3162
|
1 |
\begin{thebibliography}{10}
|
|
2 |
|
|
3 |
\bibitem{abramsky90}
|
|
4 |
Abramsky, S.,
|
|
5 |
\newblock The lazy lambda calculus,
|
|
6 |
\newblock In {\em Research Topics in Functional Programming}, D.~A. Turner, Ed.
|
|
7 |
Addison-Wesley, 1977, pp.~65--116
|
|
8 |
|
|
9 |
\bibitem{aczel77}
|
|
10 |
Aczel, P.,
|
|
11 |
\newblock An introduction to inductive definitions,
|
|
12 |
\newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
|
|
13 |
North-Holland, 1977, pp.~739--782
|
|
14 |
|
|
15 |
\bibitem{aczel88}
|
|
16 |
Aczel, P.,
|
|
17 |
\newblock {\em Non-Well-Founded Sets},
|
|
18 |
\newblock CSLI, 1988
|
|
19 |
|
|
20 |
\bibitem{bm79}
|
|
21 |
Boyer, R.~S., Moore, J.~S.,
|
|
22 |
\newblock {\em A Computational Logic},
|
|
23 |
\newblock Academic Press, 1979
|
|
24 |
|
|
25 |
\bibitem{camilleri92}
|
|
26 |
Camilleri, J., Melham, T.~F.,
|
|
27 |
\newblock Reasoning with inductively defined relations in the {HOL} theorem
|
|
28 |
prover,
|
|
29 |
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992
|
|
30 |
|
|
31 |
\bibitem{davey&priestley}
|
|
32 |
Davey, B.~A., Priestley, H.~A.,
|
|
33 |
\newblock {\em Introduction to Lattices and Order},
|
|
34 |
\newblock Cambridge Univ. Press, 1990
|
|
35 |
|
|
36 |
\bibitem{dybjer91}
|
|
37 |
Dybjer, P.,
|
|
38 |
\newblock Inductive sets and families in {Martin-L\"of's} type theory and their
|
|
39 |
set-theoretic semantics,
|
|
40 |
\newblock In {\em Logical Frameworks}, G.~Huet G.~Plotkin, Eds. Cambridge Univ.
|
|
41 |
Press, 1991, pp.~280--306
|
|
42 |
|
|
43 |
\bibitem{types94}
|
|
44 |
Dybjer, P., Nordstr{\"om}, B., Smith, J., Eds.,
|
|
45 |
\newblock {\em Types for Proofs and Programs: International Workshop {TYPES
|
|
46 |
'94}},
|
|
47 |
\newblock LNCS 996. Springer, published 1995
|
|
48 |
|
|
49 |
\bibitem{IMPS}
|
|
50 |
Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
|
|
51 |
\newblock {IMPS}: An interactive mathematical proof system,
|
|
52 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
|
|
53 |
|
|
54 |
\bibitem{frost95}
|
|
55 |
Frost, J.,
|
|
56 |
\newblock A case study of co-induction in {Isabelle},
|
|
57 |
\newblock Tech. Rep. 359, Comp. Lab., Univ. Cambridge, Feb. 1995
|
|
58 |
|
|
59 |
\bibitem{gimenez-codifying}
|
|
60 |
Gim{\'e}nez, E.,
|
|
61 |
\newblock Codifying guarded definitions with recursive schemes,
|
|
62 |
\newblock In Dybjer et~al. \cite{types94}, pp.~39--59
|
|
63 |
|
|
64 |
\bibitem{gunter-trees}
|
|
65 |
Gunter, E.~L.,
|
|
66 |
\newblock A broader class of trees for recursive type definitions for {HOL},
|
|
67 |
\newblock In {\em Higher Order Logic Theorem Proving and Its Applications: HUG
|
|
68 |
'93\/} (Published 1994), J.~Joyce C.~Seger, Eds., LNCS 780, Springer,
|
|
69 |
pp.~141--154
|
|
70 |
|
|
71 |
\bibitem{hennessy90}
|
|
72 |
Hennessy, M.,
|
|
73 |
\newblock {\em The Semantics of Programming Languages: An Elementary
|
|
74 |
Introduction Using Structural Operational Semantics},
|
|
75 |
\newblock Wiley, 1990
|
|
76 |
|
|
77 |
\bibitem{huet88}
|
|
78 |
Huet, G.,
|
|
79 |
\newblock Induction principles formalized in the {Calculus of Constructions},
|
|
80 |
\newblock In {\em Programming of Future Generation Computers\/} (1988),
|
|
81 |
K.~Fuchi M.~Nivat, Eds., Elsevier, pp.~205--216
|
|
82 |
|
|
83 |
\bibitem{melham89}
|
|
84 |
Melham, T.~F.,
|
|
85 |
\newblock Automating recursive type definitions in higher order logic,
|
|
86 |
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
|
|
87 |
Proving}, G.~Birtwistle P.~A. Subrahmanyam, Eds. Springer, 1989, pp.~341--386
|
|
88 |
|
|
89 |
\bibitem{milner-ind}
|
|
90 |
Milner, R.,
|
|
91 |
\newblock How to derive inductions in {LCF},
|
|
92 |
\newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
|
|
93 |
|
|
94 |
\bibitem{milner89}
|
|
95 |
Milner, R.,
|
|
96 |
\newblock {\em Communication and Concurrency},
|
|
97 |
\newblock Prentice-Hall, 1989
|
|
98 |
|
|
99 |
\bibitem{milner-coind}
|
|
100 |
Milner, R., Tofte, M.,
|
|
101 |
\newblock Co-induction in relational semantics,
|
|
102 |
\newblock {\em Theoretical Comput. Sci. {\bf 87}\/} (1991), 209--220
|
|
103 |
|
|
104 |
\bibitem{monahan84}
|
|
105 |
Monahan, B.~Q.,
|
|
106 |
\newblock {\em Data Type Proofs using Edinburgh {LCF}},
|
|
107 |
\newblock PhD thesis, University of Edinburgh, 1984
|
|
108 |
|
|
109 |
\bibitem{nipkow-CR}
|
|
110 |
Nipkow, T.,
|
|
111 |
\newblock More {Church-Rosser} proofs (in {Isabelle/HOL}),
|
|
112 |
\newblock In {\em Automated Deduction --- {CADE}-13 International Conference\/}
|
|
113 |
(1996), M.~McRobbie J.~K. Slaney, Eds., LNAI 1104, Springer, pp.~733--747
|
|
114 |
|
|
115 |
\bibitem{pvs-language}
|
|
116 |
Owre, S., Shankar, N., Rushby, J.~M.,
|
|
117 |
\newblock {\em The {PVS} specification language},
|
|
118 |
\newblock Computer Science Laboratory, SRI International, Menlo Park, CA, Apr.
|
|
119 |
1993,
|
|
120 |
\newblock Beta release
|
|
121 |
|
|
122 |
\bibitem{paulin-tlca}
|
|
123 |
Paulin-Mohring, C.,
|
|
124 |
\newblock Inductive definitions in the system {Coq}: Rules and properties,
|
|
125 |
\newblock In {\em Typed Lambda Calculi and Applications\/} (1993), M.~Bezem
|
|
126 |
J.~Groote, Eds., LNCS 664, Springer, pp.~328--345
|
|
127 |
|
|
128 |
\bibitem{paulson87}
|
|
129 |
Paulson, L.~C.,
|
|
130 |
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
|
|
131 |
\newblock Cambridge Univ. Press, 1987
|
|
132 |
|
|
133 |
\bibitem{paulson-set-I}
|
|
134 |
Paulson, L.~C.,
|
|
135 |
\newblock Set theory for verification: {I}. {From} foundations to functions,
|
|
136 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
|
|
137 |
|
|
138 |
\bibitem{paulson-isa-book}
|
|
139 |
Paulson, L.~C.,
|
|
140 |
\newblock {\em Isabelle: A Generic Theorem Prover},
|
|
141 |
\newblock Springer, 1994,
|
|
142 |
\newblock LNCS 828
|
|
143 |
|
|
144 |
\bibitem{paulson-set-II}
|
|
145 |
Paulson, L.~C.,
|
|
146 |
\newblock Set theory for verification: {II}. {Induction} and recursion,
|
|
147 |
\newblock {\em J. Auto. Reas. {\bf 15}}, 2 (1995), 167--215
|
|
148 |
|
|
149 |
\bibitem{paulson-coind}
|
|
150 |
Paulson, L.~C.,
|
|
151 |
\newblock Mechanizing coinduction and corecursion in higher-order logic,
|
|
152 |
\newblock {\em J. Logic and Comput. {\bf 7}}, 2 (Mar. 1997), 175--204
|
|
153 |
|
|
154 |
\bibitem{paulson-final}
|
|
155 |
Paulson, L.~C.,
|
|
156 |
\newblock A concrete final coalgebra theorem for {ZF} set theory,
|
|
157 |
\newblock In Dybjer et~al. \cite{types94}, pp.~120--139
|
|
158 |
|
4058
|
159 |
\bibitem{paulson-markt}
|
|
160 |
Paulson, L.~C.,
|
|
161 |
\newblock Tool support for logics of programs,
|
|
162 |
\newblock In {\em Mathematical Methods in Program Development: Summer School
|
|
163 |
Marktoberdorf 1996}, M.~Broy, Ed., NATO ASI Series F. Springer, Published
|
4585
|
164 |
1997, pp.~461--498
|
4058
|
165 |
|
3162
|
166 |
\bibitem{paulson-gr}
|
|
167 |
Paulson, L.~C., Gr\c{a}bczewski, K.,
|
|
168 |
\newblock Mechanizing set theory: Cardinal arithmetic and the axiom of choice,
|
|
169 |
\newblock {\em J. Auto. Reas. {\bf 17}}, 3 (Dec. 1996), 291--323
|
|
170 |
|
|
171 |
\bibitem{pitts94}
|
|
172 |
Pitts, A.~M.,
|
|
173 |
\newblock A co-induction principle for recursively defined domains,
|
|
174 |
\newblock {\em Theoretical Comput. Sci. {\bf 124}\/} (1994), 195--219
|
|
175 |
|
|
176 |
\bibitem{rasmussen95}
|
|
177 |
Rasmussen, O.,
|
|
178 |
\newblock The {Church-Rosser} theorem in {Isabelle}: A proof porting
|
|
179 |
experiment,
|
|
180 |
\newblock Tech. Rep. 364, Computer Laboratory, University of Cambridge, May
|
|
181 |
1995
|
|
182 |
|
|
183 |
\bibitem{saaltink-fme}
|
|
184 |
Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
|
|
185 |
\newblock An {EVES} data abstraction example,
|
|
186 |
\newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
|
|
187 |
J.~C.~P. Woodcock P.~G. Larsen, Eds., LNCS 670, Springer, pp.~578--596
|
|
188 |
|
|
189 |
\bibitem{slind-tfl}
|
|
190 |
Slind, K.,
|
|
191 |
\newblock Function definition in higher-order logic,
|
|
192 |
\newblock In {\em Theorem Proving in Higher Order Logics: {TPHOLs} '96\/}
|
|
193 |
(1996), J.~von Wright, J.~Grundy, J.~Harrison, Eds., LNCS 1125
|
|
194 |
|
|
195 |
\bibitem{szasz93}
|
|
196 |
Szasz, N.,
|
|
197 |
\newblock A machine checked proof that {Ackermann's} function is not primitive
|
|
198 |
recursive,
|
|
199 |
\newblock In {\em Logical Environments}, G.~Huet G.~Plotkin, Eds. Cambridge
|
|
200 |
Univ. Press, 1993, pp.~317--338
|
|
201 |
|
|
202 |
\bibitem{voelker95}
|
|
203 |
V\"olker, N.,
|
|
204 |
\newblock On the representation of datatypes in {Isabelle/HOL},
|
|
205 |
\newblock In {\em Proceedings of the First Isabelle Users Workshop\/} (Sept.
|
|
206 |
1995), L.~C. Paulson, Ed., Technical Report 379, Comp. Lab., Univ. Cambridge,
|
|
207 |
pp.~206--218
|
|
208 |
|
|
209 |
\bibitem{winskel93}
|
|
210 |
Winskel, G.,
|
|
211 |
\newblock {\em The Formal Semantics of Programming Languages},
|
|
212 |
\newblock MIT Press, 1993
|
|
213 |
|
|
214 |
\end{thebibliography}
|