| author | wenzelm | 
| Thu, 11 Feb 2010 23:00:22 +0100 | |
| changeset 35115 | 446c5063e4fd | 
| parent 33057 | 764547b68538 | 
| child 35216 | 7641e8d831d2 | 
| permissions | -rw-r--r-- | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Hilbert_Choice.thy  | 
| 32988 | 2  | 
Author: Lawrence C Paulson, Tobias Nipkow  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Copyright 2001 University of Cambridge  | 
| 12023 | 4  | 
*)  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 14760 | 6  | 
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
7  | 
|
| 15131 | 8  | 
theory Hilbert_Choice  | 
| 
29655
 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 
haftmann 
parents: 
27760 
diff
changeset
 | 
9  | 
imports Nat Wellfounded Plain  | 
| 
31723
 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 
haftmann 
parents: 
31454 
diff
changeset
 | 
10  | 
uses ("Tools/meson.ML") ("Tools/choice_specification.ML")
 | 
| 15131 | 11  | 
begin  | 
| 12298 | 12  | 
|
13  | 
subsection {* Hilbert's epsilon *}
 | 
|
14  | 
||
| 31454 | 15  | 
axiomatization Eps :: "('a => bool) => 'a" where
 | 
| 
22690
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
16  | 
someI: "P x ==> P (Eps P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
17  | 
|
| 
14872
 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 
wenzelm 
parents: 
14760 
diff
changeset
 | 
18  | 
syntax (epsilon)  | 
| 
 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 
wenzelm 
parents: 
14760 
diff
changeset
 | 
19  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
20  | 
syntax (HOL)  | 
| 12298 | 21  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
22  | 
syntax  | 
| 12298 | 23  | 
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
24  | 
translations  | 
| 
22690
 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 
wenzelm 
parents: 
21999 
diff
changeset
 | 
25  | 
"SOME x. P" == "CONST Eps (%x. P)"  | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
26  | 
|
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13585 
diff
changeset
 | 
27  | 
print_translation {*
 | 
| 35115 | 28  | 
  [(@{const_syntax Eps}, fn [Abs abs] =>
 | 
29  | 
let val (x, t) = atomic_abs_tr' abs  | 
|
30  | 
      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | 
|
31  | 
*} -- {* to avoid eta-contraction of body *}
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
32  | 
|
| 33057 | 33  | 
definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
34  | 
"inv_into A f == %x. SOME y. y : A & f y = x"  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
35  | 
|
| 32988 | 36  | 
abbreviation inv :: "('a => 'b) => ('b => 'a)" where
 | 
| 33057 | 37  | 
"inv == inv_into UNIV"  | 
| 14760 | 38  | 
|
39  | 
||
40  | 
subsection {*Hilbert's Epsilon-operator*}
 | 
|
41  | 
||
42  | 
text{*Easier to apply than @{text someI} if the witness comes from an
 | 
|
43  | 
existential formula*}  | 
|
44  | 
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"  | 
|
45  | 
apply (erule exE)  | 
|
46  | 
apply (erule someI)  | 
|
47  | 
done  | 
|
48  | 
||
49  | 
text{*Easier to apply than @{text someI} because the conclusion has only one
 | 
|
50  | 
occurrence of @{term P}.*}
 | 
|
51  | 
lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"  | 
|
52  | 
by (blast intro: someI)  | 
|
53  | 
||
54  | 
text{*Easier to apply than @{text someI2} if the witness comes from an
 | 
|
55  | 
existential formula*}  | 
|
56  | 
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"  | 
|
57  | 
by (blast intro: someI2)  | 
|
58  | 
||
59  | 
lemma some_equality [intro]:  | 
|
60  | 
"[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a"  | 
|
61  | 
by (blast intro: someI2)  | 
|
62  | 
||
63  | 
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"  | 
|
64  | 
by (blast intro: some_equality)  | 
|
65  | 
||
66  | 
lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)"  | 
|
67  | 
by (blast intro: someI)  | 
|
68  | 
||
69  | 
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"  | 
|
70  | 
apply (rule some_equality)  | 
|
71  | 
apply (rule refl, assumption)  | 
|
72  | 
done  | 
|
73  | 
||
74  | 
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"  | 
|
75  | 
apply (rule some_equality)  | 
|
76  | 
apply (rule refl)  | 
|
77  | 
apply (erule sym)  | 
|
78  | 
done  | 
|
79  | 
||
80  | 
||
81  | 
subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | 
|
82  | 
||
83  | 
text{*Used in @{text "Tools/meson.ML"}*}
 | 
|
84  | 
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"  | 
|
85  | 
by (fast elim: someI)  | 
|
86  | 
||
87  | 
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"  | 
|
88  | 
by (fast elim: someI)  | 
|
89  | 
||
90  | 
||
91  | 
subsection {*Function Inverse*}
 | 
|
92  | 
||
| 33014 | 93  | 
lemma inv_def: "inv f = (%y. SOME x. f x = y)"  | 
| 33057 | 94  | 
by(simp add: inv_into_def)  | 
| 33014 | 95  | 
|
| 33057 | 96  | 
lemma inv_into_into: "x : f ` A ==> inv_into A f x : A"  | 
97  | 
apply (simp add: inv_into_def)  | 
|
| 32988 | 98  | 
apply (fast intro: someI2)  | 
99  | 
done  | 
|
| 14760 | 100  | 
|
| 32988 | 101  | 
lemma inv_id [simp]: "inv id = id"  | 
| 33057 | 102  | 
by (simp add: inv_into_def id_def)  | 
| 14760 | 103  | 
|
| 33057 | 104  | 
lemma inv_into_f_f [simp]:  | 
105  | 
"[| inj_on f A; x : A |] ==> inv_into A f (f x) = x"  | 
|
106  | 
apply (simp add: inv_into_def inj_on_def)  | 
|
| 32988 | 107  | 
apply (blast intro: someI2)  | 
| 14760 | 108  | 
done  | 
109  | 
||
| 32988 | 110  | 
lemma inv_f_f: "inj f ==> inv f (f x) = x"  | 
| 33057 | 111  | 
by (simp add: inv_into_f_f)  | 
| 32988 | 112  | 
|
| 33057 | 113  | 
lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y"  | 
114  | 
apply (simp add: inv_into_def)  | 
|
| 32988 | 115  | 
apply (fast intro: someI2)  | 
116  | 
done  | 
|
117  | 
||
| 33057 | 118  | 
lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x"  | 
| 32988 | 119  | 
apply (erule subst)  | 
| 33057 | 120  | 
apply (fast intro: inv_into_f_f)  | 
| 32988 | 121  | 
done  | 
122  | 
||
123  | 
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"  | 
|
| 33057 | 124  | 
by (simp add:inv_into_f_eq)  | 
| 32988 | 125  | 
|
126  | 
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g"  | 
|
| 33057 | 127  | 
by (blast intro: ext inv_into_f_eq)  | 
| 14760 | 128  | 
|
129  | 
text{*But is it useful?*}
 | 
|
130  | 
lemma inj_transfer:  | 
|
131  | 
assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"  | 
|
132  | 
shows "P x"  | 
|
133  | 
proof -  | 
|
134  | 
have "f x \<in> range f" by auto  | 
|
135  | 
hence "P(inv f (f x))" by (rule minor)  | 
|
| 33057 | 136  | 
thus "P x" by (simp add: inv_into_f_f [OF injf])  | 
| 14760 | 137  | 
qed  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
138  | 
|
| 14760 | 139  | 
lemma inj_iff: "(inj f) = (inv f o f = id)"  | 
140  | 
apply (simp add: o_def expand_fun_eq)  | 
|
| 33057 | 141  | 
apply (blast intro: inj_on_inverseI inv_into_f_f)  | 
| 14760 | 142  | 
done  | 
143  | 
||
| 23433 | 144  | 
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"  | 
145  | 
by (simp add: inj_iff)  | 
|
146  | 
||
147  | 
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"  | 
|
148  | 
by (simp add: o_assoc[symmetric])  | 
|
149  | 
||
| 33057 | 150  | 
lemma inv_into_image_cancel[simp]:  | 
151  | 
"inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S"  | 
|
| 32988 | 152  | 
by(fastsimp simp: image_def)  | 
153  | 
||
| 14760 | 154  | 
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"  | 
| 33057 | 155  | 
by (blast intro: surjI inv_into_f_f)  | 
| 14760 | 156  | 
|
157  | 
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"  | 
|
| 33057 | 158  | 
by (simp add: f_inv_into_f surj_range)  | 
| 14760 | 159  | 
|
| 33057 | 160  | 
lemma inv_into_injective:  | 
161  | 
assumes eq: "inv_into A f x = inv_into A f y"  | 
|
| 32988 | 162  | 
and x: "x: f`A"  | 
163  | 
and y: "y: f`A"  | 
|
| 14760 | 164  | 
shows "x=y"  | 
165  | 
proof -  | 
|
| 33057 | 166  | 
have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp  | 
167  | 
thus ?thesis by (simp add: f_inv_into_f x y)  | 
|
| 14760 | 168  | 
qed  | 
169  | 
||
| 33057 | 170  | 
lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B"  | 
171  | 
by (blast intro: inj_onI dest: inv_into_injective injD)  | 
|
| 32988 | 172  | 
|
| 33057 | 173  | 
lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A"  | 
174  | 
by (auto simp add: bij_betw_def inj_on_inv_into)  | 
|
| 14760 | 175  | 
|
176  | 
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"  | 
|
| 33057 | 177  | 
by (simp add: inj_on_inv_into surj_range)  | 
| 14760 | 178  | 
|
179  | 
lemma surj_iff: "(surj f) = (f o inv f = id)"  | 
|
180  | 
apply (simp add: o_def expand_fun_eq)  | 
|
181  | 
apply (blast intro: surjI surj_f_inv_f)  | 
|
182  | 
done  | 
|
183  | 
||
184  | 
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"  | 
|
185  | 
apply (rule ext)  | 
|
186  | 
apply (drule_tac x = "inv f x" in spec)  | 
|
187  | 
apply (simp add: surj_f_inv_f)  | 
|
188  | 
done  | 
|
189  | 
||
190  | 
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"  | 
|
191  | 
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)  | 
|
| 12372 | 192  | 
|
| 14760 | 193  | 
lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g"  | 
194  | 
apply (rule ext)  | 
|
| 33057 | 195  | 
apply (auto simp add: inv_into_def)  | 
| 14760 | 196  | 
done  | 
197  | 
||
198  | 
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"  | 
|
199  | 
apply (rule inv_equality)  | 
|
200  | 
apply (auto simp add: bij_def surj_f_inv_f)  | 
|
201  | 
done  | 
|
202  | 
||
203  | 
(** bij(inv f) implies little about f. Consider f::bool=>bool such that  | 
|
204  | 
f(True)=f(False)=True. Then it's consistent with axiom someI that  | 
|
205  | 
inv f could be any function at all, including the identity function.  | 
|
206  | 
If inv f=id then inv f is a bijection, but inj f, surj(f) and  | 
|
207  | 
inv(inv f)=f all fail.  | 
|
208  | 
**)  | 
|
209  | 
||
| 33057 | 210  | 
lemma inv_into_comp:  | 
| 32988 | 211  | 
"[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>  | 
| 33057 | 212  | 
inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x"  | 
213  | 
apply (rule inv_into_f_eq)  | 
|
| 32988 | 214  | 
apply (fast intro: comp_inj_on)  | 
| 33057 | 215  | 
apply (simp add: inv_into_into)  | 
216  | 
apply (simp add: f_inv_into_f inv_into_into)  | 
|
| 32988 | 217  | 
done  | 
218  | 
||
| 14760 | 219  | 
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"  | 
220  | 
apply (rule inv_equality)  | 
|
221  | 
apply (auto simp add: bij_def surj_f_inv_f)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"  | 
|
225  | 
by (simp add: image_eq_UN surj_f_inv_f)  | 
|
226  | 
||
227  | 
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"  | 
|
228  | 
by (simp add: image_eq_UN)  | 
|
229  | 
||
230  | 
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"  | 
|
231  | 
by (auto simp add: image_def)  | 
|
232  | 
||
233  | 
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | 
|
234  | 
apply auto  | 
|
235  | 
apply (force simp add: bij_is_inj)  | 
|
236  | 
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])  | 
|
237  | 
done  | 
|
238  | 
||
239  | 
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A"  | 
|
240  | 
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])  | 
|
| 33057 | 241  | 
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])  | 
| 14760 | 242  | 
done  | 
243  | 
||
| 31380 | 244  | 
lemma finite_fun_UNIVD1:  | 
245  | 
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | 
|
246  | 
and card: "card (UNIV :: 'b set) \<noteq> Suc 0"  | 
|
247  | 
shows "finite (UNIV :: 'a set)"  | 
|
248  | 
proof -  | 
|
249  | 
from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2)  | 
|
250  | 
with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)"  | 
|
251  | 
by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff)  | 
|
252  | 
then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto  | 
|
253  | 
then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq)  | 
|
254  | 
from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI)  | 
|
255  | 
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"  | 
|
256  | 
proof (rule UNIV_eq_I)  | 
|
257  | 
fix x :: 'a  | 
|
| 33057 | 258  | 
from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def)  | 
| 31380 | 259  | 
thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast  | 
260  | 
qed  | 
|
261  | 
ultimately show "finite (UNIV :: 'a set)" by simp  | 
|
262  | 
qed  | 
|
| 14760 | 263  | 
|
264  | 
||
265  | 
subsection {*Other Consequences of Hilbert's Epsilon*}
 | 
|
266  | 
||
267  | 
text {*Hilbert's Epsilon and the @{term split} Operator*}
 | 
|
268  | 
||
269  | 
text{*Looping simprule*}
 | 
|
270  | 
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"  | 
|
| 26347 | 271  | 
by simp  | 
| 14760 | 272  | 
|
273  | 
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"  | 
|
| 26347 | 274  | 
by (simp add: split_def)  | 
| 14760 | 275  | 
|
276  | 
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"  | 
|
| 26347 | 277  | 
by blast  | 
| 14760 | 278  | 
|
279  | 
||
280  | 
text{*A relation is wellfounded iff it has no infinite descending chain*}
 | 
|
281  | 
lemma wf_iff_no_infinite_down_chain:  | 
|
282  | 
"wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"  | 
|
283  | 
apply (simp only: wf_eq_minimal)  | 
|
284  | 
apply (rule iffI)  | 
|
285  | 
apply (rule notI)  | 
|
286  | 
apply (erule exE)  | 
|
287  | 
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | 
|
288  | 
apply (erule contrapos_np, simp, clarify)  | 
|
289  | 
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")  | 
|
290  | 
apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)  | 
|
291  | 
apply (rule allI, simp)  | 
|
292  | 
apply (rule someI2_ex, blast, blast)  | 
|
293  | 
apply (rule allI)  | 
|
294  | 
apply (induct_tac "n", simp_all)  | 
|
295  | 
apply (rule someI2_ex, blast+)  | 
|
296  | 
done  | 
|
297  | 
||
| 27760 | 298  | 
lemma wf_no_infinite_down_chainE:  | 
299  | 
assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"  | 
|
300  | 
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast  | 
|
301  | 
||
302  | 
||
| 14760 | 303  | 
text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 304  | 
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"  | 
305  | 
by (blast intro: someI)  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
306  | 
|
| 12298 | 307  | 
|
308  | 
subsection {* Least value operator *}
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
309  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
310  | 
constdefs  | 
| 12298 | 311  | 
LeastM :: "['a => 'b::ord, 'a => bool] => 'a"  | 
| 14760 | 312  | 
"LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
313  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
314  | 
syntax  | 
| 12298 | 315  | 
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
316  | 
translations  | 
| 35115 | 317  | 
"LEAST x WRT m. P" == "CONST LeastM m (%x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
318  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
319  | 
lemma LeastMI2:  | 
| 12298 | 320  | 
"P x ==> (!!y. P y ==> m x <= m y)  | 
321  | 
==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)  | 
|
322  | 
==> Q (LeastM m P)"  | 
|
| 14760 | 323  | 
apply (simp add: LeastM_def)  | 
| 14208 | 324  | 
apply (rule someI2_ex, blast, blast)  | 
| 12298 | 325  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
326  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
327  | 
lemma LeastM_equality:  | 
| 12298 | 328  | 
"P k ==> (!!x. P x ==> m k <= m x)  | 
329  | 
==> m (LEAST x WRT m. P x) = (m k::'a::order)"  | 
|
| 14208 | 330  | 
apply (rule LeastMI2, assumption, blast)  | 
| 12298 | 331  | 
apply (blast intro!: order_antisym)  | 
332  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
333  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
334  | 
lemma wf_linord_ex_has_least:  | 
| 14760 | 335  | 
"wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k  | 
336  | 
==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"  | 
|
| 12298 | 337  | 
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])  | 
| 14208 | 338  | 
apply (drule_tac x = "m`Collect P" in spec, force)  | 
| 12298 | 339  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
340  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
341  | 
lemma ex_has_least_nat:  | 
| 14760 | 342  | 
"P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"  | 
| 12298 | 343  | 
apply (simp only: pred_nat_trancl_eq_le [symmetric])  | 
344  | 
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])  | 
|
| 16796 | 345  | 
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)  | 
| 12298 | 346  | 
done  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
347  | 
|
| 12298 | 348  | 
lemma LeastM_nat_lemma:  | 
| 14760 | 349  | 
"P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"  | 
350  | 
apply (simp add: LeastM_def)  | 
|
| 12298 | 351  | 
apply (rule someI_ex)  | 
352  | 
apply (erule ex_has_least_nat)  | 
|
353  | 
done  | 
|
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
354  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
355  | 
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]  | 
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
356  | 
|
| 
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
357  | 
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"  | 
| 14208 | 358  | 
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)  | 
| 
11454
 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 
paulson 
parents: 
11451 
diff
changeset
 | 
359  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
360  | 
|
| 12298 | 361  | 
subsection {* Greatest value operator *}
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
362  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
363  | 
constdefs  | 
| 12298 | 364  | 
GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"  | 
| 14760 | 365  | 
"GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"  | 
| 12298 | 366  | 
|
367  | 
  Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
 | 
|
368  | 
"Greatest == GreatestM (%x. x)"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
369  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
370  | 
syntax  | 
| 35115 | 371  | 
"_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"  | 
| 12298 | 372  | 
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
373  | 
translations  | 
| 35115 | 374  | 
"GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
375  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
376  | 
lemma GreatestMI2:  | 
| 12298 | 377  | 
"P x ==> (!!y. P y ==> m y <= m x)  | 
378  | 
==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)  | 
|
379  | 
==> Q (GreatestM m P)"  | 
|
| 14760 | 380  | 
apply (simp add: GreatestM_def)  | 
| 14208 | 381  | 
apply (rule someI2_ex, blast, blast)  | 
| 12298 | 382  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
383  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
384  | 
lemma GreatestM_equality:  | 
| 12298 | 385  | 
"P k ==> (!!x. P x ==> m x <= m k)  | 
386  | 
==> m (GREATEST x WRT m. P x) = (m k::'a::order)"  | 
|
| 14208 | 387  | 
apply (rule_tac m = m in GreatestMI2, assumption, blast)  | 
| 12298 | 388  | 
apply (blast intro!: order_antisym)  | 
389  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
390  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
391  | 
lemma Greatest_equality:  | 
| 12298 | 392  | 
"P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"  | 
| 14760 | 393  | 
apply (simp add: Greatest_def)  | 
| 14208 | 394  | 
apply (erule GreatestM_equality, blast)  | 
| 12298 | 395  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
396  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
397  | 
lemma ex_has_greatest_nat_lemma:  | 
| 14760 | 398  | 
"P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))  | 
399  | 
==> \<exists>y. P y & ~ (m y < m k + n)"  | 
|
| 15251 | 400  | 
apply (induct n, force)  | 
| 12298 | 401  | 
apply (force simp add: le_Suc_eq)  | 
402  | 
done  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
403  | 
|
| 12298 | 404  | 
lemma ex_has_greatest_nat:  | 
| 14760 | 405  | 
"P k ==> \<forall>y. P y --> m y < b  | 
406  | 
==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"  | 
|
| 12298 | 407  | 
apply (rule ccontr)  | 
408  | 
apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)  | 
|
| 14208 | 409  | 
apply (subgoal_tac [3] "m k <= b", auto)  | 
| 12298 | 410  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
411  | 
|
| 12298 | 412  | 
lemma GreatestM_nat_lemma:  | 
| 14760 | 413  | 
"P k ==> \<forall>y. P y --> m y < b  | 
414  | 
==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"  | 
|
415  | 
apply (simp add: GreatestM_def)  | 
|
| 12298 | 416  | 
apply (rule someI_ex)  | 
| 14208 | 417  | 
apply (erule ex_has_greatest_nat, assumption)  | 
| 12298 | 418  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
419  | 
|
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
420  | 
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
421  | 
|
| 12298 | 422  | 
lemma GreatestM_nat_le:  | 
| 14760 | 423  | 
"P x ==> \<forall>y. P y --> m y < b  | 
| 12298 | 424  | 
==> (m x::nat) <= m (GreatestM m P)"  | 
| 21020 | 425  | 
apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])  | 
| 12298 | 426  | 
done  | 
427  | 
||
428  | 
||
429  | 
text {* \medskip Specialization to @{text GREATEST}. *}
 | 
|
430  | 
||
| 14760 | 431  | 
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"  | 
432  | 
apply (simp add: Greatest_def)  | 
|
| 14208 | 433  | 
apply (rule GreatestM_natI, auto)  | 
| 12298 | 434  | 
done  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
435  | 
|
| 12298 | 436  | 
lemma Greatest_le:  | 
| 14760 | 437  | 
"P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"  | 
438  | 
apply (simp add: Greatest_def)  | 
|
| 14208 | 439  | 
apply (rule GreatestM_nat_le, auto)  | 
| 12298 | 440  | 
done  | 
441  | 
||
442  | 
||
443  | 
subsection {* The Meson proof procedure *}
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
444  | 
|
| 12298 | 445  | 
subsubsection {* Negation Normal Form *}
 | 
446  | 
||
447  | 
text {* de Morgan laws *}
 | 
|
448  | 
||
449  | 
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"  | 
|
450  | 
and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"  | 
|
451  | 
and meson_not_notD: "~~P ==> P"  | 
|
| 14760 | 452  | 
and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"  | 
453  | 
and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"  | 
|
| 12298 | 454  | 
by fast+  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
455  | 
|
| 12298 | 456  | 
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
 | 
457  | 
negative occurrences) *}  | 
|
458  | 
||
459  | 
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"  | 
|
460  | 
and meson_not_impD: "~(P-->Q) ==> P & ~Q"  | 
|
461  | 
and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"  | 
|
462  | 
and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"  | 
|
463  | 
    -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
 | 
|
| 18389 | 464  | 
and meson_not_refl_disj_D: "x ~= x | P ==> P"  | 
| 12298 | 465  | 
by fast+  | 
466  | 
||
467  | 
||
468  | 
subsubsection {* Pulling out the existential quantifiers *}
 | 
|
469  | 
||
470  | 
text {* Conjunction *}
 | 
|
471  | 
||
| 14760 | 472  | 
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"  | 
473  | 
and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"  | 
|
| 12298 | 474  | 
by fast+  | 
475  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
476  | 
|
| 12298 | 477  | 
text {* Disjunction *}
 | 
478  | 
||
| 14760 | 479  | 
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"  | 
| 12298 | 480  | 
  -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
 | 
481  | 
  -- {* With ex-Skolemization, makes fewer Skolem constants *}
 | 
|
| 14760 | 482  | 
and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"  | 
483  | 
and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"  | 
|
| 12298 | 484  | 
by fast+  | 
485  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
486  | 
|
| 12298 | 487  | 
subsubsection {* Generating clauses for the Meson Proof Procedure *}
 | 
488  | 
||
489  | 
text {* Disjunctions *}
 | 
|
490  | 
||
491  | 
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"  | 
|
492  | 
and meson_disj_comm: "P|Q ==> Q|P"  | 
|
493  | 
and meson_disj_FalseD1: "False|P ==> P"  | 
|
494  | 
and meson_disj_FalseD2: "P|False ==> P"  | 
|
495  | 
by fast+  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
496  | 
|
| 14760 | 497  | 
|
498  | 
subsection{*Lemmas for Meson, the Model Elimination Procedure*}
 | 
|
499  | 
||
500  | 
text{* Generation of contrapositives *}
 | 
|
501  | 
||
502  | 
text{*Inserts negated disjunct after removing the negation; P is a literal.
 | 
|
503  | 
Model elimination requires assuming the negation of every attempted subgoal,  | 
|
504  | 
hence the negated disjuncts.*}  | 
|
505  | 
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"  | 
|
506  | 
by blast  | 
|
507  | 
||
508  | 
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
 | 
|
509  | 
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"  | 
|
510  | 
by blast  | 
|
511  | 
||
512  | 
text{*@{term P} should be a literal*}
 | 
|
513  | 
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"  | 
|
514  | 
by blast  | 
|
515  | 
||
516  | 
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
 | 
|
517  | 
insert new assumptions, for ordinary resolution.*}  | 
|
518  | 
||
519  | 
lemmas make_neg_rule' = make_refined_neg_rule  | 
|
520  | 
||
521  | 
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"  | 
|
522  | 
by blast  | 
|
523  | 
||
524  | 
text{* Generation of a goal clause -- put away the final literal *}
 | 
|
525  | 
||
526  | 
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"  | 
|
527  | 
by blast  | 
|
528  | 
||
529  | 
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"  | 
|
530  | 
by blast  | 
|
531  | 
||
532  | 
||
533  | 
subsubsection{* Lemmas for Forward Proof*}
 | 
|
534  | 
||
535  | 
text{*There is a similarity to congruence rules*}
 | 
|
536  | 
||
537  | 
(*NOTE: could handle conjunctions (faster?) by  | 
|
538  | 
nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)  | 
|
539  | 
lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"  | 
|
540  | 
by blast  | 
|
541  | 
||
542  | 
lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"  | 
|
543  | 
by blast  | 
|
544  | 
||
545  | 
(*Version of @{text disj_forward} for removal of duplicate literals*)
 | 
|
546  | 
lemma disj_forward2:  | 
|
547  | 
"[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"  | 
|
548  | 
apply blast  | 
|
549  | 
done  | 
|
550  | 
||
551  | 
lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"  | 
|
552  | 
by blast  | 
|
553  | 
||
554  | 
lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"  | 
|
555  | 
by blast  | 
|
556  | 
||
| 17420 | 557  | 
|
| 
21999
 
0cf192e489e2
improvements to proof reconstruction. Some files loaded in a different order
 
paulson 
parents: 
21243 
diff
changeset
 | 
558  | 
subsection {* Meson package *}
 | 
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
559  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
560  | 
use "Tools/meson.ML"  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
561  | 
|
| 
26562
 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 
paulson 
parents: 
26347 
diff
changeset
 | 
562  | 
setup Meson.setup  | 
| 
 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 
paulson 
parents: 
26347 
diff
changeset
 | 
563  | 
|
| 
17893
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
564  | 
|
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
565  | 
subsection {* Specification package -- Hilbertized version *}
 | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
566  | 
|
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
567  | 
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"  | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
568  | 
by (simp only: someI_ex)  | 
| 
 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 
wenzelm 
parents: 
17702 
diff
changeset
 | 
569  | 
|
| 
31723
 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 
haftmann 
parents: 
31454 
diff
changeset
 | 
570  | 
use "Tools/choice_specification.ML"  | 
| 14115 | 571  | 
|
| 31454 | 572  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents:  
diff
changeset
 | 
573  | 
end  |