| 
244
 | 
     1  | 
(*  Title:	HOLCF/ex/hoare.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Franz Regensburger
  | 
| 
 | 
     4  | 
    Copyright	1993 Technische Universitaet Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Theory for an example by C.A.R. Hoare 
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
p x = if b1(x) 
  | 
| 
 | 
     9  | 
         then p(g(x))
  | 
| 
 | 
    10  | 
         else x fi
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
q x = if b1(x) orelse b2(x) 
  | 
| 
 | 
    13  | 
         then q (g(x))
  | 
| 
 | 
    14  | 
         else x fi
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
Prove: for all b1 b2 g . 
  | 
| 
 | 
    17  | 
            q o p  = q 
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
In order to get a nice notation we fix the functions b1,b2 and g in the
  | 
| 
 | 
    20  | 
signature of this example
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
*)
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
Hoare = Tr2 +
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
consts
  | 
| 
 | 
    27  | 
	b1:: "'a -> tr"
  | 
| 
 | 
    28  | 
	b2:: "'a -> tr"
  | 
| 
 | 
    29  | 
	 g:: "'a -> 'a"
  | 
| 
 | 
    30  | 
	p :: "'a -> 'a"
  | 
| 
 | 
    31  | 
	q :: "'a -> 'a"
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
rules
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
  p_def  "p == fix[LAM f. LAM x.\
  | 
| 
 | 
    36  | 
\                 If b1[x] then f[g[x]] else x fi]"
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
  q_def  "q == fix[LAM f. LAM x.\
  | 
| 
 | 
    39  | 
\                 If b1[x] orelse b2[x] then f[g[x]] else x fi]"
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
end
  | 
| 
 | 
    43  | 
 
  |