666 | 142 |     have "bound \<zero> (n + m) (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n - i))"
 | 
| 13940 | 143 | proof | 
| 14666 | 144 | fix k assume bound: "n + m < k" | 
| 13940 | 145 |       {
 | 
| 14666 | 146 | fix i | 
| 147 | have "p i \<otimes> q (k-i) = \<zero>" | |
| 148 | proof (cases "n < i") | |
| 149 | case True | |
| 150 | with boundn have "p i = \<zero>" by auto | |
| 13940 | 151 | moreover from UP have "q (k-i) \<in> carrier R" by auto | 
| 14666 | 152 | ultimately show ?thesis by simp | 
| 153 | next | |
| 154 | case False | |
| 155 | with bound have "m < k-i" by arith | |
| 156 | with boundm have "q (k-i) = \<zero>" by auto | |
| 157 | moreover from UP have "p i \<in> carrier R" by auto | |
| 158 | ultimately show ?thesis by simp | |
| 159 | qed | |
| 13940 | 160 | } | 
| 14666 | 161 |       then show "(\<Oplus>i \<in> {..k}. p i \<otimes> q (k-i)) = \<zero>"
 | 
| 162 | by (simp add: Pi_def) | |
| 13940 | 163 | qed | 
| 164 | then show ?thesis by fast | |
| 165 | qed | |
| 166 | qed | |
| 167 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 168 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 169 | |
| 14666 | 170 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 171 | subsection {* Effect of Operations on Coefficients *}
 | 
| 13940 | 172 | |
| 19783 | 173 | locale UP = | 
| 174 | fixes R (structure) and P (structure) | |
| 13940 | 175 | defines P_def: "P == UP R" | 
| 176 | ||
| 29240 | 177 | locale UP_ring = UP + R: ring R | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 178 | |
| 29240 | 179 | locale UP_cring = UP + R: cring R | 
| 13940 | 180 | |
| 29237 | 181 | sublocale UP_cring < UP_ring | 
| 29240 | 182 | by intro_locales [1] (rule P_def) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 183 | |
| 29240 | 184 | locale UP_domain = UP + R: "domain" R | 
| 13940 | 185 | |
| 29237 | 186 | sublocale UP_domain < UP_cring | 
| 29240 | 187 | by intro_locales [1] (rule P_def) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 188 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 189 | context UP | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 190 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 191 | |
| 30363 
9b8d9b6ef803
proper local context for text with antiquotations;
 wenzelm parents: 
29246diff
changeset | 192 | text {*Temporarily declare @{thm P_def} as simp rule.*}
 | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 193 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 194 | declare P_def [simp] | 
| 13940 | 195 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 196 | lemma up_eqI: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 197 | assumes prem: "!!n. coeff P p n = coeff P q n" and R: "p \<in> carrier P" "q \<in> carrier P" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 198 | shows "p = q" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 199 | proof | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 200 | fix x | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 201 | from prem and R show "p x = q x" by (simp add: UP_def) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 202 | qed | 
| 13940 | 203 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 204 | lemma coeff_closed [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 205 | "p \<in> carrier P ==> coeff P p n \<in> carrier R" by (auto simp add: UP_def) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 206 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 207 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 208 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 209 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 210 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 211 | |
| 27933 | 212 | (* Theorems generalised from commutative rings to rings by Jesus Aransay. *) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 213 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 214 | lemma coeff_monom [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 215 | "a \<in> carrier R ==> coeff P (monom P a m) n = (if m=n then a else \<zero>)" | 
| 13940 | 216 | proof - | 
| 217 | assume R: "a \<in> carrier R" | |
| 218 | then have "(%n. if n = m then a else \<zero>) \<in> up R" | |
| 219 | using up_def by force | |
| 220 | with R show ?thesis by (simp add: UP_def) | |
| 221 | qed | |
| 222 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 223 | lemma coeff_zero [simp]: "coeff P \<zero>\<^bsub>P\<^esub> n = \<zero>" by (auto simp add: UP_def) | 
| 13940 | 224 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 225 | lemma coeff_one [simp]: "coeff P \<one>\<^bsub>P\<^esub> n = (if n=0 then \<one> else \<zero>)" | 
| 13940 | 226 | using up_one_closed by (simp add: UP_def) | 
| 227 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 228 | lemma coeff_smult [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 229 | "[| a \<in> carrier R; p \<in> carrier P |] ==> coeff P (a \<odot>\<^bsub>P\<^esub> p) n = a \<otimes> coeff P p n" | 
| 13940 | 230 | by (simp add: UP_def up_smult_closed) | 
| 231 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 232 | lemma coeff_add [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 233 | "[| p \<in> carrier P; q \<in> carrier P |] ==> coeff P (p \<oplus>\<^bsub>P\<^esub> q) n = coeff P p n \<oplus> coeff P q n" | 
| 13940 | 234 | by (simp add: UP_def up_add_closed) | 
| 235 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 236 | lemma coeff_mult [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 237 |   "[| p \<in> carrier P; q \<in> carrier P |] ==> coeff P (p \<otimes>\<^bsub>P\<^esub> q) n = (\<Oplus>i \<in> {..n}. coeff P p i \<otimes> coeff P q (n-i))"
 | 
| 13940 | 238 | by (simp add: UP_def up_mult_closed) | 
| 239 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 240 | end | 
| 14666 | 241 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 242 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 243 | subsection {* Polynomials Form a Ring. *}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 244 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 245 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 246 | begin | 
| 13940 | 247 | |
| 14666 | 248 | text {* Operations are closed over @{term P}. *}
 | 
| 13940 | 249 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 250 | lemma UP_mult_closed [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 251 | "[| p \<in> carrier P; q \<in> carrier P |] ==> p \<otimes>\<^bsub>P\<^esub> q \<in> carrier P" by (simp add: UP_def up_mult_closed) | 
| 13940 | 252 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 253 | lemma UP_one_closed [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 254 | "\<one>\<^bsub>P\<^esub> \<in> carrier P" by (simp add: UP_def up_one_closed) | 
| 13940 | 255 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 256 | lemma UP_zero_closed [intro, simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 257 | "\<zero>\<^bsub>P\<^esub> \<in> carrier P" by (auto simp add: UP_def) | 
| 13940 | 258 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 259 | lemma UP_a_closed [intro, simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 260 | "[| p \<in> carrier P; q \<in> carrier P |] ==> p \<oplus>\<^bsub>P\<^esub> q \<in> carrier P" by (simp add: UP_def up_add_closed) | 
| 13940 | 261 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 262 | lemma monom_closed [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 263 | "a \<in> carrier R ==> monom P a n \<in> carrier P" by (auto simp add: UP_def up_def Pi_def) | 
| 13940 | 264 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 265 | lemma UP_smult_closed [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 266 | "[| a \<in> carrier R; p \<in> carrier P |] ==> a \<odot>\<^bsub>P\<^esub> p \<in> carrier P" by (simp add: UP_def up_smult_closed) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 267 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 268 | end | 
| 13940 | 269 | |
| 270 | declare (in UP) P_def [simp del] | |
| 271 | ||
| 272 | text {* Algebraic ring properties *}
 | |
| 273 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 274 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 275 | begin | 
| 13940 | 276 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 277 | lemma UP_a_assoc: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 278 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 279 | shows "(p \<oplus>\<^bsub>P\<^esub> q) \<oplus>\<^bsub>P\<^esub> r = p \<oplus>\<^bsub>P\<^esub> (q \<oplus>\<^bsub>P\<^esub> r)" by (rule up_eqI, simp add: a_assoc R, simp_all add: R) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 280 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 281 | lemma UP_l_zero [simp]: | 
| 13940 | 282 | assumes R: "p \<in> carrier P" | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 283 | shows "\<zero>\<^bsub>P\<^esub> \<oplus>\<^bsub>P\<^esub> p = p" by (rule up_eqI, simp_all add: R) | 
| 13940 | 284 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 285 | lemma UP_l_neg_ex: | 
| 13940 | 286 | assumes R: "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 287 | shows "EX q : carrier P. q \<oplus>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 288 | proof - | 
| 289 | let ?q = "%i. \<ominus> (p i)" | |
| 290 | from R have closed: "?q \<in> carrier P" | |
| 291 | by (simp add: UP_def P_def up_a_inv_closed) | |
| 292 | from R have coeff: "!!n. coeff P ?q n = \<ominus> (coeff P p n)" | |
| 293 | by (simp add: UP_def P_def up_a_inv_closed) | |
| 294 | show ?thesis | |
| 295 | proof | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 296 | show "?q \<oplus>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 297 | by (auto intro!: up_eqI simp add: R closed coeff R.l_neg) | 
| 298 | qed (rule closed) | |
| 299 | qed | |
| 300 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 301 | lemma UP_a_comm: | 
| 13940 | 302 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 303 | shows "p \<oplus>\<^bsub>P\<^esub> q = q \<oplus>\<^bsub>P\<^esub> p" by (rule up_eqI, simp add: a_comm R, simp_all add: R) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 304 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 305 | lemma UP_m_assoc: | 
| 13940 | 306 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 307 | shows "(p \<otimes>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r = p \<otimes>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)" | 
| 13940 | 308 | proof (rule up_eqI) | 
| 309 | fix n | |
| 310 |   {
 | |
| 311 | fix k and a b c :: "nat=>'a" | |
| 312 | assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" | |
| 313 | "c \<in> UNIV -> carrier R" | |
| 314 | then have "k <= n ==> | |
| 14666 | 315 |       (\<Oplus>j \<in> {..k}. (\<Oplus>i \<in> {..j}. a i \<otimes> b (j-i)) \<otimes> c (n-j)) =
 | 
| 316 |       (\<Oplus>j \<in> {..k}. a j \<otimes> (\<Oplus>i \<in> {..k-j}. b i \<otimes> c (n-j-i)))"
 | |
| 19582 | 317 | (is "_ \<Longrightarrow> ?eq k") | 
| 13940 | 318 | proof (induct k) | 
| 319 | case 0 then show ?case by (simp add: Pi_def m_assoc) | |
| 320 | next | |
| 321 | case (Suc k) | |
| 322 | then have "k <= n" by arith | |
| 23350 | 323 | from this R have "?eq k" by (rule Suc) | 
| 13940 | 324 | with R show ?case | 
| 14666 | 325 | by (simp cong: finsum_cong | 
| 13940 | 326 | add: Suc_diff_le Pi_def l_distr r_distr m_assoc) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 327 | (simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc) | 
| 13940 | 328 | qed | 
| 329 | } | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 330 | with R show "coeff P ((p \<otimes>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r) n = coeff P (p \<otimes>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)) n" | 
| 13940 | 331 | by (simp add: Pi_def) | 
| 332 | qed (simp_all add: R) | |
| 333 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 334 | lemma UP_r_one [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 335 | assumes R: "p \<in> carrier P" shows "p \<otimes>\<^bsub>P\<^esub> \<one>\<^bsub>P\<^esub> = p" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 336 | proof (rule up_eqI) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 337 | fix n | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 338 | show "coeff P (p \<otimes>\<^bsub>P\<^esub> \<one>\<^bsub>P\<^esub>) n = coeff P p n" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 339 | proof (cases n) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 340 | case 0 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 341 |     {
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 342 | with R show ?thesis by simp | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 343 | } | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 344 | next | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 345 | case Suc | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 346 |     {
 | 
| 27933 | 347 | (*JE: in the locale UP_cring the proof was solved only with "by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)", but I did not get it to work here*) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 348 | fix nn assume Succ: "n = Suc nn" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 349 | have "coeff P (p \<otimes>\<^bsub>P\<^esub> \<one>\<^bsub>P\<^esub>) (Suc nn) = coeff P p (Suc nn)" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 350 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 351 |         have "coeff P (p \<otimes>\<^bsub>P\<^esub> \<one>\<^bsub>P\<^esub>) (Suc nn) = (\<Oplus>i\<in>{..Suc nn}. coeff P p i \<otimes> (if Suc nn \<le> i then \<one> else \<zero>))" using R by simp
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 352 |         also have "\<dots> = coeff P p (Suc nn) \<otimes> (if Suc nn \<le> Suc nn then \<one> else \<zero>) \<oplus> (\<Oplus>i\<in>{..nn}. coeff P p i \<otimes> (if Suc nn \<le> i then \<one> else \<zero>))"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 353 | using finsum_Suc [of "(\<lambda>i::nat. coeff P p i \<otimes> (if Suc nn \<le> i then \<one> else \<zero>))" "nn"] unfolding Pi_def using R by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 354 | also have "\<dots> = coeff P p (Suc nn) \<otimes> (if Suc nn \<le> Suc nn then \<one> else \<zero>)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 355 | proof - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 356 |           have "(\<Oplus>i\<in>{..nn}. coeff P p i \<otimes> (if Suc nn \<le> i then \<one> else \<zero>)) = (\<Oplus>i\<in>{..nn}. \<zero>)"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 357 |             using finsum_cong [of "{..nn}" "{..nn}" "(\<lambda>i::nat. coeff P p i \<otimes> (if Suc nn \<le> i then \<one> else \<zero>))" "(\<lambda>i::nat. \<zero>)"] using R 
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 358 | unfolding Pi_def by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 359 | also have "\<dots> = \<zero>" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 360 | finally show ?thesis using r_zero R by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 361 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 362 | also have "\<dots> = coeff P p (Suc nn)" using R by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 363 | finally show ?thesis by simp | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 364 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 365 | then show ?thesis using Succ by simp | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 366 | } | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 367 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 368 | qed (simp_all add: R) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 369 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 370 | lemma UP_l_one [simp]: | 
| 13940 | 371 | assumes R: "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 372 | shows "\<one>\<^bsub>P\<^esub> \<otimes>\<^bsub>P\<^esub> p = p" | 
| 13940 | 373 | proof (rule up_eqI) | 
| 374 | fix n | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 375 | show "coeff P (\<one>\<^bsub>P\<^esub> \<otimes>\<^bsub>P\<^esub> p) n = coeff P p n" | 
| 13940 | 376 | proof (cases n) | 
| 377 | case 0 with R show ?thesis by simp | |
| 378 | next | |
| 379 | case Suc with R show ?thesis | |
| 380 | by (simp del: finsum_Suc add: finsum_Suc2 Pi_def) | |
| 381 | qed | |
| 382 | qed (simp_all add: R) | |
| 383 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 384 | lemma UP_l_distr: | 
| 13940 | 385 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 386 | shows "(p \<oplus>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r = (p \<otimes>\<^bsub>P\<^esub> r) \<oplus>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)" | 
| 13940 | 387 | by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R) | 
| 388 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 389 | lemma UP_r_distr: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 390 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 391 | shows "r \<otimes>\<^bsub>P\<^esub> (p \<oplus>\<^bsub>P\<^esub> q) = (r \<otimes>\<^bsub>P\<^esub> p) \<oplus>\<^bsub>P\<^esub> (r \<otimes>\<^bsub>P\<^esub> q)" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 392 | by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 393 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 394 | theorem UP_ring: "ring P" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 395 | by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc) | 
| 27933 | 396 | (auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 397 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 398 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 399 | |
| 27933 | 400 | |
| 401 | subsection {* Polynomials Form a Commutative Ring. *}
 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 402 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 403 | context UP_cring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 404 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 405 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 406 | lemma UP_m_comm: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 407 | assumes R1: "p \<in> carrier P" and R2: "q \<in> carrier P" shows "p \<otimes>\<^bsub>P\<^esub> q = q \<otimes>\<^bsub>P\<^esub> p" | 
| 13940 | 408 | proof (rule up_eqI) | 
| 14666 | 409 | fix n | 
| 13940 | 410 |   {
 | 
| 411 | fix k and a b :: "nat=>'a" | |
| 412 | assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" | |
| 14666 | 413 | then have "k <= n ==> | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 414 |       (\<Oplus>i \<in> {..k}. a i \<otimes> b (n-i)) = (\<Oplus>i \<in> {..k}. a (k-i) \<otimes> b (i+n-k))"
 | 
| 19582 | 415 | (is "_ \<Longrightarrow> ?eq k") | 
| 13940 | 416 | proof (induct k) | 
| 417 | case 0 then show ?case by (simp add: Pi_def) | |
| 418 | next | |
| 419 | case (Suc k) then show ?case | |
| 15944 | 420 | by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+ | 
| 13940 | 421 | qed | 
| 422 | } | |
| 423 | note l = this | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 424 | from R1 R2 show "coeff P (p \<otimes>\<^bsub>P\<^esub> q) n = coeff P (q \<otimes>\<^bsub>P\<^esub> p) n" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 425 | unfolding coeff_mult [OF R1 R2, of n] | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 426 | unfolding coeff_mult [OF R2 R1, of n] | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 427 | using l [of "(\<lambda>i. coeff P p i)" "(\<lambda>i. coeff P q i)" "n"] by (simp add: Pi_def m_comm) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 428 | qed (simp_all add: R1 R2) | 
| 13940 | 429 | |
| 35849 | 430 | |
| 431 | subsection {*Polynomials over a commutative ring for a commutative ring*}
 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 432 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 433 | theorem UP_cring: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 434 | "cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI UP_m_assoc UP_m_comm) | 
| 13940 | 435 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 436 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 437 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 438 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 439 | begin | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 440 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 441 | lemma UP_a_inv_closed [intro, simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 442 | "p \<in> carrier P ==> \<ominus>\<^bsub>P\<^esub> p \<in> carrier P" | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 443 | by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]]) | 
| 13940 | 444 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 445 | lemma coeff_a_inv [simp]: | 
| 13940 | 446 | assumes R: "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 447 | shows "coeff P (\<ominus>\<^bsub>P\<^esub> p) n = \<ominus> (coeff P p n)" | 
| 13940 | 448 | proof - | 
| 449 | from R coeff_closed UP_a_inv_closed have | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 450 | "coeff P (\<ominus>\<^bsub>P\<^esub> p) n = \<ominus> coeff P p n \<oplus> (coeff P p n \<oplus> coeff P (\<ominus>\<^bsub>P\<^esub> p) n)" | 
| 13940 | 451 | by algebra | 
| 452 | also from R have "... = \<ominus> (coeff P p n)" | |
| 453 | by (simp del: coeff_add add: coeff_add [THEN sym] | |
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 454 | abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]]) | 
| 13940 | 455 | finally show ?thesis . | 
| 456 | qed | |
| 457 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 458 | end | 
| 13940 | 459 | |
| 29240 | 460 | sublocale UP_ring < P: ring P using UP_ring . | 
| 461 | sublocale UP_cring < P: cring P using UP_cring . | |
| 13940 | 462 | |
| 14666 | 463 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 464 | subsection {* Polynomials Form an Algebra *}
 | 
| 13940 | 465 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 466 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 467 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 468 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 469 | lemma UP_smult_l_distr: | 
| 13940 | 470 | "[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 471 | (a \<oplus> b) \<odot>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> p \<oplus>\<^bsub>P\<^esub> b \<odot>\<^bsub>P\<^esub> p" | 
| 13940 | 472 | by (rule up_eqI) (simp_all add: R.l_distr) | 
| 473 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 474 | lemma UP_smult_r_distr: | 
| 13940 | 475 | "[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 476 | a \<odot>\<^bsub>P\<^esub> (p \<oplus>\<^bsub>P\<^esub> q) = a \<odot>\<^bsub>P\<^esub> p \<oplus>\<^bsub>P\<^esub> a \<odot>\<^bsub>P\<^esub> q" | 
| 13940 | 477 | by (rule up_eqI) (simp_all add: R.r_distr) | 
| 478 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 479 | lemma UP_smult_assoc1: | 
| 13940 | 480 | "[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 481 | (a \<otimes> b) \<odot>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> p)" | 
| 13940 | 482 | by (rule up_eqI) (simp_all add: R.m_assoc) | 
| 483 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 484 | lemma UP_smult_zero [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 485 | "p \<in> carrier P ==> \<zero> \<odot>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 486 | by (rule up_eqI) simp_all | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 487 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 488 | lemma UP_smult_one [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 489 | "p \<in> carrier P ==> \<one> \<odot>\<^bsub>P\<^esub> p = p" | 
| 13940 | 490 | by (rule up_eqI) simp_all | 
| 491 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 492 | lemma UP_smult_assoc2: | 
| 13940 | 493 | "[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 494 | (a \<odot>\<^bsub>P\<^esub> p) \<otimes>\<^bsub>P\<^esub> q = a \<odot>\<^bsub>P\<^esub> (p \<otimes>\<^bsub>P\<^esub> q)" | 
| 13940 | 495 | by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def) | 
| 496 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 497 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 498 | |
| 13940 | 499 | text {*
 | 
| 17094 | 500 |   Interpretation of lemmas from @{term algebra}.
 | 
| 13940 | 501 | *} | 
| 502 | ||
| 503 | lemma (in cring) cring: | |
| 28823 | 504 | "cring R" .. | 
| 13940 | 505 | |
| 506 | lemma (in UP_cring) UP_algebra: | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 507 | "algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr UP_smult_r_distr | 
| 13940 | 508 | UP_smult_assoc1 UP_smult_assoc2) | 
| 509 | ||
| 29237 | 510 | sublocale UP_cring < algebra R P using UP_algebra . | 
| 13940 | 511 | |
| 512 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 513 | subsection {* Further Lemmas Involving Monomials *}
 | 
| 13940 | 514 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 515 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 516 | begin | 
| 13940 | 517 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 518 | lemma monom_zero [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 519 | "monom P \<zero> n = \<zero>\<^bsub>P\<^esub>" by (simp add: UP_def P_def) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 520 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 521 | lemma monom_mult_is_smult: | 
| 13940 | 522 | assumes R: "a \<in> carrier R" "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 523 | shows "monom P a 0 \<otimes>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> p" | 
| 13940 | 524 | proof (rule up_eqI) | 
| 525 | fix n | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 526 | show "coeff P (monom P a 0 \<otimes>\<^bsub>P\<^esub> p) n = coeff P (a \<odot>\<^bsub>P\<^esub> p) n" | 
| 13940 | 527 | proof (cases n) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 528 | case 0 with R show ?thesis by simp | 
| 13940 | 529 | next | 
| 530 | case Suc with R show ?thesis | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 531 | using R.finsum_Suc2 by (simp del: R.finsum_Suc add: R.r_null Pi_def) | 
| 13940 | 532 | qed | 
| 533 | qed (simp_all add: R) | |
| 534 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 535 | lemma monom_one [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 536 | "monom P \<one> 0 = \<one>\<^bsub>P\<^esub>" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 537 | by (rule up_eqI) simp_all | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 538 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 539 | lemma monom_add [simp]: | 
| 13940 | 540 | "[| a \<in> carrier R; b \<in> carrier R |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 541 | monom P (a \<oplus> b) n = monom P a n \<oplus>\<^bsub>P\<^esub> monom P b n" | 
| 13940 | 542 | by (rule up_eqI) simp_all | 
| 543 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 544 | lemma monom_one_Suc: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 545 | "monom P \<one> (Suc n) = monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1" | 
| 13940 | 546 | proof (rule up_eqI) | 
| 547 | fix k | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 548 | show "coeff P (monom P \<one> (Suc n)) k = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" | 
| 13940 | 549 | proof (cases "k = Suc n") | 
| 550 | case True show ?thesis | |
| 551 | proof - | |
| 26934 | 552 | fix m | 
| 14666 | 553 | from True have less_add_diff: | 
| 554 | "!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith | |
| 13940 | 555 | from True have "coeff P (monom P \<one> (Suc n)) k = \<one>" by simp | 
| 556 | also from True | |
| 15045 | 557 |       have "... = (\<Oplus>i \<in> {..<n} \<union> {n}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 14666 | 558 | coeff P (monom P \<one> 1) (k - i))" | 
| 17094 | 559 | by (simp cong: R.finsum_cong add: Pi_def) | 
| 14666 | 560 |       also have "... = (\<Oplus>i \<in>  {..n}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 561 | coeff P (monom P \<one> 1) (k - i))" | |
| 562 | by (simp only: ivl_disj_un_singleton) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 563 | also from True | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 564 |       have "... = (\<Oplus>i \<in> {..n} \<union> {n<..k}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 14666 | 565 | coeff P (monom P \<one> 1) (k - i))" | 
| 17094 | 566 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one | 
| 14666 | 567 | order_less_imp_not_eq Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 568 | also from True have "... = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" | 
| 14666 | 569 | by (simp add: ivl_disj_un_one) | 
| 13940 | 570 | finally show ?thesis . | 
| 571 | qed | |
| 572 | next | |
| 573 | case False | |
| 574 | note neq = False | |
| 575 | let ?s = | |
| 14666 | 576 | "\<lambda>i. (if n = i then \<one> else \<zero>) \<otimes> (if Suc 0 = k - i then \<one> else \<zero>)" | 
| 13940 | 577 | from neq have "coeff P (monom P \<one> (Suc n)) k = \<zero>" by simp | 
| 14666 | 578 |     also have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 13940 | 579 | proof - | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 580 |       have f1: "(\<Oplus>i \<in> {..<n}. ?s i) = \<zero>"
 | 
| 17094 | 581 | by (simp cong: R.finsum_cong add: Pi_def) | 
| 14666 | 582 |       from neq have f2: "(\<Oplus>i \<in> {n}. ?s i) = \<zero>"
 | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20318diff
changeset | 583 | by (simp cong: R.finsum_cong add: Pi_def) arith | 
| 15045 | 584 |       have f3: "n < k ==> (\<Oplus>i \<in> {n<..k}. ?s i) = \<zero>"
 | 
| 17094 | 585 | by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def) | 
| 13940 | 586 | show ?thesis | 
| 587 | proof (cases "k < n") | |
| 17094 | 588 | case True then show ?thesis by (simp cong: R.finsum_cong add: Pi_def) | 
| 13940 | 589 | next | 
| 14666 | 590 | case False then have n_le_k: "n <= k" by arith | 
| 591 | show ?thesis | |
| 592 | proof (cases "n = k") | |
| 593 | case True | |
| 15045 | 594 |           then have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
 | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 595 | by (simp cong: R.finsum_cong add: Pi_def) | 
| 14666 | 596 |           also from True have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 597 | by (simp only: ivl_disj_un_singleton) | |
| 598 | finally show ?thesis . | |
| 599 | next | |
| 600 | case False with n_le_k have n_less_k: "n < k" by arith | |
| 15045 | 601 |           with neq have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
 | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 602 | by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right) | 
| 14666 | 603 |           also have "... = (\<Oplus>i \<in> {..n}. ?s i)"
 | 
| 604 | by (simp only: ivl_disj_un_singleton) | |
| 15045 | 605 |           also from n_less_k neq have "... = (\<Oplus>i \<in> {..n} \<union> {n<..k}. ?s i)"
 | 
| 17094 | 606 | by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def) | 
| 14666 | 607 |           also from n_less_k have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 608 | by (simp only: ivl_disj_un_one) | |
| 609 | finally show ?thesis . | |
| 610 | qed | |
| 13940 | 611 | qed | 
| 612 | qed | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 613 | also have "... = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" by simp | 
| 13940 | 614 | finally show ?thesis . | 
| 615 | qed | |
| 616 | qed (simp_all) | |
| 617 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 618 | lemma monom_one_Suc2: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 619 | "monom P \<one> (Suc n) = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> n" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 620 | proof (induct n) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 621 | case 0 show ?case by simp | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 622 | next | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 623 | case Suc | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 624 |   {
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 625 | fix k:: nat | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 626 | assume hypo: "monom P \<one> (Suc k) = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> k" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 627 | then show "monom P \<one> (Suc (Suc k)) = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> (Suc k)" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 628 | proof - | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 629 | have lhs: "monom P \<one> (Suc (Suc k)) = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> k \<otimes>\<^bsub>P\<^esub> monom P \<one> 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 630 | unfolding monom_one_Suc [of "Suc k"] unfolding hypo .. | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 631 | note cl = monom_closed [OF R.one_closed, of 1] | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 632 | note clk = monom_closed [OF R.one_closed, of k] | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 633 | have rhs: "monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> (Suc k) = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> k \<otimes>\<^bsub>P\<^esub> monom P \<one> 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 634 | unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF cl clk cl]] .. | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 635 | from lhs rhs show ?thesis by simp | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 636 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 637 | } | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 638 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 639 | |
| 30363 
9b8d9b6ef803
proper local context for text with antiquotations;
 wenzelm parents: 
29246diff
changeset | 640 | text{*The following corollary follows from lemmas @{thm "monom_one_Suc"} 
 | 
| 
9b8d9b6ef803
proper local context for text with antiquotations;
 wenzelm parents: 
29246diff
changeset | 641 |   and @{thm "monom_one_Suc2"}, and is trivial in @{term UP_cring}*}
 | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 642 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 643 | corollary monom_one_comm: shows "monom P \<one> k \<otimes>\<^bsub>P\<^esub> monom P \<one> 1 = monom P \<one> 1 \<otimes>\<^bsub>P\<^esub> monom P \<one> k" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 644 | unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] .. | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 645 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 646 | lemma monom_mult_smult: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 647 | "[| a \<in> carrier R; b \<in> carrier R |] ==> monom P (a \<otimes> b) n = a \<odot>\<^bsub>P\<^esub> monom P b n" | 
| 13940 | 648 | by (rule up_eqI) simp_all | 
| 649 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 650 | lemma monom_one_mult: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 651 | "monom P \<one> (n + m) = monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> m" | 
| 13940 | 652 | proof (induct n) | 
| 653 | case 0 show ?case by simp | |
| 654 | next | |
| 655 | case Suc then show ?case | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 656 | unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 657 | using m_assoc monom_one_comm [of m] by simp | 
| 13940 | 658 | qed | 
| 659 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 660 | lemma monom_one_mult_comm: "monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> m = monom P \<one> m \<otimes>\<^bsub>P\<^esub> monom P \<one> n" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 661 | unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 662 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 663 | lemma monom_mult [simp]: | 
| 27933 | 664 | assumes a_in_R: "a \<in> carrier R" and b_in_R: "b \<in> carrier R" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 665 | shows "monom P (a \<otimes> b) (n + m) = monom P a n \<otimes>\<^bsub>P\<^esub> monom P b m" | 
| 27933 | 666 | proof (rule up_eqI) | 
| 667 | fix k | |
| 668 | show "coeff P (monom P (a \<otimes> b) (n + m)) k = coeff P (monom P a n \<otimes>\<^bsub>P\<^esub> monom P b m) k" | |
| 669 | proof (cases "n + m = k") | |
| 670 | case True | |
| 671 |     {
 | |
| 672 | show ?thesis | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 673 | unfolding True [symmetric] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 674 | coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF b_in_R, of m], of "n + m"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 675 | coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 676 |         using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(\<lambda>i. (if n = i then a else \<zero>) \<otimes> (if m = n + m - i then b else \<zero>))" 
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 677 | "(\<lambda>i. if n = i then a \<otimes> b else \<zero>)"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 678 | a_in_R b_in_R | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 679 | unfolding simp_implies_def | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 680 |         using R.finsum_singleton [of n "{.. n + m}" "(\<lambda>i. a \<otimes> b)"]
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 681 | unfolding Pi_def by auto | 
| 27933 | 682 | } | 
| 683 | next | |
| 684 | case False | |
| 685 |     {
 | |
| 686 | show ?thesis | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 687 | unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n + m" k] apply (simp add: False) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 688 | unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF b_in_R, of m], of k] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 689 | unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom [OF b_in_R, of m] using False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 690 |         using R.finsum_cong [of "{..k}" "{..k}" "(\<lambda>i. (if n = i then a else \<zero>) \<otimes> (if m = k - i then b else \<zero>))" "(\<lambda>i. \<zero>)"]
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 691 | unfolding Pi_def simp_implies_def using a_in_R b_in_R by force | 
| 27933 | 692 | } | 
| 693 | qed | |
| 694 | qed (simp_all add: a_in_R b_in_R) | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 695 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 696 | lemma monom_a_inv [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 697 | "a \<in> carrier R ==> monom P (\<ominus> a) n = \<ominus>\<^bsub>P\<^esub> monom P a n" | 
| 13940 | 698 | by (rule up_eqI) simp_all | 
| 699 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 700 | lemma monom_inj: | 
| 13940 | 701 | "inj_on (%a. monom P a n) (carrier R)" | 
| 702 | proof (rule inj_onI) | |
| 703 | fix x y | |
| 704 | assume R: "x \<in> carrier R" "y \<in> carrier R" and eq: "monom P x n = monom P y n" | |
| 705 | then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp | |
| 706 | with R show "x = y" by simp | |
| 707 | qed | |
| 708 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 709 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 710 | |
| 17094 | 711 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 712 | subsection {* The Degree Function *}
 | 
| 13940 | 713 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 714 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 715 |   deg :: "[('a, 'm) ring_scheme, nat => 'a] => nat"
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 716 | where "deg R p = (LEAST n. bound \<zero>\<^bsub>R\<^esub> n (coeff (UP R) p))" | 
| 13940 | 717 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 718 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 719 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 720 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 721 | lemma deg_aboveI: | 
| 14666 | 722 | "[| (!!m. n < m ==> coeff P p m = \<zero>); p \<in> carrier P |] ==> deg R p <= n" | 
| 13940 | 723 | by (unfold deg_def P_def) (fast intro: Least_le) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 724 | |
| 13940 | 725 | (* | 
| 726 | lemma coeff_bound_ex: "EX n. bound n (coeff p)" | |
| 727 | proof - | |
| 728 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 729 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 730 | then show ?thesis .. | |
| 731 | qed | |
| 14666 | 732 | |
| 13940 | 733 | lemma bound_coeff_obtain: | 
| 734 | assumes prem: "(!!n. bound n (coeff p) ==> P)" shows "P" | |
| 735 | proof - | |
| 736 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 737 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 738 | with prem show P . | |
| 739 | qed | |
| 740 | *) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 741 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 742 | lemma deg_aboveD: | 
| 23350 | 743 | assumes "deg R p < m" and "p \<in> carrier P" | 
| 744 | shows "coeff P p m = \<zero>" | |
| 13940 | 745 | proof - | 
| 23350 | 746 | from `p \<in> carrier P` obtain n where "bound \<zero> n (coeff P p)" | 
| 13940 | 747 | by (auto simp add: UP_def P_def) | 
| 748 | then have "bound \<zero> (deg R p) (coeff P p)" | |
| 749 | by (auto simp: deg_def P_def dest: LeastI) | |
| 23350 | 750 | from this and `deg R p < m` show ?thesis .. | 
| 13940 | 751 | qed | 
| 752 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 753 | lemma deg_belowI: | 
| 13940 | 754 | assumes non_zero: "n ~= 0 ==> coeff P p n ~= \<zero>" | 
| 755 | and R: "p \<in> carrier P" | |
| 756 | shows "n <= deg R p" | |
| 14666 | 757 | -- {* Logically, this is a slightly stronger version of
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 758 |    @{thm [source] deg_aboveD} *}
 | 
| 13940 | 759 | proof (cases "n=0") | 
| 760 | case True then show ?thesis by simp | |
| 761 | next | |
| 762 | case False then have "coeff P p n ~= \<zero>" by (rule non_zero) | |
| 763 | then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R) | |
| 764 | then show ?thesis by arith | |
| 765 | qed | |
| 766 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 767 | lemma lcoeff_nonzero_deg: | 
| 13940 | 768 | assumes deg: "deg R p ~= 0" and R: "p \<in> carrier P" | 
| 769 | shows "coeff P p (deg R p) ~= \<zero>" | |
| 770 | proof - | |
| 771 | from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~= \<zero>" | |
| 772 | proof - | |
| 773 | have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)" | |
| 774 | by arith | |
| 775 | from deg have "deg R p - 1 < (LEAST n. bound \<zero> n (coeff P p))" | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 776 | by (unfold deg_def P_def) simp | 
| 13940 | 777 | then have "~ bound \<zero> (deg R p - 1) (coeff P p)" by (rule not_less_Least) | 
| 778 | then have "EX m. deg R p - 1 < m & coeff P p m ~= \<zero>" | |
| 779 | by (unfold bound_def) fast | |
| 780 | then have "EX m. deg R p <= m & coeff P p m ~= \<zero>" by (simp add: deg minus) | |
| 23350 | 781 | then show ?thesis by (auto intro: that) | 
| 13940 | 782 | qed | 
| 783 | with deg_belowI R have "deg R p = m" by fastsimp | |
| 784 | with m_coeff show ?thesis by simp | |
| 785 | qed | |
| 786 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 787 | lemma lcoeff_nonzero_nonzero: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 788 | assumes deg: "deg R p = 0" and nonzero: "p ~= \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" | 
| 13940 | 789 | shows "coeff P p 0 ~= \<zero>" | 
| 790 | proof - | |
| 791 | have "EX m. coeff P p m ~= \<zero>" | |
| 792 | proof (rule classical) | |
| 793 | assume "~ ?thesis" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 794 | with R have "p = \<zero>\<^bsub>P\<^esub>" by (auto intro: up_eqI) | 
| 13940 | 795 | with nonzero show ?thesis by contradiction | 
| 796 | qed | |
| 797 | then obtain m where coeff: "coeff P p m ~= \<zero>" .. | |
| 23350 | 798 | from this and R have "m <= deg R p" by (rule deg_belowI) | 
| 13940 | 799 | then have "m = 0" by (simp add: deg) | 
| 800 | with coeff show ?thesis by simp | |
| 801 | qed | |
| 802 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 803 | lemma lcoeff_nonzero: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 804 | assumes neq: "p ~= \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" | 
| 13940 | 805 | shows "coeff P p (deg R p) ~= \<zero>" | 
| 806 | proof (cases "deg R p = 0") | |
| 807 | case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero) | |
| 808 | next | |
| 809 | case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg) | |
| 810 | qed | |
| 811 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 812 | lemma deg_eqI: | 
| 13940 | 813 | "[| !!m. n < m ==> coeff P p m = \<zero>; | 
| 814 | !!n. n ~= 0 ==> coeff P p n ~= \<zero>; p \<in> carrier P |] ==> deg R p = n" | |
| 33657 | 815 | by (fast intro: le_antisym deg_aboveI deg_belowI) | 
| 13940 | 816 | |
| 17094 | 817 | text {* Degree and polynomial operations *}
 | 
| 13940 | 818 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 819 | lemma deg_add [simp]: | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
30729diff
changeset | 820 | "p \<in> carrier P \<Longrightarrow> q \<in> carrier P \<Longrightarrow> | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
30729diff
changeset | 821 | deg R (p \<oplus>\<^bsub>P\<^esub> q) <= max (deg R p) (deg R q)" | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
30729diff
changeset | 822 | by(rule deg_aboveI)(simp_all add: deg_aboveD) | 
| 13940 | 823 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 824 | lemma deg_monom_le: | 
| 13940 | 825 | "a \<in> carrier R ==> deg R (monom P a n) <= n" | 
| 826 | by (intro deg_aboveI) simp_all | |
| 827 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 828 | lemma deg_monom [simp]: | 
| 13940 | 829 | "[| a ~= \<zero>; a \<in> carrier R |] ==> deg R (monom P a n) = n" | 
| 33657 | 830 | by (fastsimp intro: le_antisym deg_aboveI deg_belowI) | 
| 13940 | 831 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 832 | lemma deg_const [simp]: | 
| 13940 | 833 | assumes R: "a \<in> carrier R" shows "deg R (monom P a 0) = 0" | 
| 33657 | 834 | proof (rule le_antisym) | 
| 13940 | 835 | show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R) | 
| 836 | next | |
| 837 | show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R) | |
| 838 | qed | |
| 839 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 840 | lemma deg_zero [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 841 | "deg R \<zero>\<^bsub>P\<^esub> = 0" | 
| 33657 | 842 | proof (rule le_antisym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 843 | show "deg R \<zero>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all | 
| 13940 | 844 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 845 | show "0 <= deg R \<zero>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all | 
| 13940 | 846 | qed | 
| 847 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 848 | lemma deg_one [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 849 | "deg R \<one>\<^bsub>P\<^esub> = 0" | 
| 33657 | 850 | proof (rule le_antisym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 851 | show "deg R \<one>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all | 
| 13940 | 852 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 853 | show "0 <= deg R \<one>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all | 
| 13940 | 854 | qed | 
| 855 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 856 | lemma deg_uminus [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 857 | assumes R: "p \<in> carrier P" shows "deg R (\<ominus>\<^bsub>P\<^esub> p) = deg R p" | 
| 33657 | 858 | proof (rule le_antisym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 859 | show "deg R (\<ominus>\<^bsub>P\<^esub> p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R) | 
| 13940 | 860 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 861 | show "deg R p <= deg R (\<ominus>\<^bsub>P\<^esub> p)" | 
| 13940 | 862 | by (simp add: deg_belowI lcoeff_nonzero_deg | 
| 17094 | 863 | inj_on_iff [OF R.a_inv_inj, of _ "\<zero>", simplified] R) | 
| 13940 | 864 | qed | 
| 865 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 866 | text{*The following lemma is later \emph{overwritten} by the most
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 867 |   specific one for domains, @{text deg_smult}.*}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 868 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 869 | lemma deg_smult_ring [simp]: | 
| 13940 | 870 | "[| a \<in> carrier R; p \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 871 | deg R (a \<odot>\<^bsub>P\<^esub> p) <= (if a = \<zero> then 0 else deg R p)" | 
| 13940 | 872 | by (cases "a = \<zero>") (simp add: deg_aboveI deg_aboveD)+ | 
| 873 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 874 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 875 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 876 | context UP_domain | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 877 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 878 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 879 | lemma deg_smult [simp]: | 
| 13940 | 880 | assumes R: "a \<in> carrier R" "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 881 | shows "deg R (a \<odot>\<^bsub>P\<^esub> p) = (if a = \<zero> then 0 else deg R p)" | 
| 33657 | 882 | proof (rule le_antisym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 883 | show "deg R (a \<odot>\<^bsub>P\<^esub> p) <= (if a = \<zero> then 0 else deg R p)" | 
| 23350 | 884 | using R by (rule deg_smult_ring) | 
| 13940 | 885 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 886 | show "(if a = \<zero> then 0 else deg R p) <= deg R (a \<odot>\<^bsub>P\<^esub> p)" | 
| 13940 | 887 | proof (cases "a = \<zero>") | 
| 888 | qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R) | |
| 889 | qed | |
| 890 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 891 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 892 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 893 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 894 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 895 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 896 | lemma deg_mult_ring: | 
| 13940 | 897 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 898 | shows "deg R (p \<otimes>\<^bsub>P\<^esub> q) <= deg R p + deg R q" | 
| 13940 | 899 | proof (rule deg_aboveI) | 
| 900 | fix m | |
| 901 | assume boundm: "deg R p + deg R q < m" | |
| 902 |   {
 | |
| 903 | fix k i | |
| 904 | assume boundk: "deg R p + deg R q < k" | |
| 905 | then have "coeff P p i \<otimes> coeff P q (k - i) = \<zero>" | |
| 906 | proof (cases "deg R p < i") | |
| 907 | case True then show ?thesis by (simp add: deg_aboveD R) | |
| 908 | next | |
| 909 | case False with boundk have "deg R q < k - i" by arith | |
| 910 | then show ?thesis by (simp add: deg_aboveD R) | |
| 911 | qed | |
| 912 | } | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 913 | with boundm R show "coeff P (p \<otimes>\<^bsub>P\<^esub> q) m = \<zero>" by simp | 
| 13940 | 914 | qed (simp add: R) | 
| 915 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 916 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 917 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 918 | context UP_domain | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 919 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 920 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 921 | lemma deg_mult [simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 922 | "[| p ~= \<zero>\<^bsub>P\<^esub>; q ~= \<zero>\<^bsub>P\<^esub>; p \<in> carrier P; q \<in> carrier P |] ==> | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 923 | deg R (p \<otimes>\<^bsub>P\<^esub> q) = deg R p + deg R q" | 
| 33657 | 924 | proof (rule le_antisym) | 
| 13940 | 925 | assume "p \<in> carrier P" " q \<in> carrier P" | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 926 | then show "deg R (p \<otimes>\<^bsub>P\<^esub> q) <= deg R p + deg R q" by (rule deg_mult_ring) | 
| 13940 | 927 | next | 
| 928 | let ?s = "(%i. coeff P p i \<otimes> coeff P q (deg R p + deg R q - i))" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 929 | assume R: "p \<in> carrier P" "q \<in> carrier P" and nz: "p ~= \<zero>\<^bsub>P\<^esub>" "q ~= \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 930 | have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 931 | show "deg R p + deg R q <= deg R (p \<otimes>\<^bsub>P\<^esub> q)" | 
| 13940 | 932 | proof (rule deg_belowI, simp add: R) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 933 |     have "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i)
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 934 |       = (\<Oplus>i \<in> {..< deg R p} \<union> {deg R p .. deg R p + deg R q}. ?s i)"
 | 
| 13940 | 935 | by (simp only: ivl_disj_un_one) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 936 |     also have "... = (\<Oplus>i \<in> {deg R p .. deg R p + deg R q}. ?s i)"
 | 
| 17094 | 937 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one | 
| 13940 | 938 | deg_aboveD less_add_diff R Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 939 |     also have "...= (\<Oplus>i \<in> {deg R p} \<union> {deg R p <.. deg R p + deg R q}. ?s i)"
 | 
| 13940 | 940 | by (simp only: ivl_disj_un_singleton) | 
| 14666 | 941 | also have "... = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 942 | by (simp cong: R.finsum_cong add: deg_aboveD R Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 943 |     finally have "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i)
 | 
| 13940 | 944 | = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" . | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 945 |     with nz show "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i) ~= \<zero>"
 | 
| 13940 | 946 | by (simp add: integral_iff lcoeff_nonzero R) | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 947 | qed (simp add: R) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 948 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 949 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 950 | end | 
| 13940 | 951 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 952 | text{*The following lemmas also can be lifted to @{term UP_ring}.*}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 953 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 954 | context UP_ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 955 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 956 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 957 | lemma coeff_finsum: | 
| 13940 | 958 | assumes fin: "finite A" | 
| 959 | shows "p \<in> A -> carrier P ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 960 | coeff P (finsum P p A) k = (\<Oplus>i \<in> A. coeff P (p i) k)" | 
| 13940 | 961 | using fin by induct (auto simp: Pi_def) | 
| 962 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 963 | lemma up_repr: | 
| 13940 | 964 | assumes R: "p \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 965 |   shows "(\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. monom P (coeff P p i) i) = p"
 | 
| 13940 | 966 | proof (rule up_eqI) | 
| 967 | let ?s = "(%i. monom P (coeff P p i) i)" | |
| 968 | fix k | |
| 969 | from R have RR: "!!i. (if i = k then coeff P p i else \<zero>) \<in> carrier R" | |
| 970 | by simp | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 971 |   show "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k = coeff P p k"
 | 
| 13940 | 972 | proof (cases "k <= deg R p") | 
| 973 | case True | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 974 |     hence "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 975 |           coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..k} \<union> {k<..deg R p}. ?s i) k"
 | 
| 13940 | 976 | by (simp only: ivl_disj_un_one) | 
| 977 | also from True | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 978 |     have "... = coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..k}. ?s i) k"
 | 
| 17094 | 979 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint | 
| 14666 | 980 | ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def) | 
| 13940 | 981 | also | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 982 |     have "... = coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<k} \<union> {k}. ?s i) k"
 | 
| 13940 | 983 | by (simp only: ivl_disj_un_singleton) | 
| 984 | also have "... = coeff P p k" | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 985 | by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R RR Pi_def) | 
| 13940 | 986 | finally show ?thesis . | 
| 987 | next | |
| 988 | case False | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 989 |     hence "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 990 |           coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<deg R p} \<union> {deg R p}. ?s i) k"
 | 
| 13940 | 991 | by (simp only: ivl_disj_un_singleton) | 
| 992 | also from False have "... = coeff P p k" | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 993 | by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R Pi_def) | 
| 13940 | 994 | finally show ?thesis . | 
| 995 | qed | |
| 996 | qed (simp_all add: R Pi_def) | |
| 997 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 998 | lemma up_repr_le: | 
| 13940 | 999 | "[| deg R p <= n; p \<in> carrier P |] ==> | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1000 |   (\<Oplus>\<^bsub>P\<^esub> i \<in> {..n}. monom P (coeff P p i) i) = p"
 | 
| 13940 | 1001 | proof - | 
| 1002 | let ?s = "(%i. monom P (coeff P p i) i)" | |
| 1003 | assume R: "p \<in> carrier P" and "deg R p <= n" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1004 |   then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} \<union> {deg R p<..n})"
 | 
| 13940 | 1005 | by (simp only: ivl_disj_un_one) | 
| 1006 |   also have "... = finsum P ?s {..deg R p}"
 | |
| 17094 | 1007 | by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one | 
| 13940 | 1008 | deg_aboveD R Pi_def) | 
| 23350 | 1009 | also have "... = p" using R by (rule up_repr) | 
| 13940 | 1010 | finally show ?thesis . | 
| 1011 | qed | |
| 1012 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1013 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1014 | |
| 17094 | 1015 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 1016 | subsection {* Polynomials over Integral Domains *}
 | 
| 13940 | 1017 | |
| 1018 | lemma domainI: | |
| 1019 | assumes cring: "cring R" | |
| 1020 | and one_not_zero: "one R ~= zero R" | |
| 1021 | and integral: "!!a b. [| mult R a b = zero R; a \<in> carrier R; | |
| 1022 | b \<in> carrier R |] ==> a = zero R | b = zero R" | |
| 1023 | shows "domain R" | |
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27611diff
changeset | 1024 | by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms | 
| 13940 | 1025 | del: disjCI) | 
| 1026 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1027 | context UP_domain | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1028 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1029 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1030 | lemma UP_one_not_zero: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1031 | "\<one>\<^bsub>P\<^esub> ~= \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 1032 | proof | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1033 | assume "\<one>\<^bsub>P\<^esub> = \<zero>\<^bsub>P\<^esub>" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1034 | hence "coeff P \<one>\<^bsub>P\<^esub> 0 = (coeff P \<zero>\<^bsub>P\<^esub> 0)" by simp | 
| 13940 | 1035 | hence "\<one> = \<zero>" by simp | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1036 | with R.one_not_zero show "False" by contradiction | 
| 13940 | 1037 | qed | 
| 1038 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1039 | lemma UP_integral: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1040 | "[| p \<otimes>\<^bsub>P\<^esub> q = \<zero>\<^bsub>P\<^esub>; p \<in> carrier P; q \<in> carrier P |] ==> p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 1041 | proof - | 
| 1042 | fix p q | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1043 | assume pq: "p \<otimes>\<^bsub>P\<^esub> q = \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" "q \<in> carrier P" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1044 | show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 1045 | proof (rule classical) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1046 | assume c: "~ (p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>)" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1047 | with R have "deg R p + deg R q = deg R (p \<otimes>\<^bsub>P\<^esub> q)" by simp | 
| 13940 | 1048 | also from pq have "... = 0" by simp | 
| 1049 | finally have "deg R p + deg R q = 0" . | |
| 1050 | then have f1: "deg R p = 0 & deg R q = 0" by simp | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1051 |     from f1 R have "p = (\<Oplus>\<^bsub>P\<^esub> i \<in> {..0}. monom P (coeff P p i) i)"
 | 
| 13940 | 1052 | by (simp only: up_repr_le) | 
| 1053 | also from R have "... = monom P (coeff P p 0) 0" by simp | |
| 1054 | finally have p: "p = monom P (coeff P p 0) 0" . | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1055 |     from f1 R have "q = (\<Oplus>\<^bsub>P\<^esub> i \<in> {..0}. monom P (coeff P q i) i)"
 | 
| 13940 | 1056 | by (simp only: up_repr_le) | 
| 1057 | also from R have "... = monom P (coeff P q 0) 0" by simp | |
| 1058 | finally have q: "q = monom P (coeff P q 0) 0" . | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1059 | from R have "coeff P p 0 \<otimes> coeff P q 0 = coeff P (p \<otimes>\<^bsub>P\<^esub> q) 0" by simp | 
| 13940 | 1060 | also from pq have "... = \<zero>" by simp | 
| 1061 | finally have "coeff P p 0 \<otimes> coeff P q 0 = \<zero>" . | |
| 1062 | with R have "coeff P p 0 = \<zero> | coeff P q 0 = \<zero>" | |
| 1063 | by (simp add: R.integral_iff) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1064 | with p q show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" by fastsimp | 
| 13940 | 1065 | qed | 
| 1066 | qed | |
| 1067 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1068 | theorem UP_domain: | 
| 13940 | 1069 | "domain P" | 
| 1070 | by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI) | |
| 1071 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1072 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1073 | |
| 13940 | 1074 | text {*
 | 
| 17094 | 1075 |   Interpretation of theorems from @{term domain}.
 | 
| 13940 | 1076 | *} | 
| 1077 | ||
| 29237 | 1078 | sublocale UP_domain < "domain" P | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 1079 | by intro_locales (rule domain.axioms UP_domain)+ | 
| 13940 | 1080 | |
| 14666 | 1081 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 1082 | subsection {* The Evaluation Homomorphism and Universal Property*}
 | 
| 13940 | 1083 | |
| 14666 | 1084 | (* alternative congruence rule (possibly more efficient) | 
| 1085 | lemma (in abelian_monoid) finsum_cong2: | |
| 1086 | "[| !!i. i \<in> A ==> f i \<in> carrier G = True; A = B; | |
| 1087 | !!i. i \<in> B ==> f i = g i |] ==> finsum G f A = finsum G g B" | |
| 1088 | sorry*) | |
| 1089 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1090 | lemma (in abelian_monoid) boundD_carrier: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1091 | "[| bound \<zero> n f; n < m |] ==> f m \<in> carrier G" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1092 | by auto | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1093 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1094 | context ring | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1095 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1096 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1097 | theorem diagonal_sum: | 
| 13940 | 1098 |   "[| f \<in> {..n + m::nat} -> carrier R; g \<in> {..n + m} -> carrier R |] ==>
 | 
| 14666 | 1099 |   (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 1100 |   (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | |
| 13940 | 1101 | proof - | 
| 1102 |   assume Rf: "f \<in> {..n + m} -> carrier R" and Rg: "g \<in> {..n + m} -> carrier R"
 | |
| 1103 |   {
 | |
| 1104 | fix j | |
| 1105 | have "j <= n + m ==> | |
| 14666 | 1106 |       (\<Oplus>k \<in> {..j}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 1107 |       (\<Oplus>k \<in> {..j}. \<Oplus>i \<in> {..j - k}. f k \<otimes> g i)"
 | |
| 13940 | 1108 | proof (induct j) | 
| 1109 | case 0 from Rf Rg show ?case by (simp add: Pi_def) | |
| 1110 | next | |
| 14666 | 1111 | case (Suc j) | 
| 13940 | 1112 | have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i \<in> carrier R" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19984diff
changeset | 1113 | using Suc by (auto intro!: funcset_mem [OF Rg]) | 
| 13940 | 1114 | have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) \<in> carrier R" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19984diff
changeset | 1115 | using Suc by (auto intro!: funcset_mem [OF Rg]) | 
| 13940 | 1116 | have R9: "!!i k. [| k <= Suc j |] ==> f k \<in> carrier R" | 
| 14666 | 1117 | using Suc by (auto intro!: funcset_mem [OF Rf]) | 
| 13940 | 1118 | have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i \<in> carrier R" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19984diff
changeset | 1119 | using Suc by (auto intro!: funcset_mem [OF Rg]) | 
| 13940 | 1120 | have R11: "g 0 \<in> carrier R" | 
| 14666 | 1121 | using Suc by (auto intro!: funcset_mem [OF Rg]) | 
| 13940 | 1122 | from Suc show ?case | 
| 14666 | 1123 | by (simp cong: finsum_cong add: Suc_diff_le a_ac | 
| 1124 | Pi_def R6 R8 R9 R10 R11) | |
| 13940 | 1125 | qed | 
| 1126 | } | |
| 1127 | then show ?thesis by fast | |
| 1128 | qed | |
| 1129 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1130 | theorem cauchy_product: | 
| 13940 | 1131 | assumes bf: "bound \<zero> n f" and bg: "bound \<zero> m g" | 
| 1132 |     and Rf: "f \<in> {..n} -> carrier R" and Rg: "g \<in> {..m} -> carrier R"
 | |
| 14666 | 1133 |   shows "(\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 17094 | 1134 |     (\<Oplus>i \<in> {..n}. f i) \<otimes> (\<Oplus>i \<in> {..m}. g i)"      (* State reverse direction? *)
 | 
| 13940 | 1135 | proof - | 
| 1136 | have f: "!!x. f x \<in> carrier R" | |
| 1137 | proof - | |
| 1138 | fix x | |
| 1139 | show "f x \<in> carrier R" | |
| 1140 | using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def) | |
| 1141 | qed | |
| 1142 | have g: "!!x. g x \<in> carrier R" | |
| 1143 | proof - | |
| 1144 | fix x | |
| 1145 | show "g x \<in> carrier R" | |
| 1146 | using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def) | |
| 1147 | qed | |
| 14666 | 1148 |   from f g have "(\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 1149 |       (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | |
| 13940 | 1150 | by (simp add: diagonal_sum Pi_def) | 
| 15045 | 1151 |   also have "... = (\<Oplus>k \<in> {..n} \<union> {n<..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1152 | by (simp only: ivl_disj_un_one) | 
| 14666 | 1153 |   also from f g have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1154 | by (simp cong: finsum_cong | 
| 14666 | 1155 | add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1156 | also from f g | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1157 |   have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..m} \<union> {m<..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1158 | by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def) | 
| 14666 | 1159 |   also from f g have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..m}. f k \<otimes> g i)"
 | 
| 13940 | 1160 | by (simp cong: finsum_cong | 
| 14666 | 1161 | add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def) | 
| 1162 |   also from f g have "... = (\<Oplus>i \<in> {..n}. f i) \<otimes> (\<Oplus>i \<in> {..m}. g i)"
 | |
| 13940 | 1163 | by (simp add: finsum_ldistr diagonal_sum Pi_def, | 
| 1164 | simp cong: finsum_cong add: finsum_rdistr Pi_def) | |
| 1165 | finally show ?thesis . | |
| 1166 | qed | |
| 1167 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1168 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1169 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1170 | lemma (in UP_ring) const_ring_hom: | 
| 13940 | 1171 | "(%a. monom P a 0) \<in> ring_hom R P" | 
| 1172 | by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult) | |
| 1173 | ||
| 27933 | 1174 | definition | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1175 |   eval :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme,
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1176 | 'a => 'b, 'b, nat => 'a] => 'b" | 
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1177 | where "eval R S phi s = (\<lambda>p \<in> carrier (UP R). | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1178 |     \<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R p}. phi (coeff (UP R) p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1179 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1180 | context UP | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1181 | begin | 
| 14666 | 1182 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1183 | lemma eval_on_carrier: | 
| 19783 | 1184 | fixes S (structure) | 
| 17094 | 1185 | shows "p \<in> carrier P ==> | 
| 1186 |   eval R S phi s p = (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. phi (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | |
| 13940 | 1187 | by (unfold eval_def, fold P_def) simp | 
| 1188 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1189 | lemma eval_extensional: | 
| 17094 | 1190 | "eval R S phi p \<in> extensional (carrier P)" | 
| 13940 | 1191 | by (unfold eval_def, fold P_def) simp | 
| 1192 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1193 | end | 
| 17094 | 1194 | |
| 1195 | text {* The universal property of the polynomial ring *}
 | |
| 1196 | ||
| 29240 | 1197 | locale UP_pre_univ_prop = ring_hom_cring + UP_cring | 
| 1198 | ||
| 1199 | (* FIXME print_locale ring_hom_cring fails *) | |
| 17094 | 1200 | |
| 19783 | 1201 | locale UP_univ_prop = UP_pre_univ_prop + | 
| 1202 | fixes s and Eval | |
| 17094 | 1203 | assumes indet_img_carrier [simp, intro]: "s \<in> carrier S" | 
| 1204 | defines Eval_def: "Eval == eval R S h s" | |
| 1205 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1206 | text{*JE: I have moved the following lemma from Ring.thy and lifted then to the locale @{term ring_hom_ring} from @{term ring_hom_cring}.*}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1207 | text{*JE: I was considering using it in @{text eval_ring_hom}, but that property does not hold for non commutative rings, so 
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1208 | maybe it is not that necessary.*} | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1209 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1210 | lemma (in ring_hom_ring) hom_finsum [simp]: | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1211 | "[| finite A; f \<in> A -> carrier R |] ==> | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1212 | h (finsum R f A) = finsum S (h o f) A" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1213 | proof (induct set: finite) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1214 | case empty then show ?case by simp | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1215 | next | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1216 | case insert then show ?case by (simp add: Pi_def) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1217 | qed | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1218 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1219 | context UP_pre_univ_prop | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1220 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1221 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1222 | theorem eval_ring_hom: | 
| 17094 | 1223 | assumes S: "s \<in> carrier S" | 
| 1224 | shows "eval R S h s \<in> ring_hom P S" | |
| 13940 | 1225 | proof (rule ring_hom_memI) | 
| 1226 | fix p | |
| 17094 | 1227 | assume R: "p \<in> carrier P" | 
| 13940 | 1228 | then show "eval R S h s p \<in> carrier S" | 
| 17094 | 1229 | by (simp only: eval_on_carrier) (simp add: S Pi_def) | 
| 13940 | 1230 | next | 
| 1231 | fix p q | |
| 17094 | 1232 | assume R: "p \<in> carrier P" "q \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1233 | then show "eval R S h s (p \<oplus>\<^bsub>P\<^esub> q) = eval R S h s p \<oplus>\<^bsub>S\<^esub> eval R S h s q" | 
| 17094 | 1234 | proof (simp only: eval_on_carrier P.a_closed) | 
| 1235 | from S R have | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1236 |       "(\<Oplus>\<^bsub>S \<^esub>i\<in>{..deg R (p \<oplus>\<^bsub>P\<^esub> q)}. h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1237 |       (\<Oplus>\<^bsub>S \<^esub>i\<in>{..deg R (p \<oplus>\<^bsub>P\<^esub> q)} \<union> {deg R (p \<oplus>\<^bsub>P\<^esub> q)<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1238 | h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 17094 | 1239 | by (simp cong: S.finsum_cong | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1240 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del: coeff_add) | 
| 17094 | 1241 | also from R have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1242 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1243 | h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 13940 | 1244 | by (simp add: ivl_disj_un_one) | 
| 17094 | 1245 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1246 |       (\<Oplus>\<^bsub>S\<^esub>i\<in>{..max (deg R p) (deg R q)}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1247 |       (\<Oplus>\<^bsub>S\<^esub>i\<in>{..max (deg R p) (deg R q)}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 17094 | 1248 | by (simp cong: S.finsum_cong | 
| 1249 | add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def) | |
| 13940 | 1250 | also have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1251 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p} \<union> {deg R p<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1252 | h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub> | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1253 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q} \<union> {deg R q<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1254 | h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 13940 | 1255 | by (simp only: ivl_disj_un_one le_maxI1 le_maxI2) | 
| 17094 | 1256 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1257 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1258 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 17094 | 1259 | by (simp cong: S.finsum_cong | 
| 1260 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def) | |
| 13940 | 1261 | finally show | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1262 |       "(\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R (p \<oplus>\<^bsub>P\<^esub> q)}. h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1263 |       (\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1264 |       (\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" .
 | 
| 13940 | 1265 | qed | 
| 1266 | next | |
| 17094 | 1267 | show "eval R S h s \<one>\<^bsub>P\<^esub> = \<one>\<^bsub>S\<^esub>" | 
| 13940 | 1268 | by (simp only: eval_on_carrier UP_one_closed) simp | 
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1269 | next | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1270 | fix p q | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1271 | assume R: "p \<in> carrier P" "q \<in> carrier P" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1272 | then show "eval R S h s (p \<otimes>\<^bsub>P\<^esub> q) = eval R S h s p \<otimes>\<^bsub>S\<^esub> eval R S h s q" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1273 | proof (simp only: eval_on_carrier UP_mult_closed) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1274 | from R S have | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1275 |       "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1276 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)} \<union> {deg R (p \<otimes>\<^bsub>P\<^esub> q)<..deg R p + deg R q}.
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1277 | h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1278 | by (simp cong: S.finsum_cong | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1279 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1280 | del: coeff_mult) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1281 | also from R have "... = | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1282 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p + deg R q}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1283 | by (simp only: ivl_disj_un_one deg_mult_ring) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1284 | also from R S have "... = | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1285 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p + deg R q}.
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1286 |          \<Oplus>\<^bsub>S\<^esub> k \<in> {..i}.
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1287 | h (coeff P p k) \<otimes>\<^bsub>S\<^esub> h (coeff P q (i - k)) \<otimes>\<^bsub>S\<^esub> | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1288 | (s (^)\<^bsub>S\<^esub> k \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> (i - k)))" | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1289 | by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1290 | S.m_ac S.finsum_rdistr) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1291 | also from R S have "... = | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1292 |       (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<otimes>\<^bsub>S\<^esub>
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1293 |       (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1294 | by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD S.m_ac | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1295 | Pi_def) | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1296 | finally show | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1297 |       "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1298 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<otimes>\<^bsub>S\<^esub>
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1299 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" .
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1300 | qed | 
| 13940 | 1301 | qed | 
| 1302 | ||
| 21502 | 1303 | text {*
 | 
| 1304 |   The following lemma could be proved in @{text UP_cring} with the additional
 | |
| 1305 |   assumption that @{text h} is closed. *}
 | |
| 13940 | 1306 | |
| 17094 | 1307 | lemma (in UP_pre_univ_prop) eval_const: | 
| 13940 | 1308 | "[| s \<in> carrier S; r \<in> carrier R |] ==> eval R S h s (monom P r 0) = h r" | 
| 1309 | by (simp only: eval_on_carrier monom_closed) simp | |
| 1310 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1311 | text {* Further properties of the evaluation homomorphism. *}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1312 | |
| 13940 | 1313 | text {* The following proof is complicated by the fact that in arbitrary
 | 
| 1314 |   rings one might have @{term "one R = zero R"}. *}
 | |
| 1315 | ||
| 1316 | (* TODO: simplify by cases "one R = zero R" *) | |
| 1317 | ||
| 17094 | 1318 | lemma (in UP_pre_univ_prop) eval_monom1: | 
| 1319 | assumes S: "s \<in> carrier S" | |
| 1320 | shows "eval R S h s (monom P \<one> 1) = s" | |
| 13940 | 1321 | proof (simp only: eval_on_carrier monom_closed R.one_closed) | 
| 17094 | 1322 | from S have | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1323 |     "(\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R (monom P \<one> 1)}. h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1324 |     (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R (monom P \<one> 1)} \<union> {deg R (monom P \<one> 1)<..1}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1325 | h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 17094 | 1326 | by (simp cong: S.finsum_cong del: coeff_monom | 
| 1327 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def) | |
| 14666 | 1328 | also have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1329 |     (\<Oplus>\<^bsub>S\<^esub> i \<in> {..1}. h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 13940 | 1330 | by (simp only: ivl_disj_un_one deg_monom_le R.one_closed) | 
| 1331 | also have "... = s" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1332 | proof (cases "s = \<zero>\<^bsub>S\<^esub>") | 
| 13940 | 1333 | case True then show ?thesis by (simp add: Pi_def) | 
| 1334 | next | |
| 17094 | 1335 | case False then show ?thesis by (simp add: S Pi_def) | 
| 13940 | 1336 | qed | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1337 |   finally show "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (monom P \<one> 1)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1338 | h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) = s" . | 
| 13940 | 1339 | qed | 
| 1340 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1341 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1342 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1343 | text {* Interpretation of ring homomorphism lemmas. *}
 | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1344 | |
| 29237 | 1345 | sublocale UP_univ_prop < ring_hom_cring P S Eval | 
| 36092 | 1346 | unfolding Eval_def | 
| 1347 | by unfold_locales (fast intro: eval_ring_hom) | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1348 | |
| 13940 | 1349 | lemma (in UP_cring) monom_pow: | 
| 1350 | assumes R: "a \<in> carrier R" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1351 | shows "(monom P a n) (^)\<^bsub>P\<^esub> m = monom P (a (^) m) (n * m)" | 
| 13940 | 1352 | proof (induct m) | 
| 1353 | case 0 from R show ?case by simp | |
| 1354 | next | |
| 1355 | case Suc with R show ?case | |
| 1356 | by (simp del: monom_mult add: monom_mult [THEN sym] add_commute) | |
| 1357 | qed | |
| 1358 | ||
| 1359 | lemma (in ring_hom_cring) hom_pow [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1360 | "x \<in> carrier R ==> h (x (^) n) = h x (^)\<^bsub>S\<^esub> (n::nat)" | 
| 13940 | 1361 | by (induct n) simp_all | 
| 1362 | ||
| 17094 | 1363 | lemma (in UP_univ_prop) Eval_monom: | 
| 1364 | "r \<in> carrier R ==> Eval (monom P r n) = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 13940 | 1365 | proof - | 
| 17094 | 1366 | assume R: "r \<in> carrier R" | 
| 1367 | from R have "Eval (monom P r n) = Eval (monom P r 0 \<otimes>\<^bsub>P\<^esub> (monom P \<one> 1) (^)\<^bsub>P\<^esub> n)" | |
| 1368 | by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1369 | also | 
| 17094 | 1370 | from R eval_monom1 [where s = s, folded Eval_def] | 
| 1371 | have "... = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 1372 | by (simp add: eval_const [where s = s, folded Eval_def]) | |
| 13940 | 1373 | finally show ?thesis . | 
| 1374 | qed | |
| 1375 | ||
| 17094 | 1376 | lemma (in UP_pre_univ_prop) eval_monom: | 
| 1377 | assumes R: "r \<in> carrier R" and S: "s \<in> carrier S" | |
| 1378 | shows "eval R S h s (monom P r n) = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1379 | proof - | 
| 29237 | 1380 | interpret UP_univ_prop R S h P s "eval R S h s" | 
| 26202 | 1381 | using UP_pre_univ_prop_axioms P_def R S | 
| 22931 | 1382 | by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro) | 
| 17094 | 1383 | from R | 
| 1384 | show ?thesis by (rule Eval_monom) | |
| 1385 | qed | |
| 1386 | ||
| 1387 | lemma (in UP_univ_prop) Eval_smult: | |
| 1388 | "[| r \<in> carrier R; p \<in> carrier P |] ==> Eval (r \<odot>\<^bsub>P\<^esub> p) = h r \<otimes>\<^bsub>S\<^esub> Eval p" | |
| 1389 | proof - | |
| 1390 | assume R: "r \<in> carrier R" and P: "p \<in> carrier P" | |
| 1391 | then show ?thesis | |
| 1392 | by (simp add: monom_mult_is_smult [THEN sym] | |
| 1393 | eval_const [where s = s, folded Eval_def]) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1394 | qed | 
| 13940 | 1395 | |
| 1396 | lemma ring_hom_cringI: | |
| 1397 | assumes "cring R" | |
| 1398 | and "cring S" | |
| 1399 | and "h \<in> ring_hom R S" | |
| 1400 | shows "ring_hom_cring R S h" | |
| 1401 | by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro | |
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27611diff
changeset | 1402 | cring.axioms assms) | 
| 13940 | 1403 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1404 | context UP_pre_univ_prop | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1405 | begin | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1406 | |
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1407 | lemma UP_hom_unique: | 
| 27611 | 1408 | assumes "ring_hom_cring P S Phi" | 
| 17094 | 1409 | assumes Phi: "Phi (monom P \<one> (Suc 0)) = s" | 
| 13940 | 1410 | "!!r. r \<in> carrier R ==> Phi (monom P r 0) = h r" | 
| 27611 | 1411 | assumes "ring_hom_cring P S Psi" | 
| 17094 | 1412 | assumes Psi: "Psi (monom P \<one> (Suc 0)) = s" | 
| 13940 | 1413 | "!!r. r \<in> carrier R ==> Psi (monom P r 0) = h r" | 
| 17094 | 1414 | and P: "p \<in> carrier P" and S: "s \<in> carrier S" | 
| 13940 | 1415 | shows "Phi p = Psi p" | 
| 1416 | proof - | |
| 29237 | 1417 | interpret ring_hom_cring P S Phi by fact | 
| 1418 | interpret ring_hom_cring P S Psi by fact | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1419 | have "Phi p = | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1420 |       Phi (\<Oplus>\<^bsub>P \<^esub>i \<in> {..deg R p}. monom P (coeff P p i) 0 \<otimes>\<^bsub>P\<^esub> monom P \<one> 1 (^)\<^bsub>P\<^esub> i)"
 | 
| 17094 | 1421 | by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult) | 
| 15696 | 1422 | also | 
| 1423 | have "... = | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1424 |       Psi (\<Oplus>\<^bsub>P \<^esub>i\<in>{..deg R p}. monom P (coeff P p i) 0 \<otimes>\<^bsub>P\<^esub> monom P \<one> 1 (^)\<^bsub>P\<^esub> i)"
 | 
| 17094 | 1425 | by (simp add: Phi Psi P Pi_def comp_def) | 
| 13940 | 1426 | also have "... = Psi p" | 
| 17094 | 1427 | by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult) | 
| 13940 | 1428 | finally show ?thesis . | 
| 1429 | qed | |
| 1430 | ||
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1431 | lemma ring_homD: | 
| 17094 | 1432 | assumes Phi: "Phi \<in> ring_hom P S" | 
| 1433 | shows "ring_hom_cring P S Phi" | |
| 36092 | 1434 | by unfold_locales (rule Phi) | 
| 17094 | 1435 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1436 | theorem UP_universal_property: | 
| 17094 | 1437 | assumes S: "s \<in> carrier S" | 
| 1438 | shows "EX! Phi. Phi \<in> ring_hom P S \<inter> extensional (carrier P) & | |
| 14666 | 1439 | Phi (monom P \<one> 1) = s & | 
| 13940 | 1440 | (ALL r : carrier R. Phi (monom P r 0) = h r)" | 
| 17094 | 1441 | using S eval_monom1 | 
| 13940 | 1442 | apply (auto intro: eval_ring_hom eval_const eval_extensional) | 
| 14666 | 1443 | apply (rule extensionalityI) | 
| 17094 | 1444 | apply (auto intro: UP_hom_unique ring_homD) | 
| 14666 | 1445 | done | 
| 13940 | 1446 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1447 | end | 
| 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27714diff
changeset | 1448 | |
| 27933 | 1449 | text{*JE: The following lemma was added by me; it might be even lifted to a simpler locale*}
 | 
| 1450 | ||
| 1451 | context monoid | |
| 1452 | begin | |
| 1453 | ||
| 1454 | lemma nat_pow_eone[simp]: assumes x_in_G: "x \<in> carrier G" shows "x (^) (1::nat) = x" | |
| 1455 | using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one [OF x_in_G] by simp | |
| 1456 | ||
| 1457 | end | |
| 1458 | ||
| 1459 | context UP_ring | |
| 1460 | begin | |
| 1461 | ||
| 1462 | abbreviation lcoeff :: "(nat =>'a) => 'a" where "lcoeff p == coeff P p (deg R p)" | |
| 1463 | ||
| 1464 | lemma lcoeff_nonzero2: assumes p_in_R: "p \<in> carrier P" and p_not_zero: "p \<noteq> \<zero>\<^bsub>P\<^esub>" shows "lcoeff p \<noteq> \<zero>" | |
| 1465 | using lcoeff_nonzero [OF p_not_zero p_in_R] . | |
| 1466 | ||
| 35849 | 1467 | |
| 27933 | 1468 | subsection{*The long division algorithm: some previous facts.*}
 | 
| 1469 | ||
| 1470 | lemma coeff_minus [simp]: | |
| 1471 | assumes p: "p \<in> carrier P" and q: "q \<in> carrier P" shows "coeff P (p \<ominus>\<^bsub>P\<^esub> q) n = coeff P p n \<ominus> coeff P q n" | |
| 1472 | unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed [OF q]] unfolding coeff_a_inv [OF q] | |
| 1473 | using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra | |
| 1474 | ||
| 1475 | lemma lcoeff_closed [simp]: assumes p: "p \<in> carrier P" shows "lcoeff p \<in> carrier R" | |
| 1476 | using coeff_closed [OF p, of "deg R p"] by simp | |
| 1477 | ||
| 1478 | lemma deg_smult_decr: assumes a_in_R: "a \<in> carrier R" and f_in_P: "f \<in> carrier P" shows "deg R (a \<odot>\<^bsub>P\<^esub> f) \<le> deg R f" | |
| 1479 | using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = \<zero>", auto) | |
| 1480 | ||
| 1481 | lemma coeff_monom_mult: assumes R: "c \<in> carrier R" and P: "p \<in> carrier P" | |
| 1482 | shows "coeff P (monom P c n \<otimes>\<^bsub>P\<^esub> p) (m + n) = c \<otimes> (coeff P p m)" | |
| 1483 | proof - | |
| 1484 |   have "coeff P (monom P c n \<otimes>\<^bsub>P\<^esub> p) (m + n) = (\<Oplus>i\<in>{..m + n}. (if n = i then c else \<zero>) \<otimes> coeff P p (m + n - i))"
 | |
| 1485 | unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"] unfolding coeff_monom [OF R, of n] by simp | |
| 1486 |   also have "(\<Oplus>i\<in>{..m + n}. (if n = i then c else \<zero>) \<otimes> coeff P p (m + n - i)) = 
 | |
| 1487 |     (\<Oplus>i\<in>{..m + n}. (if n = i then c \<otimes> coeff P p (m + n - i) else \<zero>))"
 | |
| 1488 |     using  R.finsum_cong [of "{..m + n}" "{..m + n}" "(\<lambda>i::nat. (if n = i then c else \<zero>) \<otimes> coeff P p (m + n - i))" 
 | |
| 1489 | "(\<lambda>i::nat. (if n = i then c \<otimes> coeff P p (m + n - i) else \<zero>))"] | |
| 1490 | using coeff_closed [OF P] unfolding Pi_def simp_implies_def using R by auto | |
| 1491 |   also have "\<dots> = c \<otimes> coeff P p m" using R.finsum_singleton [of n "{..m + n}" "(\<lambda>i. c \<otimes> coeff P p (m + n - i))"]
 | |
| 1492 | unfolding Pi_def using coeff_closed [OF P] using P R by auto | |
| 1493 | finally show ?thesis by simp | |
| 1494 | qed | |
| 1495 | ||
| 1496 | lemma deg_lcoeff_cancel: | |
| 1497 | assumes p_in_P: "p \<in> carrier P" and q_in_P: "q \<in> carrier P" and r_in_P: "r \<in> carrier P" | |
| 1498 | and deg_r_nonzero: "deg R r \<noteq> 0" | |
| 1499 | and deg_R_p: "deg R p \<le> deg R r" and deg_R_q: "deg R q \<le> deg R r" | |
| 1500 | and coeff_R_p_eq_q: "coeff P p (deg R r) = \<ominus>\<^bsub>R\<^esub> (coeff P q (deg R r))" | |
| 1501 | shows "deg R (p \<oplus>\<^bsub>P\<^esub> q) < deg R r" | |
| 1502 | proof - | |
| 1503 | have deg_le: "deg R (p \<oplus>\<^bsub>P\<^esub> q) \<le> deg R r" | |
| 1504 | proof (rule deg_aboveI) | |
| 1505 | fix m | |
| 1506 | assume deg_r_le: "deg R r < m" | |
| 1507 | show "coeff P (p \<oplus>\<^bsub>P\<^esub> q) m = \<zero>" | |
| 1508 | proof - | |
| 1509 | have slp: "deg R p < m" and "deg R q < m" using deg_R_p deg_R_q using deg_r_le by auto | |
| 1510 | then have max_sl: "max (deg R p) (deg R q) < m" by simp | |
| 1511 | then have "deg R (p \<oplus>\<^bsub>P\<^esub> q) < m" using deg_add [OF p_in_P q_in_P] by arith | |
| 1512 | with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P, of m] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1513 | using deg_aboveD [of "p \<oplus>\<^bsub>P\<^esub> q" m] using p_in_P q_in_P by simp | 
| 27933 | 1514 | qed | 
| 1515 | qed (simp add: p_in_P q_in_P) | |
| 1516 | moreover have deg_ne: "deg R (p \<oplus>\<^bsub>P\<^esub> q) \<noteq> deg R r" | |
| 1517 | proof (rule ccontr) | |
| 1518 | assume nz: "\<not> deg R (p \<oplus>\<^bsub>P\<^esub> q) \<noteq> deg R r" then have deg_eq: "deg R (p \<oplus>\<^bsub>P\<^esub> q) = deg R r" by simp | |
| 1519 | from deg_r_nonzero have r_nonzero: "r \<noteq> \<zero>\<^bsub>P\<^esub>" by (cases "r = \<zero>\<^bsub>P\<^esub>", simp_all) | |
| 1520 | have "coeff P (p \<oplus>\<^bsub>P\<^esub> q) (deg R r) = \<zero>\<^bsub>R\<^esub>" using coeff_add [OF p_in_P q_in_P, of "deg R r"] using coeff_R_p_eq_q | |
| 1521 | using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P, of "deg R r"] by algebra | |
| 1522 | with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False using lcoeff_nonzero [of "p \<oplus>\<^bsub>P\<^esub> q"] using p_in_P q_in_P | |
| 1523 | using deg_r_nonzero by (cases "p \<oplus>\<^bsub>P\<^esub> q \<noteq> \<zero>\<^bsub>P\<^esub>", auto) | |
| 1524 | qed | |
| 1525 | ultimately show ?thesis by simp | |
| 1526 | qed | |
| 1527 | ||
| 1528 | lemma monom_deg_mult: | |
| 1529 | assumes f_in_P: "f \<in> carrier P" and g_in_P: "g \<in> carrier P" and deg_le: "deg R g \<le> deg R f" | |
| 1530 | and a_in_R: "a \<in> carrier R" | |
| 1531 | shows "deg R (g \<otimes>\<^bsub>P\<^esub> monom P a (deg R f - deg R g)) \<le> deg R f" | |
| 1532 | using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f - deg R g"]] | |
| 1533 | apply (cases "a = \<zero>") using g_in_P apply simp | |
| 1534 | using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by simp | |
| 1535 | ||
| 1536 | lemma deg_zero_impl_monom: | |
| 1537 | assumes f_in_P: "f \<in> carrier P" and deg_f: "deg R f = 0" | |
| 1538 | shows "f = monom P (coeff P f 0) 0" | |
| 1539 | apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P], of 0 0] | |
| 1540 | using f_in_P deg_f using deg_aboveD [of f _] by auto | |
| 1541 | ||
| 1542 | end | |
| 1543 | ||
| 1544 | ||
| 1545 | subsection {* The long division proof for commutative rings *}
 | |
| 1546 | ||
| 1547 | context UP_cring | |
| 1548 | begin | |
| 1549 | ||
| 1550 | lemma exI3: assumes exist: "Pred x y z" | |
| 1551 | shows "\<exists> x y z. Pred x y z" | |
| 1552 | using exist by blast | |
| 1553 | ||
| 1554 | text {* Jacobson's Theorem 2.14 *}
 | |
| 1555 | ||
| 1556 | lemma long_div_theorem: | |
| 1557 | assumes g_in_P [simp]: "g \<in> carrier P" and f_in_P [simp]: "f \<in> carrier P" | |
| 1558 | and g_not_zero: "g \<noteq> \<zero>\<^bsub>P\<^esub>" | |
| 1559 | shows "\<exists> q r (k::nat). (q \<in> carrier P) \<and> (r \<in> carrier P) \<and> (lcoeff g)(^)\<^bsub>R\<^esub>k \<odot>\<^bsub>P\<^esub> f = g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r \<and> (r = \<zero>\<^bsub>P\<^esub> | deg R r < deg R g)" | |
| 38131 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1560 | using f_in_P | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1561 | proof (induct "deg R f" arbitrary: "f" rule: nat_less_induct) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1562 | case (1 f) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1563 | note f_in_P [simp] = "1.prems" | 
| 27933 | 1564 | let ?pred = "(\<lambda> q r (k::nat). | 
| 38131 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1565 | (q \<in> carrier P) \<and> (r \<in> carrier P) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1566 | \<and> (lcoeff g)(^)\<^bsub>R\<^esub>k \<odot>\<^bsub>P\<^esub> f = g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r \<and> (r = \<zero>\<^bsub>P\<^esub> | deg R r < deg R g))" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1567 | let ?lg = "lcoeff g" and ?lf = "lcoeff f" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1568 | show ?case | 
| 27933 | 1569 | proof (cases "deg R f < deg R g") | 
| 38131 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1570 | case True | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1571 | have "?pred \<zero>\<^bsub>P\<^esub> f 0" using True by force | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1572 | then show ?thesis by blast | 
| 27933 | 1573 | next | 
| 1574 | case False then have deg_g_le_deg_f: "deg R g \<le> deg R f" by simp | |
| 1575 |     {
 | |
| 38131 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1576 | let ?k = "1::nat" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1577 | let ?f1 = "(g \<otimes>\<^bsub>P\<^esub> (monom P (?lf) (deg R f - deg R g))) \<oplus>\<^bsub>P\<^esub> \<ominus>\<^bsub>P\<^esub> (?lg \<odot>\<^bsub>P\<^esub> f)" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1578 | let ?q = "monom P (?lf) (deg R f - deg R g)" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1579 | have f1_in_carrier: "?f1 \<in> carrier P" and q_in_carrier: "?q \<in> carrier P" by simp_all | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1580 | show ?thesis | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1581 | proof (cases "deg R f = 0") | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1582 | case True | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1583 |         {
 | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1584 | have deg_g: "deg R g = 0" using True using deg_g_le_deg_f by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1585 | have "?pred f \<zero>\<^bsub>P\<^esub> 1" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1586 | using deg_zero_impl_monom [OF g_in_P deg_g] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1587 | using sym [OF monom_mult_is_smult [OF coeff_closed [OF g_in_P, of 0] f_in_P]] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1588 | using deg_g by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1589 | then show ?thesis by blast | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1590 | } | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1591 | next | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1592 | case False note deg_f_nzero = False | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1593 |         {
 | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1594 | have exist: "lcoeff g (^) ?k \<odot>\<^bsub>P\<^esub> f = g \<otimes>\<^bsub>P\<^esub> ?q \<oplus>\<^bsub>P\<^esub> \<ominus>\<^bsub>P\<^esub> ?f1" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1595 | by (simp add: minus_add r_neg sym [ | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1596 | OF a_assoc [of "g \<otimes>\<^bsub>P\<^esub> ?q" "\<ominus>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q)" "lcoeff g \<odot>\<^bsub>P\<^esub> f"]]) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1597 | have deg_remainder_l_f: "deg R (\<ominus>\<^bsub>P\<^esub> ?f1) < deg R f" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1598 | proof (unfold deg_uminus [OF f1_in_carrier]) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1599 | show "deg R ?f1 < deg R f" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1600 | proof (rule deg_lcoeff_cancel) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1601 | show "deg R (\<ominus>\<^bsub>P\<^esub> (?lg \<odot>\<^bsub>P\<^esub> f)) \<le> deg R f" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1602 | using deg_smult_ring [of ?lg f] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1603 | using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1604 | show "deg R (g \<otimes>\<^bsub>P\<^esub> ?q) \<le> deg R f" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1605 | by (simp add: monom_deg_mult [OF f_in_P g_in_P deg_g_le_deg_f, of ?lf]) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1606 | show "coeff P (g \<otimes>\<^bsub>P\<^esub> ?q) (deg R f) = \<ominus> coeff P (\<ominus>\<^bsub>P\<^esub> (?lg \<odot>\<^bsub>P\<^esub> f)) (deg R f)" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1607 | unfolding coeff_mult [OF g_in_P monom_closed | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1608 | [OF lcoeff_closed [OF f_in_P], | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1609 | of "deg R f - deg R g"], of "deg R f"] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1610 | unfolding coeff_monom [OF lcoeff_closed | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1611 | [OF f_in_P], of "(deg R f - deg R g)"] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1612 |                 using R.finsum_cong' [of "{..deg R f}" "{..deg R f}" 
 | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1613 | "(\<lambda>i. coeff P g i \<otimes> (if deg R f - deg R g = deg R f - i then ?lf else \<zero>))" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1614 | "(\<lambda>i. if deg R g = i then coeff P g i \<otimes> ?lf else \<zero>)"] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1615 |                 using R.finsum_singleton [of "deg R g" "{.. deg R f}" "(\<lambda>i. coeff P g i \<otimes> ?lf)"]
 | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1616 | unfolding Pi_def using deg_g_le_deg_f by force | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1617 | qed (simp_all add: deg_f_nzero) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1618 | qed | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1619 | then obtain q' r' k' | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1620 | where rem_desc: "?lg (^) (k'::nat) \<odot>\<^bsub>P\<^esub> (\<ominus>\<^bsub>P\<^esub> ?f1) = g \<otimes>\<^bsub>P\<^esub> q' \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1621 | and rem_deg: "(r' = \<zero>\<^bsub>P\<^esub> \<or> deg R r' < deg R g)" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1622 | and q'_in_carrier: "q' \<in> carrier P" and r'_in_carrier: "r' \<in> carrier P" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1623 | using "1.hyps" using f1_in_carrier by blast | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 1624 | show ?thesis | 
| 38131 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1625 | proof (rule exI3 [of _ "((?lg (^) k') \<odot>\<^bsub>P\<^esub> ?q \<oplus>\<^bsub>P\<^esub> q')" r' "Suc k'"], intro conjI) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1626 | show "(?lg (^) (Suc k')) \<odot>\<^bsub>P\<^esub> f = g \<otimes>\<^bsub>P\<^esub> ((?lg (^) k') \<odot>\<^bsub>P\<^esub> ?q \<oplus>\<^bsub>P\<^esub> q') \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1627 | proof - | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1628 | have "(?lg (^) (Suc k')) \<odot>\<^bsub>P\<^esub> f = (?lg (^) k') \<odot>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q \<oplus>\<^bsub>P\<^esub> \<ominus>\<^bsub>P\<^esub> ?f1)" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1629 | using smult_assoc1 [OF _ _ f_in_P] using exist by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1630 | also have "\<dots> = (?lg (^) k') \<odot>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q) \<oplus>\<^bsub>P\<^esub> ((?lg (^) k') \<odot>\<^bsub>P\<^esub> ( \<ominus>\<^bsub>P\<^esub> ?f1))" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1631 | using UP_smult_r_distr by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1632 | also have "\<dots> = (?lg (^) k') \<odot>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q) \<oplus>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> q' \<oplus>\<^bsub>P\<^esub> r')" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1633 | unfolding rem_desc .. | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1634 | also have "\<dots> = (?lg (^) k') \<odot>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q) \<oplus>\<^bsub>P\<^esub> g \<otimes>\<^bsub>P\<^esub> q' \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1635 | using sym [OF a_assoc [of "?lg (^) k' \<odot>\<^bsub>P\<^esub> (g \<otimes>\<^bsub>P\<^esub> ?q)" "g \<otimes>\<^bsub>P\<^esub> q'" "r'"]] | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1636 | using r'_in_carrier q'_in_carrier by simp | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1637 | also have "\<dots> = (?lg (^) k') \<odot>\<^bsub>P\<^esub> (?q \<otimes>\<^bsub>P\<^esub> g) \<oplus>\<^bsub>P\<^esub> q' \<otimes>\<^bsub>P\<^esub> g \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1638 | using q'_in_carrier by (auto simp add: m_comm) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1639 | also have "\<dots> = (((?lg (^) k') \<odot>\<^bsub>P\<^esub> ?q) \<otimes>\<^bsub>P\<^esub> g) \<oplus>\<^bsub>P\<^esub> q' \<otimes>\<^bsub>P\<^esub> g \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1640 | using smult_assoc2 q'_in_carrier "1.prems" by auto | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1641 | also have "\<dots> = ((?lg (^) k') \<odot>\<^bsub>P\<^esub> ?q \<oplus>\<^bsub>P\<^esub> q') \<otimes>\<^bsub>P\<^esub> g \<oplus>\<^bsub>P\<^esub> r'" | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1642 | using sym [OF l_distr] and q'_in_carrier by auto | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1643 | finally show ?thesis using m_comm q'_in_carrier by auto | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1644 | qed | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1645 | qed (simp_all add: rem_deg q'_in_carrier r'_in_carrier) | 
| 
df8fc03995a4
Revised proof of long division contributed by Jesus Aransay.
 ballarin parents: 
36096diff
changeset | 1646 | } | 
| 27933 | 1647 | qed | 
| 1648 | } | |
| 1649 | qed | |
| 1650 | qed | |
| 1651 | ||
| 1652 | end | |
| 1653 | ||
| 1654 | ||
| 1655 | text {*The remainder theorem as corollary of the long division theorem.*}
 | |
| 1656 | ||
| 1657 | context UP_cring | |
| 1658 | begin | |
| 1659 | ||
| 1660 | lemma deg_minus_monom: | |
| 1661 | assumes a: "a \<in> carrier R" | |
| 1662 |   and R_not_trivial: "(carrier R \<noteq> {\<zero>})"
 | |
| 1663 | shows "deg R (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) = 1" | |
| 1664 | (is "deg R ?g = 1") | |
| 1665 | proof - | |
| 1666 | have "deg R ?g \<le> 1" | |
| 1667 | proof (rule deg_aboveI) | |
| 1668 | fix m | |
| 1669 | assume "(1::nat) < m" | |
| 1670 | then show "coeff P ?g m = \<zero>" | |
| 1671 | using coeff_minus using a by auto algebra | |
| 1672 | qed (simp add: a) | |
| 1673 | moreover have "deg R ?g \<ge> 1" | |
| 1674 | proof (rule deg_belowI) | |
| 1675 | show "coeff P ?g 1 \<noteq> \<zero>" | |
| 1676 | using a using R.carrier_one_not_zero R_not_trivial by simp algebra | |
| 1677 | qed (simp add: a) | |
| 1678 | ultimately show ?thesis by simp | |
| 1679 | qed | |
| 1680 | ||
| 1681 | lemma lcoeff_monom: | |
| 1682 |   assumes a: "a \<in> carrier R" and R_not_trivial: "(carrier R \<noteq> {\<zero>})"
 | |
| 1683 | shows "lcoeff (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) = \<one>" | |
| 1684 | using deg_minus_monom [OF a R_not_trivial] | |
| 1685 | using coeff_minus a by auto algebra | |
| 1686 | ||
| 1687 | lemma deg_nzero_nzero: | |
| 1688 | assumes deg_p_nzero: "deg R p \<noteq> 0" | |
| 1689 | shows "p \<noteq> \<zero>\<^bsub>P\<^esub>" | |
| 1690 | using deg_zero deg_p_nzero by auto | |
| 1691 | ||
| 1692 | lemma deg_monom_minus: | |
| 1693 | assumes a: "a \<in> carrier R" | |
| 1694 |   and R_not_trivial: "carrier R \<noteq> {\<zero>}"
 | |
| 1695 | shows "deg R (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) = 1" | |
| 1696 | (is "deg R ?g = 1") | |
| 1697 | proof - | |
| 1698 | have "deg R ?g \<le> 1" | |
| 1699 | proof (rule deg_aboveI) | |
| 1700 | fix m::nat assume "1 < m" then show "coeff P ?g m = \<zero>" | |
| 1701 | using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed [OF a, of 0], of m] | |
| 1702 | using coeff_monom [OF R.one_closed, of 1 m] using coeff_monom [OF a, of 0 m] by auto algebra | |
| 1703 | qed (simp add: a) | |
| 1704 | moreover have "1 \<le> deg R ?g" | |
| 1705 | proof (rule deg_belowI) | |
| 1706 | show "coeff P ?g 1 \<noteq> \<zero>" | |
| 1707 | using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed [OF a, of 0], of 1] | |
| 1708 | using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF a, of 0 1] | |
| 1709 | using R_not_trivial using R.carrier_one_not_zero | |
| 1710 | by auto algebra | |
| 1711 | qed (simp add: a) | |
| 1712 | ultimately show ?thesis by simp | |
| 1713 | qed | |
| 1714 | ||
| 1715 | lemma eval_monom_expr: | |
| 1716 | assumes a: "a \<in> carrier R" | |
| 1717 | shows "eval R R id a (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) = \<zero>" | |
| 1718 | (is "eval R R id a ?g = _") | |
| 1719 | proof - | |
| 36092 | 1720 | interpret UP_pre_univ_prop R R id by unfold_locales simp | 
| 27933 | 1721 | have eval_ring_hom: "eval R R id a \<in> ring_hom P R" using eval_ring_hom [OF a] by simp | 
| 36092 | 1722 | interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule eval_ring_hom) | 
| 27933 | 1723 | have mon1_closed: "monom P \<one>\<^bsub>R\<^esub> 1 \<in> carrier P" | 
| 1724 | and mon0_closed: "monom P a 0 \<in> carrier P" | |
| 1725 | and min_mon0_closed: "\<ominus>\<^bsub>P\<^esub> monom P a 0 \<in> carrier P" | |
| 1726 | using a R.a_inv_closed by auto | |
| 1727 | have "eval R R id a ?g = eval R R id a (monom P \<one> 1) \<ominus> eval R R id a (monom P a 0)" | |
| 1728 | unfolding P.minus_eq [OF mon1_closed mon0_closed] | |
| 29246 | 1729 | unfolding hom_add [OF mon1_closed min_mon0_closed] | 
| 1730 | unfolding hom_a_inv [OF mon0_closed] | |
| 27933 | 1731 | using R.minus_eq [symmetric] mon1_closed mon0_closed by auto | 
| 1732 | also have "\<dots> = a \<ominus> a" | |
| 1733 | using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a a, of 0] using a by simp | |
| 1734 | also have "\<dots> = \<zero>" | |
| 1735 | using a by algebra | |
| 1736 | finally show ?thesis by simp | |
| 1737 | qed | |
| 1738 | ||
| 1739 | lemma remainder_theorem_exist: | |
| 1740 | assumes f: "f \<in> carrier P" and a: "a \<in> carrier R" | |
| 1741 |   and R_not_trivial: "carrier R \<noteq> {\<zero>}"
 | |
| 1742 | shows "\<exists> q r. (q \<in> carrier P) \<and> (r \<in> carrier P) \<and> f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r \<and> (deg R r = 0)" | |
| 1743 | (is "\<exists> q r. (q \<in> carrier P) \<and> (r \<in> carrier P) \<and> f = ?g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r \<and> (deg R r = 0)") | |
| 1744 | proof - | |
| 1745 | let ?g = "monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0" | |
| 1746 | from deg_minus_monom [OF a R_not_trivial] | |
| 1747 | have deg_g_nzero: "deg R ?g \<noteq> 0" by simp | |
| 1748 | have "\<exists>q r (k::nat). q \<in> carrier P \<and> r \<in> carrier P \<and> | |
| 1749 | lcoeff ?g (^) k \<odot>\<^bsub>P\<^esub> f = ?g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r \<and> (r = \<zero>\<^bsub>P\<^esub> \<or> deg R r < deg R ?g)" | |
| 1750 | using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a | |
| 1751 | by auto | |
| 1752 | then show ?thesis | |
| 1753 | unfolding lcoeff_monom [OF a R_not_trivial] | |
| 1754 | unfolding deg_monom_minus [OF a R_not_trivial] | |
| 1755 | using smult_one [OF f] using deg_zero by force | |
| 1756 | qed | |
| 1757 | ||
| 1758 | lemma remainder_theorem_expression: | |
| 1759 | assumes f [simp]: "f \<in> carrier P" and a [simp]: "a \<in> carrier R" | |
| 1760 | and q [simp]: "q \<in> carrier P" and r [simp]: "r \<in> carrier P" | |
| 1761 |   and R_not_trivial: "carrier R \<noteq> {\<zero>}"
 | |
| 1762 | and f_expr: "f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r" | |
| 1763 | (is "f = ?g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r" is "f = ?gq \<oplus>\<^bsub>P\<^esub> r") | |
| 1764 | and deg_r_0: "deg R r = 0" | |
| 1765 | shows "r = monom P (eval R R id a f) 0" | |
| 1766 | proof - | |
| 29237 | 1767 | interpret UP_pre_univ_prop R R id P proof qed simp | 
| 27933 | 1768 | have eval_ring_hom: "eval R R id a \<in> ring_hom P R" | 
| 1769 | using eval_ring_hom [OF a] by simp | |
| 1770 | have "eval R R id a f = eval R R id a ?gq \<oplus>\<^bsub>R\<^esub> eval R R id a r" | |
| 1771 | unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto | |
| 1772 | also have "\<dots> = ((eval R R id a ?g) \<otimes> (eval R R id a q)) \<oplus>\<^bsub>R\<^esub> eval R R id a r" | |
| 1773 | using ring_hom_mult [OF eval_ring_hom] by auto | |
| 1774 | also have "\<dots> = \<zero> \<oplus> eval R R id a r" | |
| 1775 | unfolding eval_monom_expr [OF a] using eval_ring_hom | |
| 1776 | unfolding ring_hom_def using q unfolding Pi_def by simp | |
| 1777 | also have "\<dots> = eval R R id a r" | |
| 1778 | using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def by simp | |
| 1779 | finally have eval_eq: "eval R R id a f = eval R R id a r" by simp | |
| 1780 | from deg_zero_impl_monom [OF r deg_r_0] | |
| 1781 | have "r = monom P (coeff P r 0) 0" by simp | |
| 1782 | with eval_const [OF a, of "coeff P r 0"] eval_eq | |
| 1783 | show ?thesis by auto | |
| 1784 | qed | |
| 1785 | ||
| 1786 | corollary remainder_theorem: | |
| 1787 | assumes f [simp]: "f \<in> carrier P" and a [simp]: "a \<in> carrier R" | |
| 1788 |   and R_not_trivial: "carrier R \<noteq> {\<zero>}"
 | |
| 1789 | shows "\<exists> q r. (q \<in> carrier P) \<and> (r \<in> carrier P) \<and> | |
| 1790 | f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> monom P (eval R R id a f) 0" | |
| 1791 | (is "\<exists> q r. (q \<in> carrier P) \<and> (r \<in> carrier P) \<and> f = ?g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> monom P (eval R R id a f) 0") | |
| 1792 | proof - | |
| 1793 | from remainder_theorem_exist [OF f a R_not_trivial] | |
| 1794 | obtain q r | |
| 1795 | where q_r: "q \<in> carrier P \<and> r \<in> carrier P \<and> f = ?g \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> r" | |
| 1796 | and deg_r: "deg R r = 0" by force | |
| 1797 | with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r] | |
| 1798 | show ?thesis by auto | |
| 1799 | qed | |
| 1800 | ||
| 1801 | end | |
| 1802 | ||
| 17094 | 1803 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
20282diff
changeset | 1804 | subsection {* Sample Application of Evaluation Homomorphism *}
 | 
| 13940 | 1805 | |
| 17094 | 1806 | lemma UP_pre_univ_propI: | 
| 13940 | 1807 | assumes "cring R" | 
| 1808 | and "cring S" | |
| 1809 | and "h \<in> ring_hom R S" | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19783diff
changeset | 1810 | shows "UP_pre_univ_prop R S h" | 
| 23350 | 1811 | using assms | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19783diff
changeset | 1812 | by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro | 
| 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19783diff
changeset | 1813 | ring_hom_cring_axioms.intro UP_cring.intro) | 
| 13940 | 1814 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1815 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1816 | INTEG :: "int ring" | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1817 | where "INTEG = (| carrier = UNIV, mult = op *, one = 1, zero = 0, add = op + |)" | 
| 13975 | 1818 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
34915diff
changeset | 1819 | lemma INTEG_cring: "cring INTEG" | 
| 13975 | 1820 | by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI | 
| 1821 | zadd_zminus_inverse2 zadd_zmult_distrib) | |
| 1822 | ||
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1823 | lemma INTEG_id_eval: | 
| 17094 | 1824 | "UP_pre_univ_prop INTEG INTEG id" | 
| 1825 | by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom) | |
| 13940 | 1826 | |
| 1827 | text {*
 | |
| 17094 | 1828 | Interpretation now enables to import all theorems and lemmas | 
| 13940 | 1829 |   valid in the context of homomorphisms between @{term INTEG} and @{term
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1830 | "UP INTEG"} globally. | 
| 14666 | 1831 | *} | 
| 13940 | 1832 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30363diff
changeset | 1833 | interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG" | 
| 28823 | 1834 | using INTEG_id_eval by simp_all | 
| 15763 
b901a127ac73
Interpretation supports statically scoped attributes; documentation.
 ballarin parents: 
15696diff
changeset | 1835 | |
| 13940 | 1836 | lemma INTEG_closed [intro, simp]: | 
| 1837 | "z \<in> carrier INTEG" | |
| 1838 | by (unfold INTEG_def) simp | |
| 1839 | ||
| 1840 | lemma INTEG_mult [simp]: | |
| 1841 | "mult INTEG z w = z * w" | |
| 1842 | by (unfold INTEG_def) simp | |
| 1843 | ||
| 1844 | lemma INTEG_pow [simp]: | |
| 1845 | "pow INTEG z n = z ^ n" | |
| 1846 | by (induct n) (simp_all add: INTEG_def nat_pow_def) | |
| 1847 | ||
| 1848 | lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500" | |
| 15763 
b901a127ac73
Interpretation supports statically scoped attributes; documentation.
 ballarin parents: 
15696diff
changeset | 1849 | by (simp add: INTEG.eval_monom) | 
| 13940 | 1850 | |
| 14590 | 1851 | end |