| author | blanchet | 
| Fri, 03 Jan 2014 13:55:34 +0100 | |
| changeset 54924 | 44373f3560c7 | 
| parent 54297 | 3fc1b77ef750 | 
| child 55583 | a0134252ac29 | 
| permissions | -rw-r--r-- | 
| 52072 | 1 | theory Fold imports Sem_Equiv Vars begin | 
| 44070 | 2 | |
| 44850 | 3 | subsection "Simple folding of arithmetic expressions" | 
| 44070 | 4 | |
| 45134 | 5 | type_synonym | 
| 45212 | 6 | tab = "vname \<Rightarrow> val option" | 
| 44070 | 7 | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 8 | fun afold :: "aexp \<Rightarrow> tab \<Rightarrow> aexp" where | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 9 | "afold (N n) _ = N n" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 10 | "afold (V x) t = (case t x of None \<Rightarrow> V x | Some k \<Rightarrow> N k)" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 11 | "afold (Plus e1 e2) t = (case (afold e1 t, afold e2 t) of | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 12 | (N n1, N n2) \<Rightarrow> N(n1+n2) | (e1',e2') \<Rightarrow> Plus e1' e2')" | 
| 44070 | 13 | |
| 14 | definition "approx t s \<longleftrightarrow> (ALL x k. t x = Some k \<longrightarrow> s x = k)" | |
| 15 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 16 | theorem aval_afold[simp]: | 
| 44070 | 17 | assumes "approx t s" | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 18 | shows "aval (afold a t) s = aval a s" | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 19 | using assms | 
| 44070 | 20 | by (induct a) (auto simp: approx_def split: aexp.split option.split) | 
| 21 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 22 | theorem aval_afold_N: | 
| 44070 | 23 | assumes "approx t s" | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 24 | shows "afold a t = N n \<Longrightarrow> aval a s = n" | 
| 51573 | 25 | by (metis assms aval.simps(1) aval_afold) | 
| 44070 | 26 | |
| 27 | definition | |
| 28 | "merge t1 t2 = (\<lambda>m. if t1 m = t2 m then t1 m else None)" | |
| 29 | ||
| 30 | primrec "defs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where | |
| 31 | "defs SKIP t = t" | | |
| 32 | "defs (x ::= a) t = | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 33 | (case afold a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | | 
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
51573diff
changeset | 34 | "defs (c1;;c2) t = (defs c2 o defs c1) t" | | 
| 44070 | 35 | "defs (IF b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2 t)" | | 
| 52072 | 36 | "defs (WHILE b DO c) t = t |` (-lvars c)" | 
| 44070 | 37 | |
| 38 | primrec fold where | |
| 39 | "fold SKIP _ = SKIP" | | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 40 | "fold (x ::= a) t = (x ::= (afold a t))" | | 
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
51573diff
changeset | 41 | "fold (c1;;c2) t = (fold c1 t;; fold c2 (defs c1 t))" | | 
| 44070 | 42 | "fold (IF b THEN c1 ELSE c2) t = IF b THEN fold c1 t ELSE fold c2 t" | | 
| 52072 | 43 | "fold (WHILE b DO c) t = WHILE b DO fold c (t |` (-lvars c))" | 
| 44070 | 44 | |
| 45 | lemma approx_merge: | |
| 46 | "approx t1 s \<or> approx t2 s \<Longrightarrow> approx (merge t1 t2) s" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44850diff
changeset | 47 | by (fastforce simp: merge_def approx_def) | 
| 44070 | 48 | |
| 49 | lemma approx_map_le: | |
| 50 | "approx t2 s \<Longrightarrow> t1 \<subseteq>\<^sub>m t2 \<Longrightarrow> approx t1 s" | |
| 51 | by (clarsimp simp: approx_def map_le_def dom_def) | |
| 52 | ||
| 53 | lemma restrict_map_le [intro!, simp]: "t |` S \<subseteq>\<^sub>m t" | |
| 54 | by (clarsimp simp: restrict_map_def map_le_def) | |
| 55 | ||
| 56 | lemma merge_restrict: | |
| 57 | assumes "t1 |` S = t |` S" | |
| 58 | assumes "t2 |` S = t |` S" | |
| 59 | shows "merge t1 t2 |` S = t |` S" | |
| 60 | proof - | |
| 61 | from assms | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 62 | have "\<forall>x. (t1 |` S) x = (t |` S) x" | 
| 44070 | 63 | and "\<forall>x. (t2 |` S) x = (t |` S) x" by auto | 
| 64 | thus ?thesis | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 65 | by (auto simp: merge_def restrict_map_def | 
| 51506 | 66 | split: if_splits) | 
| 44070 | 67 | qed | 
| 68 | ||
| 69 | ||
| 70 | lemma defs_restrict: | |
| 52072 | 71 | "defs c t |` (- lvars c) = t |` (- lvars c)" | 
| 45015 | 72 | proof (induction c arbitrary: t) | 
| 47818 | 73 | case (Seq c1 c2) | 
| 52072 | 74 | hence "defs c1 t |` (- lvars c1) = t |` (- lvars c1)" | 
| 44070 | 75 | by simp | 
| 52072 | 76 | hence "defs c1 t |` (- lvars c1) |` (-lvars c2) = | 
| 77 | t |` (- lvars c1) |` (-lvars c2)" by simp | |
| 44070 | 78 | moreover | 
| 47818 | 79 | from Seq | 
| 52072 | 80 | have "defs c2 (defs c1 t) |` (- lvars c2) = | 
| 81 | defs c1 t |` (- lvars c2)" | |
| 44070 | 82 | by simp | 
| 52072 | 83 | hence "defs c2 (defs c1 t) |` (- lvars c2) |` (- lvars c1) = | 
| 84 | defs c1 t |` (- lvars c2) |` (- lvars c1)" | |
| 44070 | 85 | by simp | 
| 86 | ultimately | |
| 87 | show ?case by (clarsimp simp: Int_commute) | |
| 88 | next | |
| 89 | case (If b c1 c2) | |
| 52072 | 90 | hence "defs c1 t |` (- lvars c1) = t |` (- lvars c1)" by simp | 
| 91 | hence "defs c1 t |` (- lvars c1) |` (-lvars c2) = | |
| 92 | t |` (- lvars c1) |` (-lvars c2)" by simp | |
| 44070 | 93 | moreover | 
| 94 | from If | |
| 52072 | 95 | have "defs c2 t |` (- lvars c2) = t |` (- lvars c2)" by simp | 
| 96 | hence "defs c2 t |` (- lvars c2) |` (-lvars c1) = | |
| 97 | t |` (- lvars c2) |` (-lvars c1)" by simp | |
| 44070 | 98 | ultimately | 
| 99 | show ?case by (auto simp: Int_commute intro: merge_restrict) | |
| 100 | qed (auto split: aexp.split) | |
| 101 | ||
| 102 | ||
| 103 | lemma big_step_pres_approx: | |
| 104 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (defs c t) s'" | |
| 45015 | 105 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 106 | case Skip thus ?case by simp | 
| 107 | next | |
| 108 | case Assign | |
| 109 | thus ?case | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 110 | by (clarsimp simp: aval_afold_N approx_def split: aexp.split) | 
| 44070 | 111 | next | 
| 47818 | 112 | case (Seq c1 s1 s2 c2 s3) | 
| 113 | have "approx (defs c1 t) s2" by (rule Seq.IH(1)[OF Seq.prems]) | |
| 114 | hence "approx (defs c2 (defs c1 t)) s3" by (rule Seq.IH(2)) | |
| 44070 | 115 | thus ?case by simp | 
| 116 | next | |
| 117 | case (IfTrue b s c1 s') | |
| 118 | hence "approx (defs c1 t) s'" by simp | |
| 119 | thus ?case by (simp add: approx_merge) | |
| 120 | next | |
| 121 | case (IfFalse b s c2 s') | |
| 122 | hence "approx (defs c2 t) s'" by simp | |
| 123 | thus ?case by (simp add: approx_merge) | |
| 124 | next | |
| 125 | case WhileFalse | |
| 126 | thus ?case by (simp add: approx_def restrict_map_def) | |
| 127 | next | |
| 128 | case (WhileTrue b s1 c s2 s3) | |
| 129 | hence "approx (defs c t) s2" by simp | |
| 130 | with WhileTrue | |
| 52072 | 131 | have "approx (defs c t |` (-lvars c)) s3" by simp | 
| 44070 | 132 | thus ?case by (simp add: defs_restrict) | 
| 133 | qed | |
| 134 | ||
| 135 | ||
| 136 | lemma big_step_pres_approx_restrict: | |
| 52072 | 137 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx (t |` (-lvars c)) s \<Longrightarrow> approx (t |` (-lvars c)) s'" | 
| 45015 | 138 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 139 | case Assign | 
| 140 | thus ?case by (clarsimp simp: approx_def) | |
| 141 | next | |
| 47818 | 142 | case (Seq c1 s1 s2 c2 s3) | 
| 52072 | 143 | hence "approx (t |` (-lvars c2) |` (-lvars c1)) s1" | 
| 44070 | 144 | by (simp add: Int_commute) | 
| 52072 | 145 | hence "approx (t |` (-lvars c2) |` (-lvars c1)) s2" | 
| 47818 | 146 | by (rule Seq) | 
| 52072 | 147 | hence "approx (t |` (-lvars c1) |` (-lvars c2)) s2" | 
| 44070 | 148 | by (simp add: Int_commute) | 
| 52072 | 149 | hence "approx (t |` (-lvars c1) |` (-lvars c2)) s3" | 
| 47818 | 150 | by (rule Seq) | 
| 44070 | 151 | thus ?case by simp | 
| 152 | next | |
| 153 | case (IfTrue b s c1 s' c2) | |
| 52072 | 154 | hence "approx (t |` (-lvars c2) |` (-lvars c1)) s" | 
| 44070 | 155 | by (simp add: Int_commute) | 
| 52072 | 156 | hence "approx (t |` (-lvars c2) |` (-lvars c1)) s'" | 
| 44070 | 157 | by (rule IfTrue) | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 158 | thus ?case by (simp add: Int_commute) | 
| 44070 | 159 | next | 
| 160 | case (IfFalse b s c2 s' c1) | |
| 52072 | 161 | hence "approx (t |` (-lvars c1) |` (-lvars c2)) s" | 
| 44070 | 162 | by simp | 
| 52072 | 163 | hence "approx (t |` (-lvars c1) |` (-lvars c2)) s'" | 
| 44070 | 164 | by (rule IfFalse) | 
| 165 | thus ?case by simp | |
| 166 | qed auto | |
| 167 | ||
| 168 | ||
| 169 | declare assign_simp [simp] | |
| 170 | ||
| 171 | lemma approx_eq: | |
| 172 | "approx t \<Turnstile> c \<sim> fold c t" | |
| 45015 | 173 | proof (induction c arbitrary: t) | 
| 44070 | 174 | case SKIP show ?case by simp | 
| 175 | next | |
| 176 | case Assign | |
| 177 | show ?case by (simp add: equiv_up_to_def) | |
| 178 | next | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 179 | case Seq | 
| 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 180 | thus ?case by (auto intro!: equiv_up_to_seq big_step_pres_approx) | 
| 44070 | 181 | next | 
| 182 | case If | |
| 183 | thus ?case by (auto intro!: equiv_up_to_if_weak) | |
| 184 | next | |
| 185 | case (While b c) | |
| 52072 | 186 | hence "approx (t |` (- lvars c)) \<Turnstile> | 
| 187 | WHILE b DO c \<sim> WHILE b DO fold c (t |` (- lvars c))" | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 188 | by (auto intro: equiv_up_to_while_weak big_step_pres_approx_restrict) | 
| 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 189 | thus ?case | 
| 44070 | 190 | by (auto intro: equiv_up_to_weaken approx_map_le) | 
| 191 | qed | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 192 | |
| 44070 | 193 | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 194 | lemma approx_empty [simp]: | 
| 44070 | 195 | "approx empty = (\<lambda>_. True)" | 
| 51506 | 196 | by (auto simp: approx_def) | 
| 44070 | 197 | |
| 198 | ||
| 199 | theorem constant_folding_equiv: | |
| 200 | "fold c empty \<sim> c" | |
| 201 | using approx_eq [of empty c] | |
| 52825 | 202 | by (simp add: equiv_up_to_True sim_sym) | 
| 44070 | 203 | |
| 204 | ||
| 205 | ||
| 44850 | 206 | subsection {* More ambitious folding including boolean expressions *}
 | 
| 44070 | 207 | |
| 208 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 209 | fun bfold :: "bexp \<Rightarrow> tab \<Rightarrow> bexp" where | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 210 | "bfold (Less a1 a2) t = less (afold a1 t) (afold a2 t)" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 211 | "bfold (And b1 b2) t = and (bfold b1 t) (bfold b2 t)" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 212 | "bfold (Not b) t = not(bfold b t)" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 213 | "bfold (Bc bc) _ = Bc bc" | 
| 44070 | 214 | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 215 | theorem bval_bfold [simp]: | 
| 44070 | 216 | assumes "approx t s" | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 217 | shows "bval (bfold b t) s = bval b s" | 
| 44070 | 218 | using assms by (induct b) auto | 
| 219 | ||
| 45200 | 220 | lemma not_Bc [simp]: "not (Bc v) = Bc (\<not>v)" | 
| 44070 | 221 | by (cases v) auto | 
| 222 | ||
| 45200 | 223 | lemma not_Bc_eq [simp]: "(not b = Bc v) = (b = Bc (\<not>v))" | 
| 44070 | 224 | by (cases b) auto | 
| 225 | ||
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 226 | lemma and_Bc_eq: | 
| 45200 | 227 | "(and a b = Bc v) = | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 228 | (a = Bc False \<and> \<not>v \<or> b = Bc False \<and> \<not>v \<or> | 
| 45200 | 229 | (\<exists>v1 v2. a = Bc v1 \<and> b = Bc v2 \<and> v = v1 \<and> v2))" | 
| 44070 | 230 | by (rule and.induct) auto | 
| 231 | ||
| 45200 | 232 | lemma less_Bc_eq [simp]: | 
| 233 | "(less a b = Bc v) = (\<exists>n1 n2. a = N n1 \<and> b = N n2 \<and> v = (n1 < n2))" | |
| 44070 | 234 | by (rule less.induct) auto | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 235 | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 236 | theorem bval_bfold_Bc: | 
| 44070 | 237 | assumes "approx t s" | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 238 | shows "bfold b t = Bc v \<Longrightarrow> bval b s = v" | 
| 44070 | 239 | using assms | 
| 240 | by (induct b arbitrary: v) | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 241 | (auto simp: approx_def and_Bc_eq aval_afold_N | 
| 44070 | 242 | split: bexp.splits bool.splits) | 
| 243 | ||
| 244 | ||
| 245 | primrec "bdefs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where | |
| 246 | "bdefs SKIP t = t" | | |
| 247 | "bdefs (x ::= a) t = | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 248 | (case afold a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | | 
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
51573diff
changeset | 249 | "bdefs (c1;;c2) t = (bdefs c2 o bdefs c1) t" | | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 250 | "bdefs (IF b THEN c1 ELSE c2) t = (case bfold b t of | 
| 45200 | 251 | Bc True \<Rightarrow> bdefs c1 t | 
| 252 | | Bc False \<Rightarrow> bdefs c2 t | |
| 44070 | 253 | | _ \<Rightarrow> merge (bdefs c1 t) (bdefs c2 t))" | | 
| 52072 | 254 | "bdefs (WHILE b DO c) t = t |` (-lvars c)" | 
| 44070 | 255 | |
| 256 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 257 | primrec fold' where | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 258 | "fold' SKIP _ = SKIP" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 259 | "fold' (x ::= a) t = (x ::= (afold a t))" | | 
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
51573diff
changeset | 260 | "fold' (c1;;c2) t = (fold' c1 t;; fold' c2 (bdefs c1 t))" | | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 261 | "fold' (IF b THEN c1 ELSE c2) t = (case bfold b t of | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 262 | Bc True \<Rightarrow> fold' c1 t | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 263 | | Bc False \<Rightarrow> fold' c2 t | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 264 | | _ \<Rightarrow> IF bfold b t THEN fold' c1 t ELSE fold' c2 t)" | | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 265 | "fold' (WHILE b DO c) t = (case bfold b t of | 
| 45200 | 266 | Bc False \<Rightarrow> SKIP | 
| 52072 | 267 | | _ \<Rightarrow> WHILE bfold b (t |` (-lvars c)) DO fold' c (t |` (-lvars c)))" | 
| 44070 | 268 | |
| 269 | ||
| 270 | lemma bdefs_restrict: | |
| 52072 | 271 | "bdefs c t |` (- lvars c) = t |` (- lvars c)" | 
| 45015 | 272 | proof (induction c arbitrary: t) | 
| 47818 | 273 | case (Seq c1 c2) | 
| 52072 | 274 | hence "bdefs c1 t |` (- lvars c1) = t |` (- lvars c1)" | 
| 44070 | 275 | by simp | 
| 52072 | 276 | hence "bdefs c1 t |` (- lvars c1) |` (-lvars c2) = | 
| 277 | t |` (- lvars c1) |` (-lvars c2)" by simp | |
| 44070 | 278 | moreover | 
| 47818 | 279 | from Seq | 
| 52072 | 280 | have "bdefs c2 (bdefs c1 t) |` (- lvars c2) = | 
| 281 | bdefs c1 t |` (- lvars c2)" | |
| 44070 | 282 | by simp | 
| 52072 | 283 | hence "bdefs c2 (bdefs c1 t) |` (- lvars c2) |` (- lvars c1) = | 
| 284 | bdefs c1 t |` (- lvars c2) |` (- lvars c1)" | |
| 44070 | 285 | by simp | 
| 286 | ultimately | |
| 287 | show ?case by (clarsimp simp: Int_commute) | |
| 288 | next | |
| 289 | case (If b c1 c2) | |
| 52072 | 290 | hence "bdefs c1 t |` (- lvars c1) = t |` (- lvars c1)" by simp | 
| 291 | hence "bdefs c1 t |` (- lvars c1) |` (-lvars c2) = | |
| 292 | t |` (- lvars c1) |` (-lvars c2)" by simp | |
| 44070 | 293 | moreover | 
| 294 | from If | |
| 52072 | 295 | have "bdefs c2 t |` (- lvars c2) = t |` (- lvars c2)" by simp | 
| 296 | hence "bdefs c2 t |` (- lvars c2) |` (-lvars c1) = | |
| 297 | t |` (- lvars c2) |` (-lvars c1)" by simp | |
| 44070 | 298 | ultimately | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 299 | show ?case | 
| 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 300 | by (auto simp: Int_commute intro: merge_restrict | 
| 44070 | 301 | split: bexp.splits bool.splits) | 
| 302 | qed (auto split: aexp.split bexp.split bool.split) | |
| 303 | ||
| 304 | ||
| 305 | lemma big_step_pres_approx_b: | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 306 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (bdefs c t) s'" | 
| 45015 | 307 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 308 | case Skip thus ?case by simp | 
| 309 | next | |
| 310 | case Assign | |
| 311 | thus ?case | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 312 | by (clarsimp simp: aval_afold_N approx_def split: aexp.split) | 
| 44070 | 313 | next | 
| 47818 | 314 | case (Seq c1 s1 s2 c2 s3) | 
| 315 | have "approx (bdefs c1 t) s2" by (rule Seq.IH(1)[OF Seq.prems]) | |
| 316 | hence "approx (bdefs c2 (bdefs c1 t)) s3" by (rule Seq.IH(2)) | |
| 44070 | 317 | thus ?case by simp | 
| 318 | next | |
| 319 | case (IfTrue b s c1 s') | |
| 320 | hence "approx (bdefs c1 t) s'" by simp | |
| 321 | thus ?case using `bval b s` `approx t s` | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 322 | by (clarsimp simp: approx_merge bval_bfold_Bc | 
| 44070 | 323 | split: bexp.splits bool.splits) | 
| 324 | next | |
| 325 | case (IfFalse b s c2 s') | |
| 326 | hence "approx (bdefs c2 t) s'" by simp | |
| 327 | thus ?case using `\<not>bval b s` `approx t s` | |
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 328 | by (clarsimp simp: approx_merge bval_bfold_Bc | 
| 44070 | 329 | split: bexp.splits bool.splits) | 
| 330 | next | |
| 331 | case WhileFalse | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 332 | thus ?case | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 333 | by (clarsimp simp: bval_bfold_Bc approx_def restrict_map_def | 
| 44070 | 334 | split: bexp.splits bool.splits) | 
| 335 | next | |
| 336 | case (WhileTrue b s1 c s2 s3) | |
| 337 | hence "approx (bdefs c t) s2" by simp | |
| 338 | with WhileTrue | |
| 52072 | 339 | have "approx (bdefs c t |` (- lvars c)) s3" | 
| 44070 | 340 | by simp | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 341 | thus ?case | 
| 44070 | 342 | by (simp add: bdefs_restrict) | 
| 343 | qed | |
| 344 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 345 | lemma fold'_equiv: | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 346 | "approx t \<Turnstile> c \<sim> fold' c t" | 
| 45015 | 347 | proof (induction c arbitrary: t) | 
| 44070 | 348 | case SKIP show ?case by simp | 
| 349 | next | |
| 350 | case Assign | |
| 351 | thus ?case by (simp add: equiv_up_to_def) | |
| 352 | next | |
| 47818 | 353 | case Seq | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 354 | thus ?case by (auto intro!: equiv_up_to_seq big_step_pres_approx_b) | 
| 44070 | 355 | next | 
| 356 | case (If b c1 c2) | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 357 | hence "approx t \<Turnstile> IF b THEN c1 ELSE c2 \<sim> | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 358 | IF bfold b t THEN fold' c1 t ELSE fold' c2 t" | 
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 359 | by (auto intro: equiv_up_to_if_weak simp: bequiv_up_to_def) | 
| 44070 | 360 | thus ?case using If | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 361 | by (fastforce simp: bval_bfold_Bc split: bexp.splits bool.splits | 
| 44070 | 362 | intro: equiv_up_to_trans) | 
| 363 | next | |
| 364 | case (While b c) | |
| 52072 | 365 | hence "approx (t |` (- lvars c)) \<Turnstile> | 
| 44070 | 366 | WHILE b DO c \<sim> | 
| 52072 | 367 | WHILE bfold b (t |` (- lvars c)) | 
| 368 | DO fold' c (t |` (- lvars c))" (is "_ \<Turnstile> ?W \<sim> ?W'") | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 369 | by (auto intro: equiv_up_to_while_weak big_step_pres_approx_restrict | 
| 44070 | 370 | simp: bequiv_up_to_def) | 
| 371 | hence "approx t \<Turnstile> ?W \<sim> ?W'" | |
| 372 | by (auto intro: equiv_up_to_weaken approx_map_le) | |
| 373 | thus ?case | |
| 48909 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 374 | by (auto split: bexp.splits bool.splits | 
| 
b2dea007e55e
remove Hoare dependency from Fold.thy
 Gerwin Klein <gerwin.klein@nicta.com.au> parents: 
47818diff
changeset | 375 | intro: equiv_up_to_while_False | 
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 376 | simp: bval_bfold_Bc) | 
| 44070 | 377 | qed | 
| 378 | ||
| 379 | ||
| 51514 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 380 | theorem constant_folding_equiv': | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 381 | "fold' c empty \<sim> c" | 
| 
9bed72e55475
simp_const -> afold; bfold -> fold'; bsimp_const -> bfold
 kleing parents: 
51506diff
changeset | 382 | using fold'_equiv [of empty c] | 
| 52825 | 383 | by (simp add: equiv_up_to_True sim_sym) | 
| 44070 | 384 | |
| 385 | ||
| 386 | end |