| 2281 |      1 | (*  Title:      HOL/Integ/IntRing.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow and Markus Wenzel
 | 
|  |      4 |     Copyright   1996 TU Muenchen
 | 
|  |      5 | 
 | 
|  |      6 | The integers form a commutative ring.
 | 
|  |      7 | With an application of Lagrange's lemma.
 | 
|  |      8 | *)
 | 
|  |      9 | 
 | 
|  |     10 | IntRing = IntRingDefs + Lagrange +
 | 
|  |     11 | 
 | 
|  |     12 | instance int :: add_semigroup (zadd_assoc)
 | 
|  |     13 | instance int :: add_monoid (zero_int_def,zadd_0,zadd_0_right)
 | 
|  |     14 | instance int :: add_group (left_inv_int,minus_inv_int)
 | 
|  |     15 | instance int :: add_agroup (zadd_commute)
 | 
|  |     16 | instance int :: ring (zmult_assoc,zadd_zmult_distrib2,zadd_zmult_distrib)
 | 
|  |     17 | instance int :: cring (zmult_commute)
 | 
|  |     18 | 
 | 
|  |     19 | end
 |