| author | wenzelm | 
| Tue, 07 Mar 2023 10:57:50 +0100 | |
| changeset 77554 | 4465d9dff448 | 
| parent 77355 | b23367be6051 | 
| child 77834 | 52e753197496 | 
| permissions | -rw-r--r-- | 
| 59813 | 1 | (* Title: HOL/Library/Multiset_Order.thy | 
| 2 | Author: Dmitriy Traytel, TU Muenchen | |
| 3 | Author: Jasmin Blanchette, Inria, LORIA, MPII | |
| 4 | *) | |
| 5 | ||
| 60500 | 6 | section \<open>More Theorems about the Multiset Order\<close> | 
| 59813 | 7 | |
| 8 | theory Multiset_Order | |
| 9 | imports Multiset | |
| 10 | begin | |
| 11 | ||
| 65546 | 12 | subsection \<open>Alternative Characterizations\<close> | 
| 59813 | 13 | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 14 | subsubsection \<open>The Dershowitz--Manna Ordering\<close> | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 15 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 16 | definition multp\<^sub>D\<^sub>M where | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 17 | "multp\<^sub>D\<^sub>M r M N \<longleftrightarrow> | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 18 |    (\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> r k a)))"
 | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 19 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 20 | lemma multp\<^sub>D\<^sub>M_imp_multp: | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 21 | "multp\<^sub>D\<^sub>M r M N \<Longrightarrow> multp r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 22 | proof - | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 23 | assume "multp\<^sub>D\<^sub>M r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 24 | then obtain X Y where | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 25 |     "X \<noteq> {#}" and "X \<subseteq># N" and "M = N - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> r k a)"
 | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 26 | unfolding multp\<^sub>D\<^sub>M_def by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 27 | then have "multp r (N - X + Y) (N - X + X)" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 28 | by (intro one_step_implies_multp) (auto simp: Bex_def trans_def) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 29 | with \<open>M = N - X + Y\<close> \<open>X \<subseteq># N\<close> show "multp r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 30 | by (metis subset_mset.diff_add) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 31 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 32 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 33 | subsubsection \<open>The Huet--Oppen Ordering\<close> | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 34 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 35 | definition multp\<^sub>H\<^sub>O where | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 36 | "multp\<^sub>H\<^sub>O r M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. r y x \<and> count M x < count N x))" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 37 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 38 | lemma multp_imp_multp\<^sub>H\<^sub>O: | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 39 | assumes "asymp r" and "transp r" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 40 | shows "multp r M N \<Longrightarrow> multp\<^sub>H\<^sub>O r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 41 | unfolding multp_def mult_def | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 42 | proof (induction rule: trancl_induct) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 43 | case (base P) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 44 | then show ?case | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 45 | using \<open>asymp r\<close> | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 46 | by (auto elim!: mult1_lessE simp: count_eq_zero_iff multp\<^sub>H\<^sub>O_def split: if_splits | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 47 | dest!: Suc_lessD) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 48 | next | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 49 | case (step N P) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 50 | from step(3) have "M \<noteq> N" and | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 51 | **: "\<And>y. count N y < count M y \<Longrightarrow> (\<exists>x. r y x \<and> count M x < count N x)" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 52 | by (simp_all add: multp\<^sub>H\<^sub>O_def) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 53 | from step(2) obtain M0 a K where | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 54 | *: "P = add_mset a M0" "N = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> r b a" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 55 | using \<open>asymp r\<close> by (auto elim: mult1_lessE) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 56 | from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 57 | using *(4) \<open>asymp r\<close> | 
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
74869diff
changeset | 58 | by (metis asympD add_cancel_right_right add_diff_cancel_left' add_mset_add_single count_inI | 
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 59 | count_union diff_diff_add_mset diff_single_trivial in_diff_count multi_member_last) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 60 | moreover | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 61 |   { assume "count P a \<le> count M a"
 | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 62 | with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 63 | by (auto simp add: not_in_iff) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 64 | with ** obtain z where z: "r a z" "count M z < count N z" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 65 | by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 66 | with * have "count N z \<le> count P z" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 67 | using \<open>asymp r\<close> | 
| 76682 
e260dabc88e6
added predicates asym_on and asymp_on and redefined asym and asymp to be abbreviations
 desharna parents: 
74869diff
changeset | 68 | by (metis add_diff_cancel_left' add_mset_add_single asympD diff_diff_add_mset | 
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 69 | diff_single_trivial in_diff_count not_le_imp_less) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 70 | with z have "\<exists>z. r a z \<and> count M z < count P z" by auto | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 71 | } note count_a = this | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 72 |   { fix y
 | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 73 | assume count_y: "count P y < count M y" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 74 | have "\<exists>x. r y x \<and> count M x < count P x" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 75 | proof (cases "y = a") | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 76 | case True | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 77 | with count_y count_a show ?thesis by auto | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 78 | next | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 79 | case False | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 80 | show ?thesis | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 81 | proof (cases "y \<in># K") | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 82 | case True | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 83 | with *(4) have "r y a" by simp | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 84 | then show ?thesis | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 85 | by (cases "count P a \<le> count M a") (auto dest: count_a intro: \<open>transp r\<close>[THEN transpD]) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 86 | next | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 87 | case False | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 88 | with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 89 | by (simp add: not_in_iff) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 90 | with count_y ** obtain z where z: "r y z" "count M z < count N z" by auto | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 91 | show ?thesis | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 92 | proof (cases "z \<in># K") | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 93 | case True | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 94 | with *(4) have "r z a" by simp | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 95 | with z(1) show ?thesis | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 96 | by (cases "count P a \<le> count M a") (auto dest!: count_a intro: \<open>transp r\<close>[THEN transpD]) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 97 | next | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 98 | case False | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 99 | with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding * | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 100 | by (auto simp add: not_in_iff) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 101 | with z show ?thesis by auto | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 102 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 103 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 104 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 105 | } | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 106 | ultimately show ?case unfolding multp\<^sub>H\<^sub>O_def by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 107 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 108 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 109 | lemma multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M: "multp\<^sub>H\<^sub>O r M N \<Longrightarrow> multp\<^sub>D\<^sub>M r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 110 | unfolding multp\<^sub>D\<^sub>M_def | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 111 | proof (intro iffI exI conjI) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 112 | assume "multp\<^sub>H\<^sub>O r M N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 113 | then obtain z where z: "count M z < count N z" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 114 | unfolding multp\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 115 | define X where "X = N - M" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 116 | define Y where "Y = M - N" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 117 |   from z show "X \<noteq> {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq)
 | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 118 | from z show "X \<subseteq># N" unfolding X_def by auto | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 119 | show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 120 | show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> r k a)" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 121 | proof (intro allI impI) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 122 | fix k | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 123 | assume "k \<in># Y" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 124 | then have "count N k < count M k" unfolding Y_def | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 125 | by (auto simp add: in_diff_count) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 126 | with \<open>multp\<^sub>H\<^sub>O r M N\<close> obtain a where "r k a" and "count M a < count N a" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 127 | unfolding multp\<^sub>H\<^sub>O_def by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 128 | then show "\<exists>a. a \<in># X \<and> r k a" unfolding X_def | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 129 | by (auto simp add: in_diff_count) | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 130 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 131 | qed | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 132 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 133 | lemma multp_eq_multp\<^sub>D\<^sub>M: "asymp r \<Longrightarrow> transp r \<Longrightarrow> multp r = multp\<^sub>D\<^sub>M r" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 134 | using multp\<^sub>D\<^sub>M_imp_multp multp_imp_multp\<^sub>H\<^sub>O[THEN multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 135 | by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 136 | |
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 137 | lemma multp_eq_multp\<^sub>H\<^sub>O: "asymp r \<Longrightarrow> transp r \<Longrightarrow> multp r = multp\<^sub>H\<^sub>O r" | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 138 | using multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M[THEN multp\<^sub>D\<^sub>M_imp_multp] multp_imp_multp\<^sub>H\<^sub>O | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 139 | by blast | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 140 | |
| 77354 | 141 | lemma multp\<^sub>D\<^sub>M_plus_plusI[simp]: | 
| 142 | assumes "multp\<^sub>D\<^sub>M R M1 M2" | |
| 143 | shows "multp\<^sub>D\<^sub>M R (M + M1) (M + M2)" | |
| 144 | proof - | |
| 145 | from assms obtain X Y where | |
| 146 |     "X \<noteq> {#}" and "X \<subseteq># M2" and "M1 = M2 - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> R k a)"
 | |
| 147 | unfolding multp\<^sub>D\<^sub>M_def by auto | |
| 148 | ||
| 149 | show "multp\<^sub>D\<^sub>M R (M + M1) (M + M2)" | |
| 150 | unfolding multp\<^sub>D\<^sub>M_def | |
| 151 | proof (intro exI conjI) | |
| 152 |     show "X \<noteq> {#}"
 | |
| 153 |       using \<open>X \<noteq> {#}\<close> by simp
 | |
| 154 | next | |
| 155 | show "X \<subseteq># M + M2" | |
| 156 | using \<open>X \<subseteq># M2\<close> | |
| 157 | by (simp add: subset_mset.add_increasing) | |
| 158 | next | |
| 159 | show "M + M1 = M + M2 - X + Y" | |
| 160 | using \<open>X \<subseteq># M2\<close> \<open>M1 = M2 - X + Y\<close> | |
| 161 | by (metis multiset_diff_union_assoc union_assoc) | |
| 162 | next | |
| 163 | show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> R k a)" | |
| 164 | using \<open>\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> R k a)\<close> by simp | |
| 165 | qed | |
| 166 | qed | |
| 167 | ||
| 77104 | 168 | lemma multp\<^sub>H\<^sub>O_plus_plus[simp]: "multp\<^sub>H\<^sub>O R (M + M1) (M + M2) \<longleftrightarrow> multp\<^sub>H\<^sub>O R M1 M2" | 
| 169 | unfolding multp\<^sub>H\<^sub>O_def by simp | |
| 170 | ||
| 77355 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 171 | lemma strict_subset_implies_multp\<^sub>D\<^sub>M: "A \<subset># B \<Longrightarrow> multp\<^sub>D\<^sub>M r A B" | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 172 | unfolding multp\<^sub>D\<^sub>M_def | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 173 | by (metis add.right_neutral add_diff_cancel_right' empty_iff mset_subset_eq_add_right | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 174 | set_mset_empty subset_mset.lessE) | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 175 | |
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 176 | lemma strict_subset_implies_multp\<^sub>H\<^sub>O: "A \<subset># B \<Longrightarrow> multp\<^sub>H\<^sub>O r A B" | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 177 | unfolding multp\<^sub>H\<^sub>O_def | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 178 | by (simp add: leD mset_subset_eq_count) | 
| 
b23367be6051
added lemmas strict_subset_implies_multpDM and strict_subset_implies_multpHO
 desharna parents: 
77354diff
changeset | 179 | |
| 77063 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 180 | |
| 77353 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 181 | subsubsection \<open>Monotonicity\<close> | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 182 | |
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 183 | lemma multp\<^sub>D\<^sub>M_mono_strong: | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 184 | "multp\<^sub>D\<^sub>M R M1 M2 \<Longrightarrow> (\<And>x y. x \<in># M1 \<Longrightarrow> y \<in># M2 \<Longrightarrow> R x y \<Longrightarrow> S x y) \<Longrightarrow> multp\<^sub>D\<^sub>M S M1 M2" | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 185 | unfolding multp\<^sub>D\<^sub>M_def | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 186 | by (metis add_diff_cancel_left' in_diffD subset_mset.diff_add) | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 187 | |
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 188 | lemma multp\<^sub>H\<^sub>O_mono_strong: | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 189 | "multp\<^sub>H\<^sub>O R M1 M2 \<Longrightarrow> (\<And>x y. x \<in># M1 \<Longrightarrow> y \<in># M2 \<Longrightarrow> R x y \<Longrightarrow> S x y) \<Longrightarrow> multp\<^sub>H\<^sub>O S M1 M2" | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 190 | unfolding multp\<^sub>H\<^sub>O_def | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 191 | by (metis count_inI less_zeroE) | 
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 192 | |
| 
42accfbf4d85
added lemmas multpDM_mono_strong and multpHO_mono_strong
 desharna parents: 
77281diff
changeset | 193 | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 194 | subsubsection \<open>Properties of Preorders\<close> | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 195 | |
| 77064 | 196 | lemma irreflp_on_multp\<^sub>H\<^sub>O[simp]: "irreflp_on B (multp\<^sub>H\<^sub>O R)" | 
| 197 | by (simp add: irreflp_onI multp\<^sub>H\<^sub>O_def) | |
| 198 | ||
| 77281 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 199 | text \<open>The following lemma is a negative result stating that asymmetry of an arbitrary binary | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 200 | relation cannot be simply lifted to @{const multp\<^sub>H\<^sub>O}. It suffices to have four distinct values to
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 201 | build a counterexample.\<close> | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 202 | |
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 203 | lemma asymp_not_liftable_to_multp\<^sub>H\<^sub>O: | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 204 | fixes a b c d :: 'a | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 205 | assumes "distinct [a, b, c, d]" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 206 | shows "\<not> (\<forall>(R :: 'a \<Rightarrow> 'a \<Rightarrow> bool). asymp R \<longrightarrow> asymp (multp\<^sub>H\<^sub>O R))" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 207 | proof - | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 208 | define R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 209 | "R = (\<lambda>x y. x = a \<and> y = c \<or> x = b \<and> y = d \<or> x = c \<and> y = b \<or> x = d \<and> y = a)" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 210 | |
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 211 |   from assms(1) have "{#a, b#} \<noteq> {#c, d#}"
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 212 | by (metis add_mset_add_single distinct.simps(2) list.set(1) list.simps(15) multi_member_this | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 213 | set_mset_add_mset_insert set_mset_single) | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 214 | |
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 215 | from assms(1) have "asymp R" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 216 | by (auto simp: R_def intro: asymp_onI) | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 217 | moreover have "\<not> asymp (multp\<^sub>H\<^sub>O R)" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 218 | unfolding asymp_on_def Set.ball_simps not_all not_imp not_not | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 219 | proof (intro exI conjI) | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 220 |     show "multp\<^sub>H\<^sub>O R {#a, b#} {#c, d#}"
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 221 | unfolding multp\<^sub>H\<^sub>O_def | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 222 |       using \<open>{#a, b#} \<noteq> {#c, d#}\<close> R_def assms by auto
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 223 | next | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 224 |     show "multp\<^sub>H\<^sub>O R {#c, d#} {#a, b#}"
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 225 | unfolding multp\<^sub>H\<^sub>O_def | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 226 |       using \<open>{#a, b#} \<noteq> {#c, d#}\<close> R_def assms by auto
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 227 | qed | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 228 | ultimately show ?thesis | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 229 | unfolding not_all not_imp by auto | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 230 | qed | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 231 | |
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 232 | text \<open>However, if the binary relation is both asymmetric and transitive, then @{const multp\<^sub>H\<^sub>O} is
 | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 233 | also asymmetric.\<close> | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 234 | |
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 235 | lemma asymp_multp\<^sub>H\<^sub>O: | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 236 | assumes "asymp R" and "transp R" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 237 | shows "asymp (multp\<^sub>H\<^sub>O R)" | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 238 | using assms | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 239 | by (metis asymp_on_iff_irreflp_on_if_transp_on irreflp_multp multp_eq_multp\<^sub>H\<^sub>O transp_multp) | 
| 
3a2670c37e5c
added lemmas asymp_not_liftable_to_multpHO and asymp_multpHO
 desharna parents: 
77104diff
changeset | 240 | |
| 77063 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 241 | lemma totalp_on_multp\<^sub>D\<^sub>M: | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 242 | "totalp_on A R \<Longrightarrow> (\<And>M. M \<in> B \<Longrightarrow> set_mset M \<subseteq> A) \<Longrightarrow> totalp_on B (multp\<^sub>D\<^sub>M R)" | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 243 | by (smt (verit, ccfv_SIG) count_inI in_mono multp\<^sub>H\<^sub>O_def multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M not_less_iff_gr_or_eq | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 244 | totalp_onD totalp_onI) | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 245 | |
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 246 | lemma totalp_multp\<^sub>D\<^sub>M: "totalp R \<Longrightarrow> totalp (multp\<^sub>D\<^sub>M R)" | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 247 | by (rule totalp_on_multp\<^sub>D\<^sub>M[of UNIV R UNIV, simplified]) | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 248 | |
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 249 | lemma totalp_on_multp\<^sub>H\<^sub>O: | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 250 | "totalp_on A R \<Longrightarrow> (\<And>M. M \<in> B \<Longrightarrow> set_mset M \<subseteq> A) \<Longrightarrow> totalp_on B (multp\<^sub>H\<^sub>O R)" | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 251 | by (smt (verit, ccfv_SIG) count_inI in_mono multp\<^sub>H\<^sub>O_def not_less_iff_gr_or_eq totalp_onD | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 252 | totalp_onI) | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 253 | |
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 254 | lemma totalp_multp\<^sub>H\<^sub>O: "totalp R \<Longrightarrow> totalp (multp\<^sub>H\<^sub>O R)" | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 255 | by (rule totalp_on_multp\<^sub>H\<^sub>O[of UNIV R UNIV, simplified]) | 
| 
4b37cc497d7e
added lemmas totalp_on_multpDM, totalp_multpDM, totalp_on_multpHO, and totalp_multpHO
 desharna parents: 
76682diff
changeset | 256 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 257 | context preorder | 
| 59813 | 258 | begin | 
| 259 | ||
| 260 | lemma order_mult: "class.order | |
| 261 |   (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
 | |
| 262 |   (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
 | |
| 263 | (is "class.order ?le ?less") | |
| 264 | proof - | |
| 265 | have irrefl: "\<And>M :: 'a multiset. \<not> ?less M M" | |
| 266 | proof | |
| 267 | fix M :: "'a multiset" | |
| 268 |     have "trans {(x'::'a, x). x' < x}"
 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 269 | by (rule transI) (blast intro: less_trans) | 
| 59813 | 270 | moreover | 
| 271 |     assume "(M, M) \<in> mult {(x, y). x < y}"
 | |
| 272 | ultimately have "\<exists>I J K. M = I + J \<and> M = I + K | |
| 60495 | 273 |       \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
 | 
| 59813 | 274 | by (rule mult_implies_one_step) | 
| 275 | then obtain I J K where "M = I + J" and "M = I + K" | |
| 60495 | 276 |       and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast
 | 
| 277 |     then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto
 | |
| 278 | have "finite (set_mset K)" by simp | |
| 59813 | 279 | moreover note aux2 | 
| 60495 | 280 |     ultimately have "set_mset K = {}"
 | 
| 59813 | 281 | by (induct rule: finite_induct) | 
| 282 | (simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans) | |
| 283 | with aux1 show False by simp | |
| 284 | qed | |
| 285 | have trans: "\<And>K M N :: 'a multiset. ?less K M \<Longrightarrow> ?less M N \<Longrightarrow> ?less K N" | |
| 286 | unfolding mult_def by (blast intro: trancl_trans) | |
| 287 | show "class.order ?le ?less" | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 288 | by standard (auto simp add: less_eq_multiset_def irrefl dest: trans) | 
| 59813 | 289 | qed | 
| 290 | ||
| 60500 | 291 | text \<open>The Dershowitz--Manna ordering:\<close> | 
| 59813 | 292 | |
| 293 | definition less_multiset\<^sub>D\<^sub>M where | |
| 294 | "less_multiset\<^sub>D\<^sub>M M N \<longleftrightarrow> | |
| 64587 | 295 |    (\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
 | 
| 59813 | 296 | |
| 297 | ||
| 60500 | 298 | text \<open>The Huet--Oppen ordering:\<close> | 
| 59813 | 299 | |
| 300 | definition less_multiset\<^sub>H\<^sub>O where | |
| 301 | "less_multiset\<^sub>H\<^sub>O M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" | |
| 302 | ||
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 303 | lemma mult_imp_less_multiset\<^sub>H\<^sub>O: | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 304 |   "(M, N) \<in> mult {(x, y). x < y} \<Longrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | 
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 305 | unfolding multp_def[of "(<)", symmetric] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 306 | using multp_imp_multp\<^sub>H\<^sub>O[of "(<)"] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 307 | by (simp add: less_multiset\<^sub>H\<^sub>O_def multp\<^sub>H\<^sub>O_def) | 
| 59813 | 308 | |
| 309 | lemma less_multiset\<^sub>D\<^sub>M_imp_mult: | |
| 310 |   "less_multiset\<^sub>D\<^sub>M M N \<Longrightarrow> (M, N) \<in> mult {(x, y). x < y}"
 | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 311 | unfolding multp_def[of "(<)", symmetric] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 312 | by (rule multp\<^sub>D\<^sub>M_imp_multp[of "(<)" M N]) (simp add: less_multiset\<^sub>D\<^sub>M_def multp\<^sub>D\<^sub>M_def) | 
| 59813 | 313 | |
| 314 | lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N" | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 315 | unfolding less_multiset\<^sub>D\<^sub>M_def less_multiset\<^sub>H\<^sub>O_def | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 316 | unfolding multp\<^sub>D\<^sub>M_def[symmetric] multp\<^sub>H\<^sub>O_def[symmetric] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 317 | by (rule multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M) | 
| 59813 | 318 | |
| 319 | lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N"
 | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 320 | unfolding multp_def[of "(<)", symmetric] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 321 | using multp_eq_multp\<^sub>D\<^sub>M[of "(<)", simplified] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 322 | by (simp add: multp\<^sub>D\<^sub>M_def less_multiset\<^sub>D\<^sub>M_def) | 
| 59813 | 323 | |
| 324 | lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | |
| 74869 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 325 | unfolding multp_def[of "(<)", symmetric] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 326 | using multp_eq_multp\<^sub>H\<^sub>O[of "(<)", simplified] | 
| 
7b0a241732c1
added definitions multp{DM,HO} and corresponding lemmas
 desharna parents: 
74867diff
changeset | 327 | by (simp add: multp\<^sub>H\<^sub>O_def less_multiset\<^sub>H\<^sub>O_def) | 
| 59813 | 328 | |
| 329 | lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def] | |
| 330 | lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def] | |
| 331 | ||
| 332 | end | |
| 333 | ||
| 67020 | 334 | lemma less_multiset_less_multiset\<^sub>H\<^sub>O: "M < N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N" | 
| 74864 | 335 | unfolding less_multiset_def multp_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def .. | 
| 59813 | 336 | |
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 337 | lemma less_multiset\<^sub>D\<^sub>M: | 
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 338 |   "M < N \<longleftrightarrow> (\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = N - X + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
 | 
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 339 | by (rule mult\<^sub>D\<^sub>M[folded multp_def less_multiset_def]) | 
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 340 | |
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 341 | lemma less_multiset\<^sub>H\<^sub>O: | 
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 342 | "M < N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x>y. count M x < count N x))" | 
| 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 343 | by (rule mult\<^sub>H\<^sub>O[folded multp_def less_multiset_def]) | 
| 59813 | 344 | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 345 | lemma subset_eq_imp_le_multiset: | 
| 64587 | 346 | shows "M \<subseteq># N \<Longrightarrow> M \<le> N" | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 347 | unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59958diff
changeset | 348 | by (simp add: less_le_not_le subseteq_mset_def) | 
| 59813 | 349 | |
| 67020 | 350 | (* FIXME: "le" should be "less" in this and other names *) | 
| 351 | lemma le_multiset_right_total: "M < add_mset x M" | |
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 352 | unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O by simp | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 353 | |
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 354 | lemma less_eq_multiset_empty_left[simp]: | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 355 |   shows "{#} \<le> M"
 | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 356 | by (simp add: subset_eq_imp_le_multiset) | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 357 | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 358 | lemma ex_gt_imp_less_multiset: "(\<exists>y. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M < N" | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 359 | unfolding less_multiset\<^sub>H\<^sub>O | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 360 | by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 361 | |
| 67020 | 362 | lemma less_eq_multiset_empty_right[simp]: "M \<noteq> {#} \<Longrightarrow> \<not> M \<le> {#}"
 | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 363 | by (metis less_eq_multiset_empty_left antisym) | 
| 59813 | 364 | |
| 67020 | 365 | (* FIXME: "le" should be "less" in this and other names *) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 366 | lemma le_multiset_empty_left[simp]: "M \<noteq> {#} \<Longrightarrow> {#} < M"
 | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 367 | by (simp add: less_multiset\<^sub>H\<^sub>O) | 
| 59813 | 368 | |
| 67020 | 369 | (* FIXME: "le" should be "less" in this and other names *) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 370 | lemma le_multiset_empty_right[simp]: "\<not> M < {#}"
 | 
| 74864 | 371 | using subset_mset.le_zero_eq less_multiset_def multp_def less_multiset\<^sub>D\<^sub>M by blast | 
| 59813 | 372 | |
| 67020 | 373 | (* FIXME: "le" should be "less" in this and other names *) | 
| 64587 | 374 | lemma union_le_diff_plus: "P \<subseteq># M \<Longrightarrow> N < P \<Longrightarrow> M - P + N < M" | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 375 | by (drule subset_mset.diff_add[symmetric]) (metis union_le_mono2) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 376 | |
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 377 | instantiation multiset :: (preorder) ordered_ab_semigroup_monoid_add_imp_le | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 378 | begin | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 379 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 380 | lemma less_eq_multiset\<^sub>H\<^sub>O: | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 381 | "M \<le> N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 382 | by (auto simp: less_eq_multiset_def less_multiset\<^sub>H\<^sub>O) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 383 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 384 | instance by standard (auto simp: less_eq_multiset\<^sub>H\<^sub>O) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 385 | |
| 59813 | 386 | lemma | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 387 | fixes M N :: "'a multiset" | 
| 59813 | 388 | shows | 
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 389 | less_eq_multiset_plus_left: "N \<le> (M + N)" and | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 390 | less_eq_multiset_plus_right: "M \<le> (M + N)" | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 391 | by simp_all | 
| 59813 | 392 | |
| 393 | lemma | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 394 | fixes M N :: "'a multiset" | 
| 59813 | 395 | shows | 
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 396 |     le_multiset_plus_left_nonempty: "M \<noteq> {#} \<Longrightarrow> N < M + N" and
 | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 397 |     le_multiset_plus_right_nonempty: "N \<noteq> {#} \<Longrightarrow> M < M + N"
 | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 398 | by simp_all | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 399 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 400 | end | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 401 | |
| 65546 | 402 | lemma all_lt_Max_imp_lt_mset: "N \<noteq> {#} \<Longrightarrow> (\<forall>a \<in># M. a < Max (set_mset N)) \<Longrightarrow> M < N"
 | 
| 403 | by (meson Max_in[OF finite_set_mset] ex_gt_imp_less_multiset set_mset_eq_empty_iff) | |
| 404 | ||
| 405 | lemma lt_imp_ex_count_lt: "M < N \<Longrightarrow> \<exists>y. count M y < count N y" | |
| 406 | by (meson less_eq_multiset\<^sub>H\<^sub>O less_le_not_le) | |
| 407 | ||
| 408 | lemma subset_imp_less_mset: "A \<subset># B \<Longrightarrow> A < B" | |
| 409 | by (simp add: order.not_eq_order_implies_strict subset_eq_imp_le_multiset) | |
| 410 | ||
| 411 | lemma image_mset_strict_mono: | |
| 412 | assumes | |
| 413 | mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and | |
| 414 | less: "M < N" | |
| 415 | shows "image_mset f M < image_mset f N" | |
| 416 | proof - | |
| 417 | obtain Y X where | |
| 418 |     y_nemp: "Y \<noteq> {#}" and y_sub_N: "Y \<subseteq># N" and M_eq: "M = N - Y + X" and
 | |
| 419 | ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> x < y)" | |
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 420 | using less[unfolded less_multiset\<^sub>D\<^sub>M] by blast | 
| 65546 | 421 | |
| 422 | have x_sub_M: "X \<subseteq># M" | |
| 423 | using M_eq by simp | |
| 424 | ||
| 425 | let ?fY = "image_mset f Y" | |
| 426 | let ?fX = "image_mset f X" | |
| 427 | ||
| 428 | show ?thesis | |
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 429 | unfolding less_multiset\<^sub>D\<^sub>M | 
| 65546 | 430 | proof (intro exI conjI) | 
| 431 | show "image_mset f M = image_mset f N - ?fY + ?fX" | |
| 432 | using M_eq[THEN arg_cong, of "image_mset f"] y_sub_N | |
| 433 | by (metis image_mset_Diff image_mset_union) | |
| 434 | next | |
| 435 | obtain y where y: "\<forall>x. x \<in># X \<longrightarrow> y x \<in># Y \<and> x < y x" | |
| 436 | using ex_y by moura | |
| 437 | ||
| 438 | show "\<forall>fx. fx \<in># ?fX \<longrightarrow> (\<exists>fy. fy \<in># ?fY \<and> fx < fy)" | |
| 439 | proof (intro allI impI) | |
| 440 | fix fx | |
| 441 | assume "fx \<in># ?fX" | |
| 442 | then obtain x where fx: "fx = f x" and x_in: "x \<in># X" | |
| 443 | by auto | |
| 444 | hence y_in: "y x \<in># Y" and y_gt: "x < y x" | |
| 445 | using y[rule_format, OF x_in] by blast+ | |
| 446 | hence "f (y x) \<in># ?fY \<and> f x < f (y x)" | |
| 447 | using mono_f y_sub_N x_sub_M x_in | |
| 448 | by (metis image_eqI in_image_mset mset_subset_eqD) | |
| 449 | thus "\<exists>fy. fy \<in># ?fY \<and> fx < fy" | |
| 450 | unfolding fx by auto | |
| 451 | qed | |
| 452 | qed (auto simp: y_nemp y_sub_N image_mset_subseteq_mono) | |
| 453 | qed | |
| 454 | ||
| 455 | lemma image_mset_mono: | |
| 456 | assumes | |
| 457 | mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and | |
| 458 | less: "M \<le> N" | |
| 459 | shows "image_mset f M \<le> image_mset f N" | |
| 460 | by (metis eq_iff image_mset_strict_mono less less_imp_le mono_f order.not_eq_order_implies_strict) | |
| 461 | ||
| 462 | lemma mset_lt_single_right_iff[simp]: "M < {#y#} \<longleftrightarrow> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | |
| 463 | proof (rule iffI) | |
| 464 |   assume M_lt_y: "M < {#y#}"
 | |
| 465 | show "\<forall>x \<in># M. x < y" | |
| 466 | proof | |
| 467 | fix x | |
| 468 | assume x_in: "x \<in># M" | |
| 469 |     hence M: "M - {#x#} + {#x#} = M"
 | |
| 470 | by (meson insert_DiffM2) | |
| 471 |     hence "\<not> {#x#} < {#y#} \<Longrightarrow> x < y"
 | |
| 472 | using x_in M_lt_y | |
| 473 | by (metis diff_single_eq_union le_multiset_empty_left less_add_same_cancel2 mset_le_trans) | |
| 474 |     also have "\<not> {#y#} < M"
 | |
| 475 | using M_lt_y mset_le_not_sym by blast | |
| 476 | ultimately show "x < y" | |
| 477 | by (metis (no_types) Max_ge all_lt_Max_imp_lt_mset empty_iff finite_set_mset insertE | |
| 478 | less_le_trans linorder_less_linear mset_le_not_sym set_mset_add_mset_insert | |
| 479 | set_mset_eq_empty_iff x_in) | |
| 480 | qed | |
| 481 | next | |
| 482 | assume y_max: "\<forall>x \<in># M. x < y" | |
| 483 |   show "M < {#y#}"
 | |
| 484 | by (rule all_lt_Max_imp_lt_mset) (auto intro!: y_max) | |
| 485 | qed | |
| 486 | ||
| 487 | lemma mset_le_single_right_iff[simp]: | |
| 488 |   "M \<le> {#y#} \<longleftrightarrow> M = {#y#} \<or> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | |
| 489 | by (meson less_eq_multiset_def mset_lt_single_right_iff) | |
| 490 | ||
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 491 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 492 | subsection \<open>Simprocs\<close> | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 493 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 494 | lemma mset_le_add_iff1: | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 495 | "j \<le> (i::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (repeat_mset (i-j) u + m \<le> n)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 496 | proof - | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 497 | assume "j \<le> i" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 498 | then have "j + (i - j) = i" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 499 | using le_add_diff_inverse by blast | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 500 | then show ?thesis | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 501 | by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 502 | qed | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 503 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 504 | lemma mset_le_add_iff2: | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 505 | "i \<le> (j::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (m \<le> repeat_mset (j-i) u + n)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 506 | proof - | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 507 | assume "i \<le> j" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 508 | then have "i + (j - i) = j" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 509 | using le_add_diff_inverse by blast | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 510 | then show ?thesis | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 511 | by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 512 | qed | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 513 | |
| 65027 
2b8583507891
renaming multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
64978diff
changeset | 514 | simproc_setup msetless_cancel | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 515 |   ("(l::'a::preorder multiset) + m < n" | "(l::'a multiset) < m + n" |
 | 
| 65028 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 516 | "add_mset a m < n" | "m < add_mset a n" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 517 | "replicate_mset p a < n" | "m < replicate_mset p a" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 518 | "repeat_mset p m < n" | "m < repeat_mset p n") = | 
| 65031 
52e2c99f3711
use the cancellation simprocs directly
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65028diff
changeset | 519 | \<open>fn phi => Cancel_Simprocs.less_cancel\<close> | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 520 | |
| 65027 
2b8583507891
renaming multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
64978diff
changeset | 521 | simproc_setup msetle_cancel | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 522 |   ("(l::'a::preorder multiset) + m \<le> n" | "(l::'a multiset) \<le> m + n" |
 | 
| 65028 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 523 | "add_mset a m \<le> n" | "m \<le> add_mset a n" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 524 | "replicate_mset p a \<le> n" | "m \<le> replicate_mset p a" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 525 | "repeat_mset p m \<le> n" | "m \<le> repeat_mset p n") = | 
| 65031 
52e2c99f3711
use the cancellation simprocs directly
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65028diff
changeset | 526 | \<open>fn phi => Cancel_Simprocs.less_eq_cancel\<close> | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 527 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 528 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 529 | subsection \<open>Additional facts and instantiations\<close> | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 530 | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 531 | lemma ex_gt_count_imp_le_multiset: | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 532 | "(\<forall>y :: 'a :: order. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M < N" | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 533 | unfolding less_multiset\<^sub>H\<^sub>O | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 534 | by (metis count_greater_zero_iff le_imp_less_or_eq less_imp_not_less not_gr_zero union_iff) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 535 | |
| 64418 | 536 | lemma mset_lt_single_iff[iff]: "{#x#} < {#y#} \<longleftrightarrow> x < y"
 | 
| 74867 
4220dcd6c22e
restored lemmas less_multiset{DM,HO} inadvertently changed by c256bba593f3
 desharna parents: 
74864diff
changeset | 537 | unfolding less_multiset\<^sub>H\<^sub>O by simp | 
| 64418 | 538 | |
| 539 | lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order"
 | |
| 540 | unfolding less_eq_multiset\<^sub>H\<^sub>O by force | |
| 541 | ||
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 542 | instance multiset :: (linorder) linordered_cancel_ab_semigroup_add | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 543 | by standard (metis less_eq_multiset\<^sub>H\<^sub>O not_less_iff_gr_or_eq) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 544 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 545 | lemma less_eq_multiset_total: | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 546 | fixes M N :: "'a :: linorder multiset" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 547 | shows "\<not> M \<le> N \<Longrightarrow> N \<le> M" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 548 | by simp | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 549 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 550 | instantiation multiset :: (wellorder) wellorder | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 551 | begin | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 552 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 553 | lemma wf_less_multiset: "wf {(M :: 'a multiset, N). M < N}"
 | 
| 74864 | 554 | unfolding less_multiset_def multp_def by (auto intro: wf_mult wf) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 555 | |
| 74864 | 556 | instance by standard (metis less_multiset_def multp_def wf wf_def wf_mult) | 
| 59813 | 557 | |
| 558 | end | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 559 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 560 | instantiation multiset :: (preorder) order_bot | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 561 | begin | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 562 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 563 | definition bot_multiset :: "'a multiset" where "bot_multiset = {#}"
 | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 564 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 565 | instance by standard (simp add: bot_multiset_def) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 566 | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 567 | end | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 568 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 569 | instance multiset :: (preorder) no_top | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 570 | proof standard | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 571 | fix x :: "'a multiset" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 572 | obtain a :: 'a where True by simp | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 573 |   have "x < x + (x + {#a#})"
 | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 574 | by simp | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 575 | then show "\<exists>y. x < y" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 576 | by blast | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 577 | qed | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 578 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 579 | instance multiset :: (preorder) ordered_cancel_comm_monoid_add | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 580 | by standard | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 581 | |
| 65546 | 582 | instantiation multiset :: (linorder) distrib_lattice | 
| 583 | begin | |
| 584 | ||
| 585 | definition inf_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where | |
| 586 | "inf_multiset A B = (if A < B then A else B)" | |
| 587 | ||
| 588 | definition sup_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where | |
| 589 | "sup_multiset A B = (if B > A then B else A)" | |
| 590 | ||
| 591 | instance | |
| 592 | by intro_classes (auto simp: inf_multiset_def sup_multiset_def) | |
| 593 | ||
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 594 | end | 
| 65546 | 595 | |
| 596 | end |