| author | wenzelm | 
| Fri, 15 Feb 2002 20:43:44 +0100 | |
| changeset 12896 | 4518acda6d93 | 
| parent 11270 | a315a3862bb4 | 
| permissions | -rw-r--r-- | 
| 11189 | 1  | 
(* Title: HOL/Auth/Message  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1996 University of Cambridge  | 
|
5  | 
||
6  | 
Datatypes of agents and messages;  | 
|
7  | 
Inductive relations "parts", "analz" and "synth"  | 
|
8  | 
*)  | 
|
9  | 
||
10  | 
(*ML bindings for definitions and axioms*)  | 
|
11  | 
val invKey = thm "invKey";  | 
|
12  | 
val keysFor_def = thm "keysFor_def";  | 
|
13  | 
val parts_mono = thm "parts_mono";  | 
|
14  | 
val analz_mono = thm "analz_mono";  | 
|
15  | 
val synth_mono = thm "synth_mono";  | 
|
16  | 
val HPair_def = thm "HPair_def";  | 
|
| 
11230
 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 
paulson 
parents: 
11217 
diff
changeset
 | 
17  | 
val symKeys_def = thm "symKeys_def";  | 
| 11189 | 18  | 
|
19  | 
structure parts =  | 
|
20  | 
struct  | 
|
21  | 
val induct = thm "parts.induct";  | 
|
22  | 
val Inj = thm "parts.Inj";  | 
|
23  | 
val Fst = thm "parts.Fst";  | 
|
24  | 
val Snd = thm "parts.Snd";  | 
|
25  | 
val Body = thm "parts.Body";  | 
|
26  | 
end;  | 
|
27  | 
||
28  | 
structure analz =  | 
|
29  | 
struct  | 
|
30  | 
val induct = thm "analz.induct";  | 
|
31  | 
val Inj = thm "analz.Inj";  | 
|
32  | 
val Fst = thm "analz.Fst";  | 
|
33  | 
val Snd = thm "analz.Snd";  | 
|
34  | 
val Decrypt = thm "analz.Decrypt";  | 
|
35  | 
end;  | 
|
36  | 
||
37  | 
structure synth =  | 
|
38  | 
struct  | 
|
39  | 
val induct = thm "synth.induct";  | 
|
40  | 
val Inj = thm "synth.Inj";  | 
|
41  | 
val Agent = thm "synth.Agent";  | 
|
42  | 
val Number = thm "synth.Number";  | 
|
43  | 
val Hash = thm "synth.Hash";  | 
|
44  | 
val Crypt = thm "synth.Crypt";  | 
|
45  | 
end;  | 
|
46  | 
||
47  | 
||
48  | 
(*Equations hold because constructors are injective; cannot prove for all f*)  | 
|
| 11217 | 49  | 
Goal "(Friend x \\<in> Friend`A) = (x:A)";  | 
| 11189 | 50  | 
by Auto_tac;  | 
51  | 
qed "Friend_image_eq";  | 
|
52  | 
||
| 11251 | 53  | 
Goal "(Key x \\<in> Key`A) = (x\\<in>A)";  | 
| 11189 | 54  | 
by Auto_tac;  | 
55  | 
qed "Key_image_eq";  | 
|
56  | 
||
| 11217 | 57  | 
Goal "(Nonce x \\<notin> Key`A)";  | 
| 11189 | 58  | 
by Auto_tac;  | 
59  | 
qed "Nonce_Key_image_eq";  | 
|
60  | 
Addsimps [Friend_image_eq, Key_image_eq, Nonce_Key_image_eq];  | 
|
61  | 
||
62  | 
||
63  | 
(** Inverse of keys **)  | 
|
64  | 
||
65  | 
Goal "(invKey K = invKey K') = (K=K')";  | 
|
66  | 
by Safe_tac;  | 
|
67  | 
by (rtac box_equals 1);  | 
|
68  | 
by (REPEAT (rtac invKey 2));  | 
|
69  | 
by (Asm_simp_tac 1);  | 
|
70  | 
qed "invKey_eq";  | 
|
71  | 
||
72  | 
Addsimps [invKey_eq];  | 
|
73  | 
||
74  | 
||
75  | 
(**** keysFor operator ****)  | 
|
76  | 
||
77  | 
Goalw [keysFor_def] "keysFor {} = {}";
 | 
|
78  | 
by (Blast_tac 1);  | 
|
79  | 
qed "keysFor_empty";  | 
|
80  | 
||
81  | 
Goalw [keysFor_def] "keysFor (H Un H') = keysFor H Un keysFor H'";  | 
|
82  | 
by (Blast_tac 1);  | 
|
83  | 
qed "keysFor_Un";  | 
|
84  | 
||
| 11251 | 85  | 
Goalw [keysFor_def] "keysFor (\\<Union>i\\<in>A. H i) = (\\<Union>i\\<in>A. keysFor (H i))";  | 
| 11189 | 86  | 
by (Blast_tac 1);  | 
87  | 
qed "keysFor_UN";  | 
|
88  | 
||
89  | 
(*Monotonicity*)  | 
|
| 11251 | 90  | 
Goalw [keysFor_def] "G\\<subseteq>H ==> keysFor(G) \\<subseteq> keysFor(H)";  | 
| 11189 | 91  | 
by (Blast_tac 1);  | 
92  | 
qed "keysFor_mono";  | 
|
93  | 
||
94  | 
Goalw [keysFor_def] "keysFor (insert (Agent A) H) = keysFor H";  | 
|
95  | 
by Auto_tac;  | 
|
96  | 
qed "keysFor_insert_Agent";  | 
|
97  | 
||
98  | 
Goalw [keysFor_def] "keysFor (insert (Nonce N) H) = keysFor H";  | 
|
99  | 
by Auto_tac;  | 
|
100  | 
qed "keysFor_insert_Nonce";  | 
|
101  | 
||
102  | 
Goalw [keysFor_def] "keysFor (insert (Number N) H) = keysFor H";  | 
|
103  | 
by Auto_tac;  | 
|
104  | 
qed "keysFor_insert_Number";  | 
|
105  | 
||
106  | 
Goalw [keysFor_def] "keysFor (insert (Key K) H) = keysFor H";  | 
|
107  | 
by Auto_tac;  | 
|
108  | 
qed "keysFor_insert_Key";  | 
|
109  | 
||
110  | 
Goalw [keysFor_def] "keysFor (insert (Hash X) H) = keysFor H";  | 
|
111  | 
by Auto_tac;  | 
|
112  | 
qed "keysFor_insert_Hash";  | 
|
113  | 
||
114  | 
Goalw [keysFor_def] "keysFor (insert {|X,Y|} H) = keysFor H";
 | 
|
115  | 
by Auto_tac;  | 
|
116  | 
qed "keysFor_insert_MPair";  | 
|
117  | 
||
118  | 
Goalw [keysFor_def]  | 
|
119  | 
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)";  | 
|
120  | 
by Auto_tac;  | 
|
121  | 
qed "keysFor_insert_Crypt";  | 
|
122  | 
||
123  | 
Addsimps [keysFor_empty, keysFor_Un, keysFor_UN,  | 
|
124  | 
keysFor_insert_Agent, keysFor_insert_Nonce,  | 
|
125  | 
keysFor_insert_Number, keysFor_insert_Key,  | 
|
126  | 
keysFor_insert_Hash, keysFor_insert_MPair, keysFor_insert_Crypt];  | 
|
127  | 
AddSEs [keysFor_Un RS equalityD1 RS subsetD RS UnE,  | 
|
128  | 
keysFor_UN RS equalityD1 RS subsetD RS UN_E];  | 
|
129  | 
||
130  | 
Goalw [keysFor_def] "keysFor (Key`E) = {}";
 | 
|
131  | 
by Auto_tac;  | 
|
132  | 
qed "keysFor_image_Key";  | 
|
133  | 
Addsimps [keysFor_image_Key];  | 
|
134  | 
||
| 11217 | 135  | 
Goalw [keysFor_def] "Crypt K X \\<in> H ==> invKey K \\<in> keysFor H";  | 
| 11189 | 136  | 
by (Blast_tac 1);  | 
137  | 
qed "Crypt_imp_invKey_keysFor";  | 
|
138  | 
||
139  | 
||
140  | 
(**** Inductive relation "parts" ****)  | 
|
141  | 
||
142  | 
val major::prems =  | 
|
| 11217 | 143  | 
Goal "[| {|X,Y|} \\<in> parts H;       \
 | 
144  | 
\ [| X \\<in> parts H; Y \\<in> parts H |] ==> P \  | 
|
| 11189 | 145  | 
\ |] ==> P";  | 
146  | 
by (cut_facts_tac [major] 1);  | 
|
147  | 
by (resolve_tac prems 1);  | 
|
148  | 
by (REPEAT (eresolve_tac [asm_rl, parts.Fst, parts.Snd] 1));  | 
|
149  | 
qed "MPair_parts";  | 
|
150  | 
||
151  | 
AddSEs [MPair_parts, make_elim parts.Body];  | 
|
152  | 
(*NB These two rules are UNSAFE in the formal sense, as they discard the  | 
|
153  | 
compound message. They work well on THIS FILE.  | 
|
154  | 
MPair_parts is left as SAFE because it speeds up proofs.  | 
|
155  | 
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*)  | 
|
156  | 
||
| 11251 | 157  | 
Goal "H \\<subseteq> parts(H)";  | 
| 11189 | 158  | 
by (Blast_tac 1);  | 
159  | 
qed "parts_increasing";  | 
|
160  | 
||
| 11264 | 161  | 
bind_thm ("parts_insertI", impOfSubs (subset_insertI RS parts_mono));
 | 
| 11189 | 162  | 
|
163  | 
Goal "parts{} = {}";
 | 
|
164  | 
by Safe_tac;  | 
|
165  | 
by (etac parts.induct 1);  | 
|
166  | 
by (ALLGOALS Blast_tac);  | 
|
167  | 
qed "parts_empty";  | 
|
168  | 
Addsimps [parts_empty];  | 
|
169  | 
||
| 11251 | 170  | 
Goal "X\\<in> parts{} ==> P";
 | 
| 11189 | 171  | 
by (Asm_full_simp_tac 1);  | 
172  | 
qed "parts_emptyE";  | 
|
173  | 
AddSEs [parts_emptyE];  | 
|
174  | 
||
175  | 
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
 | 
|
| 11251 | 176  | 
Goal "X\\<in> parts H ==> \\<exists>Y\\<in>H. X\\<in> parts {Y}";
 | 
| 11189 | 177  | 
by (etac parts.induct 1);  | 
178  | 
by (ALLGOALS Blast_tac);  | 
|
179  | 
qed "parts_singleton";  | 
|
180  | 
||
181  | 
||
182  | 
(** Unions **)  | 
|
183  | 
||
| 11251 | 184  | 
Goal "parts(G) Un parts(H) \\<subseteq> parts(G Un H)";  | 
| 11189 | 185  | 
by (REPEAT (ares_tac [Un_least, parts_mono, Un_upper1, Un_upper2] 1));  | 
186  | 
val parts_Un_subset1 = result();  | 
|
187  | 
||
| 11251 | 188  | 
Goal "parts(G Un H) \\<subseteq> parts(G) Un parts(H)";  | 
| 11189 | 189  | 
by (rtac subsetI 1);  | 
190  | 
by (etac parts.induct 1);  | 
|
191  | 
by (ALLGOALS Blast_tac);  | 
|
192  | 
val parts_Un_subset2 = result();  | 
|
193  | 
||
194  | 
Goal "parts(G Un H) = parts(G) Un parts(H)";  | 
|
195  | 
by (REPEAT (ares_tac [equalityI, parts_Un_subset1, parts_Un_subset2] 1));  | 
|
196  | 
qed "parts_Un";  | 
|
197  | 
||
198  | 
Goal "parts (insert X H) = parts {X} Un parts H";
 | 
|
199  | 
by (stac (read_instantiate [("A","H")] insert_is_Un) 1);
 | 
|
200  | 
by (simp_tac (HOL_ss addsimps [parts_Un]) 1);  | 
|
201  | 
qed "parts_insert";  | 
|
202  | 
||
203  | 
(*TWO inserts to avoid looping. This rewrite is better than nothing.  | 
|
204  | 
Not suitable for Addsimps: its behaviour can be strange.*)  | 
|
205  | 
Goal "parts (insert X (insert Y H)) = parts {X} Un parts {Y} Un parts H";
 | 
|
206  | 
by (simp_tac (simpset() addsimps [Un_assoc]) 1);  | 
|
207  | 
by (simp_tac (simpset() addsimps [parts_insert RS sym]) 1);  | 
|
208  | 
qed "parts_insert2";  | 
|
209  | 
||
| 11251 | 210  | 
Goal "(\\<Union>x\\<in>A. parts(H x)) \\<subseteq> parts(\\<Union>x\\<in>A. H x)";  | 
| 11189 | 211  | 
by (REPEAT (ares_tac [UN_least, parts_mono, UN_upper] 1));  | 
212  | 
val parts_UN_subset1 = result();  | 
|
213  | 
||
| 11251 | 214  | 
Goal "parts(\\<Union>x\\<in>A. H x) \\<subseteq> (\\<Union>x\\<in>A. parts(H x))";  | 
| 11189 | 215  | 
by (rtac subsetI 1);  | 
216  | 
by (etac parts.induct 1);  | 
|
217  | 
by (ALLGOALS Blast_tac);  | 
|
218  | 
val parts_UN_subset2 = result();  | 
|
219  | 
||
| 11251 | 220  | 
Goal "parts(\\<Union>x\\<in>A. H x) = (\\<Union>x\\<in>A. parts(H x))";  | 
| 11189 | 221  | 
by (REPEAT (ares_tac [equalityI, parts_UN_subset1, parts_UN_subset2] 1));  | 
222  | 
qed "parts_UN";  | 
|
223  | 
||
224  | 
(*Added to simplify arguments to parts, analz and synth.  | 
|
225  | 
NOTE: the UN versions are no longer used!*)  | 
|
226  | 
Addsimps [parts_Un, parts_UN];  | 
|
227  | 
AddSEs [parts_Un RS equalityD1 RS subsetD RS UnE,  | 
|
228  | 
parts_UN RS equalityD1 RS subsetD RS UN_E];  | 
|
229  | 
||
| 11251 | 230  | 
Goal "insert X (parts H) \\<subseteq> parts(insert X H)";  | 
| 11189 | 231  | 
by (blast_tac (claset() addIs [impOfSubs parts_mono]) 1);  | 
232  | 
qed "parts_insert_subset";  | 
|
233  | 
||
234  | 
(** Idempotence and transitivity **)  | 
|
235  | 
||
| 11251 | 236  | 
Goal "X\\<in> parts (parts H) ==> X\\<in> parts H";  | 
| 11189 | 237  | 
by (etac parts.induct 1);  | 
238  | 
by (ALLGOALS Blast_tac);  | 
|
239  | 
qed "parts_partsD";  | 
|
240  | 
AddSDs [parts_partsD];  | 
|
241  | 
||
242  | 
Goal "parts (parts H) = parts H";  | 
|
243  | 
by (Blast_tac 1);  | 
|
244  | 
qed "parts_idem";  | 
|
245  | 
Addsimps [parts_idem];  | 
|
246  | 
||
| 11251 | 247  | 
Goal "[| X\\<in> parts G; G \\<subseteq> parts H |] ==> X\\<in> parts H";  | 
| 11189 | 248  | 
by (dtac parts_mono 1);  | 
249  | 
by (Blast_tac 1);  | 
|
250  | 
qed "parts_trans";  | 
|
251  | 
||
252  | 
(*Cut*)  | 
|
| 11251 | 253  | 
Goal "[| Y\\<in> parts (insert X G); X\\<in> parts H |] \  | 
254  | 
\ ==> Y\\<in> parts (G Un H)";  | 
|
| 11189 | 255  | 
by (etac parts_trans 1);  | 
256  | 
by Auto_tac;  | 
|
257  | 
qed "parts_cut";  | 
|
258  | 
||
| 11251 | 259  | 
Goal "X\\<in> parts H ==> parts (insert X H) = parts H";  | 
| 11189 | 260  | 
by (fast_tac (claset() addSDs [parts_cut]  | 
261  | 
addIs [parts_insertI]  | 
|
262  | 
addss (simpset())) 1);  | 
|
263  | 
qed "parts_cut_eq";  | 
|
264  | 
||
265  | 
Addsimps [parts_cut_eq];  | 
|
266  | 
||
267  | 
||
268  | 
(** Rewrite rules for pulling out atomic messages **)  | 
|
269  | 
||
270  | 
fun parts_tac i =  | 
|
271  | 
EVERY [rtac ([subsetI, parts_insert_subset] MRS equalityI) i,  | 
|
272  | 
etac parts.induct i,  | 
|
273  | 
Auto_tac];  | 
|
274  | 
||
275  | 
Goal "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)";  | 
|
276  | 
by (parts_tac 1);  | 
|
277  | 
qed "parts_insert_Agent";  | 
|
278  | 
||
279  | 
Goal "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)";  | 
|
280  | 
by (parts_tac 1);  | 
|
281  | 
qed "parts_insert_Nonce";  | 
|
282  | 
||
283  | 
Goal "parts (insert (Number N) H) = insert (Number N) (parts H)";  | 
|
284  | 
by (parts_tac 1);  | 
|
285  | 
qed "parts_insert_Number";  | 
|
286  | 
||
287  | 
Goal "parts (insert (Key K) H) = insert (Key K) (parts H)";  | 
|
288  | 
by (parts_tac 1);  | 
|
289  | 
qed "parts_insert_Key";  | 
|
290  | 
||
291  | 
Goal "parts (insert (Hash X) H) = insert (Hash X) (parts H)";  | 
|
292  | 
by (parts_tac 1);  | 
|
293  | 
qed "parts_insert_Hash";  | 
|
294  | 
||
295  | 
Goal "parts (insert (Crypt K X) H) = \  | 
|
296  | 
\ insert (Crypt K X) (parts (insert X H))";  | 
|
297  | 
by (rtac equalityI 1);  | 
|
298  | 
by (rtac subsetI 1);  | 
|
299  | 
by (etac parts.induct 1);  | 
|
300  | 
by Auto_tac;  | 
|
301  | 
by (etac parts.induct 1);  | 
|
302  | 
by (ALLGOALS (blast_tac (claset() addIs [parts.Body])));  | 
|
303  | 
qed "parts_insert_Crypt";  | 
|
304  | 
||
305  | 
Goal "parts (insert {|X,Y|} H) = \
 | 
|
306  | 
\         insert {|X,Y|} (parts (insert X (insert Y H)))";
 | 
|
307  | 
by (rtac equalityI 1);  | 
|
308  | 
by (rtac subsetI 1);  | 
|
309  | 
by (etac parts.induct 1);  | 
|
310  | 
by Auto_tac;  | 
|
311  | 
by (etac parts.induct 1);  | 
|
312  | 
by (ALLGOALS (blast_tac (claset() addIs [parts.Fst, parts.Snd])));  | 
|
313  | 
qed "parts_insert_MPair";  | 
|
314  | 
||
315  | 
Addsimps [parts_insert_Agent, parts_insert_Nonce,  | 
|
316  | 
parts_insert_Number, parts_insert_Key,  | 
|
317  | 
parts_insert_Hash, parts_insert_Crypt, parts_insert_MPair];  | 
|
318  | 
||
319  | 
||
320  | 
Goal "parts (Key`N) = Key`N";  | 
|
321  | 
by Auto_tac;  | 
|
322  | 
by (etac parts.induct 1);  | 
|
323  | 
by Auto_tac;  | 
|
324  | 
qed "parts_image_Key";  | 
|
325  | 
Addsimps [parts_image_Key];  | 
|
326  | 
||
327  | 
||
328  | 
(*In any message, there is an upper bound N on its greatest nonce.*)  | 
|
| 11251 | 329  | 
Goal "\\<exists>N. \\<forall>n. N\\<le>n --> Nonce n \\<notin> parts {msg}";
 | 
| 11189 | 330  | 
by (induct_tac "msg" 1);  | 
331  | 
by (ALLGOALS (asm_simp_tac (simpset() addsimps [exI, parts_insert2])));  | 
|
332  | 
(*MPair case: blast_tac works out the necessary sum itself!*)  | 
|
333  | 
by (blast_tac (claset() addSEs [add_leE]) 2);  | 
|
334  | 
(*Nonce case*)  | 
|
335  | 
by (res_inst_tac [("x","N + Suc nat")] exI 1);
 | 
|
336  | 
by (auto_tac (claset() addSEs [add_leE], simpset()));  | 
|
337  | 
qed "msg_Nonce_supply";  | 
|
338  | 
||
339  | 
||
340  | 
(**** Inductive relation "analz" ****)  | 
|
341  | 
||
342  | 
val major::prems =  | 
|
| 11217 | 343  | 
Goal "[| {|X,Y|} \\<in> analz H;       \
 | 
344  | 
\ [| X \\<in> analz H; Y \\<in> analz H |] ==> P \  | 
|
| 11189 | 345  | 
\ |] ==> P";  | 
346  | 
by (cut_facts_tac [major] 1);  | 
|
347  | 
by (resolve_tac prems 1);  | 
|
348  | 
by (REPEAT (eresolve_tac [asm_rl, analz.Fst, analz.Snd] 1));  | 
|
349  | 
qed "MPair_analz";  | 
|
350  | 
||
351  | 
AddSEs [MPair_analz]; (*Making it safe speeds up proofs*)  | 
|
352  | 
||
| 11251 | 353  | 
Goal "H \\<subseteq> analz(H)";  | 
| 11189 | 354  | 
by (Blast_tac 1);  | 
355  | 
qed "analz_increasing";  | 
|
356  | 
||
| 11251 | 357  | 
Goal "analz H \\<subseteq> parts H";  | 
| 11189 | 358  | 
by (rtac subsetI 1);  | 
359  | 
by (etac analz.induct 1);  | 
|
360  | 
by (ALLGOALS Blast_tac);  | 
|
361  | 
qed "analz_subset_parts";  | 
|
362  | 
||
363  | 
bind_thm ("not_parts_not_analz", analz_subset_parts RS contra_subsetD);
 | 
|
364  | 
||
365  | 
||
366  | 
Goal "parts (analz H) = parts H";  | 
|
367  | 
by (rtac equalityI 1);  | 
|
368  | 
by (rtac (analz_subset_parts RS parts_mono RS subset_trans) 1);  | 
|
369  | 
by (Simp_tac 1);  | 
|
370  | 
by (blast_tac (claset() addIs [analz_increasing RS parts_mono RS subsetD]) 1);  | 
|
371  | 
qed "parts_analz";  | 
|
372  | 
Addsimps [parts_analz];  | 
|
373  | 
||
374  | 
Goal "analz (parts H) = parts H";  | 
|
375  | 
by Auto_tac;  | 
|
376  | 
by (etac analz.induct 1);  | 
|
377  | 
by Auto_tac;  | 
|
378  | 
qed "analz_parts";  | 
|
379  | 
Addsimps [analz_parts];  | 
|
380  | 
||
381  | 
bind_thm ("analz_insertI", impOfSubs (subset_insertI RS analz_mono));
 | 
|
382  | 
||
383  | 
(** General equational properties **)  | 
|
384  | 
||
385  | 
Goal "analz{} = {}";
 | 
|
386  | 
by Safe_tac;  | 
|
387  | 
by (etac analz.induct 1);  | 
|
388  | 
by (ALLGOALS Blast_tac);  | 
|
389  | 
qed "analz_empty";  | 
|
390  | 
Addsimps [analz_empty];  | 
|
391  | 
||
392  | 
(*Converse fails: we can analz more from the union than from the  | 
|
393  | 
separate parts, as a key in one might decrypt a message in the other*)  | 
|
| 11251 | 394  | 
Goal "analz(G) Un analz(H) \\<subseteq> analz(G Un H)";  | 
| 11189 | 395  | 
by (REPEAT (ares_tac [Un_least, analz_mono, Un_upper1, Un_upper2] 1));  | 
396  | 
qed "analz_Un";  | 
|
397  | 
||
| 11251 | 398  | 
Goal "insert X (analz H) \\<subseteq> analz(insert X H)";  | 
| 11189 | 399  | 
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 1);  | 
400  | 
qed "analz_insert";  | 
|
401  | 
||
402  | 
(** Rewrite rules for pulling out atomic messages **)  | 
|
403  | 
||
404  | 
fun analz_tac i =  | 
|
405  | 
EVERY [rtac ([subsetI, analz_insert] MRS equalityI) i,  | 
|
406  | 
etac analz.induct i,  | 
|
407  | 
Auto_tac];  | 
|
408  | 
||
409  | 
Goal "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)";  | 
|
410  | 
by (analz_tac 1);  | 
|
411  | 
qed "analz_insert_Agent";  | 
|
412  | 
||
413  | 
Goal "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)";  | 
|
414  | 
by (analz_tac 1);  | 
|
415  | 
qed "analz_insert_Nonce";  | 
|
416  | 
||
417  | 
Goal "analz (insert (Number N) H) = insert (Number N) (analz H)";  | 
|
418  | 
by (analz_tac 1);  | 
|
419  | 
qed "analz_insert_Number";  | 
|
420  | 
||
421  | 
Goal "analz (insert (Hash X) H) = insert (Hash X) (analz H)";  | 
|
422  | 
by (analz_tac 1);  | 
|
423  | 
qed "analz_insert_Hash";  | 
|
424  | 
||
425  | 
(*Can only pull out Keys if they are not needed to decrypt the rest*)  | 
|
426  | 
Goalw [keysFor_def]  | 
|
| 11217 | 427  | 
"K \\<notin> keysFor (analz H) ==> \  | 
| 11189 | 428  | 
\ analz (insert (Key K) H) = insert (Key K) (analz H)";  | 
429  | 
by (analz_tac 1);  | 
|
430  | 
qed "analz_insert_Key";  | 
|
431  | 
||
432  | 
Goal "analz (insert {|X,Y|} H) = \
 | 
|
433  | 
\         insert {|X,Y|} (analz (insert X (insert Y H)))";
 | 
|
434  | 
by (rtac equalityI 1);  | 
|
435  | 
by (rtac subsetI 1);  | 
|
436  | 
by (etac analz.induct 1);  | 
|
437  | 
by Auto_tac;  | 
|
438  | 
by (etac analz.induct 1);  | 
|
439  | 
by (ALLGOALS (blast_tac (claset() addIs [analz.Fst, analz.Snd])));  | 
|
440  | 
qed "analz_insert_MPair";  | 
|
441  | 
||
442  | 
(*Can pull out enCrypted message if the Key is not known*)  | 
|
| 11217 | 443  | 
Goal "Key (invKey K) \\<notin> analz H ==> \  | 
| 11189 | 444  | 
\ analz (insert (Crypt K X) H) = \  | 
445  | 
\ insert (Crypt K X) (analz H)";  | 
|
446  | 
by (analz_tac 1);  | 
|
447  | 
qed "analz_insert_Crypt";  | 
|
448  | 
||
| 11217 | 449  | 
Goal "Key (invKey K) \\<in> analz H ==> \  | 
| 11251 | 450  | 
\ analz (insert (Crypt K X) H) \\<subseteq> \  | 
| 11189 | 451  | 
\ insert (Crypt K X) (analz (insert X H))";  | 
452  | 
by (rtac subsetI 1);  | 
|
453  | 
by (eres_inst_tac [("xa","x")] analz.induct 1);
 | 
|
454  | 
by Auto_tac;  | 
|
455  | 
val lemma1 = result();  | 
|
456  | 
||
| 11217 | 457  | 
Goal "Key (invKey K) \\<in> analz H ==> \  | 
| 11251 | 458  | 
\ insert (Crypt K X) (analz (insert X H)) \\<subseteq> \  | 
| 11189 | 459  | 
\ analz (insert (Crypt K X) H)";  | 
460  | 
by Auto_tac;  | 
|
461  | 
by (eres_inst_tac [("xa","x")] analz.induct 1);
 | 
|
462  | 
by Auto_tac;  | 
|
463  | 
by (blast_tac (claset() addIs [analz_insertI, analz.Decrypt]) 1);  | 
|
464  | 
val lemma2 = result();  | 
|
465  | 
||
| 11217 | 466  | 
Goal "Key (invKey K) \\<in> analz H ==> \  | 
| 11189 | 467  | 
\ analz (insert (Crypt K X) H) = \  | 
468  | 
\ insert (Crypt K X) (analz (insert X H))";  | 
|
469  | 
by (REPEAT (ares_tac [equalityI, lemma1, lemma2] 1));  | 
|
470  | 
qed "analz_insert_Decrypt";  | 
|
471  | 
||
472  | 
(*Case analysis: either the message is secure, or it is not!  | 
|
473  | 
Effective, but can cause subgoals to blow up!  | 
|
474  | 
Use with split_if; apparently split_tac does not cope with patterns  | 
|
475  | 
such as "analz (insert (Crypt K X) H)" *)  | 
|
476  | 
Goal "analz (insert (Crypt K X) H) = \  | 
|
| 11217 | 477  | 
\ (if (Key (invKey K) \\<in> analz H) \  | 
| 11189 | 478  | 
\ then insert (Crypt K X) (analz (insert X H)) \  | 
479  | 
\ else insert (Crypt K X) (analz H))";  | 
|
| 11217 | 480  | 
by (case_tac "Key (invKey K) \\<in> analz H " 1);  | 
| 11189 | 481  | 
by (ALLGOALS (asm_simp_tac (simpset() addsimps [analz_insert_Crypt,  | 
482  | 
analz_insert_Decrypt])));  | 
|
483  | 
qed "analz_Crypt_if";  | 
|
484  | 
||
485  | 
Addsimps [analz_insert_Agent, analz_insert_Nonce,  | 
|
486  | 
analz_insert_Number, analz_insert_Key,  | 
|
487  | 
analz_insert_Hash, analz_insert_MPair, analz_Crypt_if];  | 
|
488  | 
||
489  | 
(*This rule supposes "for the sake of argument" that we have the key.*)  | 
|
| 11251 | 490  | 
Goal "analz (insert (Crypt K X) H) \\<subseteq> \  | 
| 11189 | 491  | 
\ insert (Crypt K X) (analz (insert X H))";  | 
492  | 
by (rtac subsetI 1);  | 
|
493  | 
by (etac analz.induct 1);  | 
|
494  | 
by Auto_tac;  | 
|
495  | 
qed "analz_insert_Crypt_subset";  | 
|
496  | 
||
497  | 
||
498  | 
Goal "analz (Key`N) = Key`N";  | 
|
499  | 
by Auto_tac;  | 
|
500  | 
by (etac analz.induct 1);  | 
|
501  | 
by Auto_tac;  | 
|
502  | 
qed "analz_image_Key";  | 
|
503  | 
||
504  | 
Addsimps [analz_image_Key];  | 
|
505  | 
||
506  | 
||
507  | 
(** Idempotence and transitivity **)  | 
|
508  | 
||
| 11251 | 509  | 
Goal "X\\<in> analz (analz H) ==> X\\<in> analz H";  | 
| 11189 | 510  | 
by (etac analz.induct 1);  | 
511  | 
by (ALLGOALS Blast_tac);  | 
|
512  | 
qed "analz_analzD";  | 
|
513  | 
AddSDs [analz_analzD];  | 
|
514  | 
||
515  | 
Goal "analz (analz H) = analz H";  | 
|
516  | 
by (Blast_tac 1);  | 
|
517  | 
qed "analz_idem";  | 
|
518  | 
Addsimps [analz_idem];  | 
|
519  | 
||
| 11251 | 520  | 
Goal "[| X\\<in> analz G; G \\<subseteq> analz H |] ==> X\\<in> analz H";  | 
| 11189 | 521  | 
by (dtac analz_mono 1);  | 
522  | 
by (Blast_tac 1);  | 
|
523  | 
qed "analz_trans";  | 
|
524  | 
||
525  | 
(*Cut; Lemma 2 of Lowe*)  | 
|
| 11251 | 526  | 
Goal "[| Y\\<in> analz (insert X H); X\\<in> analz H |] ==> Y\\<in> analz H";  | 
| 11189 | 527  | 
by (etac analz_trans 1);  | 
528  | 
by (Blast_tac 1);  | 
|
529  | 
qed "analz_cut";  | 
|
530  | 
||
531  | 
(*Cut can be proved easily by induction on  | 
|
532  | 
"Y: analz (insert X H) ==> X: analz H --> Y: analz H"  | 
|
533  | 
*)  | 
|
534  | 
||
535  | 
(*This rewrite rule helps in the simplification of messages that involve  | 
|
536  | 
the forwarding of unknown components (X). Without it, removing occurrences  | 
|
537  | 
of X can be very complicated. *)  | 
|
| 11251 | 538  | 
Goal "X\\<in> analz H ==> analz (insert X H) = analz H";  | 
| 11189 | 539  | 
by (blast_tac (claset() addIs [analz_cut, analz_insertI]) 1);  | 
540  | 
qed "analz_insert_eq";  | 
|
541  | 
||
542  | 
||
543  | 
(** A congruence rule for "analz" **)  | 
|
544  | 
||
| 11251 | 545  | 
Goal "[| analz G \\<subseteq> analz G'; analz H \\<subseteq> analz H' \  | 
546  | 
\ |] ==> analz (G Un H) \\<subseteq> analz (G' Un H')";  | 
|
| 11189 | 547  | 
by (Clarify_tac 1);  | 
548  | 
by (etac analz.induct 1);  | 
|
549  | 
by (ALLGOALS (best_tac (claset() addIs [analz_mono RS subsetD])));  | 
|
550  | 
qed "analz_subset_cong";  | 
|
551  | 
||
552  | 
Goal "[| analz G = analz G'; analz H = analz H' \  | 
|
553  | 
\ |] ==> analz (G Un H) = analz (G' Un H')";  | 
|
554  | 
by (REPEAT_FIRST (ares_tac [equalityI, analz_subset_cong]  | 
|
555  | 
ORELSE' etac equalityE));  | 
|
556  | 
qed "analz_cong";  | 
|
557  | 
||
558  | 
||
559  | 
Goal "analz H = analz H' ==> analz(insert X H) = analz(insert X H')";  | 
|
560  | 
by (asm_simp_tac (simpset() addsimps [insert_def] delsimps [singleton_conv]  | 
|
561  | 
setloop (rtac analz_cong)) 1);  | 
|
562  | 
qed "analz_insert_cong";  | 
|
563  | 
||
564  | 
(*If there are no pairs or encryptions then analz does nothing*)  | 
|
| 11251 | 565  | 
Goal "[| \\<forall>X Y. {|X,Y|} \\<notin> H;  \\<forall>X K. Crypt K X \\<notin> H |] ==> analz H = H";
 | 
| 11189 | 566  | 
by Safe_tac;  | 
567  | 
by (etac analz.induct 1);  | 
|
568  | 
by (ALLGOALS Blast_tac);  | 
|
569  | 
qed "analz_trivial";  | 
|
570  | 
||
571  | 
(*These two are obsolete (with a single Spy) but cost little to prove...*)  | 
|
| 11251 | 572  | 
Goal "X\\<in> analz (\\<Union>i\\<in>A. analz (H i)) ==> X\\<in> analz (\\<Union>i\\<in>A. H i)";  | 
| 11189 | 573  | 
by (etac analz.induct 1);  | 
574  | 
by (ALLGOALS (blast_tac (claset() addIs [impOfSubs analz_mono])));  | 
|
575  | 
val lemma = result();  | 
|
576  | 
||
| 11251 | 577  | 
Goal "analz (\\<Union>i\\<in>A. analz (H i)) = analz (\\<Union>i\\<in>A. H i)";  | 
| 11189 | 578  | 
by (blast_tac (claset() addIs [lemma, impOfSubs analz_mono]) 1);  | 
579  | 
qed "analz_UN_analz";  | 
|
580  | 
Addsimps [analz_UN_analz];  | 
|
581  | 
||
582  | 
||
583  | 
(**** Inductive relation "synth" ****)  | 
|
584  | 
||
| 11251 | 585  | 
Goal "H \\<subseteq> synth(H)";  | 
| 11189 | 586  | 
by (Blast_tac 1);  | 
587  | 
qed "synth_increasing";  | 
|
588  | 
||
589  | 
(** Unions **)  | 
|
590  | 
||
591  | 
(*Converse fails: we can synth more from the union than from the  | 
|
592  | 
separate parts, building a compound message using elements of each.*)  | 
|
| 11251 | 593  | 
Goal "synth(G) Un synth(H) \\<subseteq> synth(G Un H)";  | 
| 11189 | 594  | 
by (REPEAT (ares_tac [Un_least, synth_mono, Un_upper1, Un_upper2] 1));  | 
595  | 
qed "synth_Un";  | 
|
596  | 
||
| 11251 | 597  | 
Goal "insert X (synth H) \\<subseteq> synth(insert X H)";  | 
| 11189 | 598  | 
by (blast_tac (claset() addIs [impOfSubs synth_mono]) 1);  | 
599  | 
qed "synth_insert";  | 
|
600  | 
||
601  | 
(** Idempotence and transitivity **)  | 
|
602  | 
||
| 11251 | 603  | 
Goal "X\\<in> synth (synth H) ==> X\\<in> synth H";  | 
| 11189 | 604  | 
by (etac synth.induct 1);  | 
605  | 
by (ALLGOALS Blast_tac);  | 
|
606  | 
qed "synth_synthD";  | 
|
607  | 
AddSDs [synth_synthD];  | 
|
608  | 
||
609  | 
Goal "synth (synth H) = synth H";  | 
|
610  | 
by (Blast_tac 1);  | 
|
611  | 
qed "synth_idem";  | 
|
612  | 
||
| 11251 | 613  | 
Goal "[| X\\<in> synth G; G \\<subseteq> synth H |] ==> X\\<in> synth H";  | 
| 11189 | 614  | 
by (dtac synth_mono 1);  | 
615  | 
by (Blast_tac 1);  | 
|
616  | 
qed "synth_trans";  | 
|
617  | 
||
618  | 
(*Cut; Lemma 2 of Lowe*)  | 
|
| 11251 | 619  | 
Goal "[| Y\\<in> synth (insert X H); X\\<in> synth H |] ==> Y\\<in> synth H";  | 
| 11189 | 620  | 
by (etac synth_trans 1);  | 
621  | 
by (Blast_tac 1);  | 
|
622  | 
qed "synth_cut";  | 
|
623  | 
||
| 11217 | 624  | 
Goal "Agent A \\<in> synth H";  | 
| 11189 | 625  | 
by (Blast_tac 1);  | 
626  | 
qed "Agent_synth";  | 
|
627  | 
||
| 11217 | 628  | 
Goal "Number n \\<in> synth H";  | 
| 11189 | 629  | 
by (Blast_tac 1);  | 
630  | 
qed "Number_synth";  | 
|
631  | 
||
| 11217 | 632  | 
Goal "(Nonce N \\<in> synth H) = (Nonce N \\<in> H)";  | 
| 11189 | 633  | 
by (Blast_tac 1);  | 
634  | 
qed "Nonce_synth_eq";  | 
|
635  | 
||
| 11217 | 636  | 
Goal "(Key K \\<in> synth H) = (Key K \\<in> H)";  | 
| 11189 | 637  | 
by (Blast_tac 1);  | 
638  | 
qed "Key_synth_eq";  | 
|
639  | 
||
| 11217 | 640  | 
Goal "Key K \\<notin> H ==> (Crypt K X \\<in> synth H) = (Crypt K X \\<in> H)";  | 
| 11189 | 641  | 
by (Blast_tac 1);  | 
642  | 
qed "Crypt_synth_eq";  | 
|
643  | 
||
644  | 
Addsimps [Agent_synth, Number_synth,  | 
|
645  | 
Nonce_synth_eq, Key_synth_eq, Crypt_synth_eq];  | 
|
646  | 
||
647  | 
||
648  | 
Goalw [keysFor_def]  | 
|
| 11217 | 649  | 
    "keysFor (synth H) = keysFor H Un invKey`{K. Key K \\<in> H}";
 | 
| 11189 | 650  | 
by (Blast_tac 1);  | 
651  | 
qed "keysFor_synth";  | 
|
652  | 
Addsimps [keysFor_synth];  | 
|
653  | 
||
654  | 
||
655  | 
(*** Combinations of parts, analz and synth ***)  | 
|
656  | 
||
657  | 
Goal "parts (synth H) = parts H Un synth H";  | 
|
658  | 
by (rtac equalityI 1);  | 
|
659  | 
by (rtac subsetI 1);  | 
|
660  | 
by (etac parts.induct 1);  | 
|
661  | 
by (ALLGOALS  | 
|
662  | 
(blast_tac (claset() addIs [synth_increasing RS parts_mono RS subsetD,  | 
|
663  | 
parts.Fst, parts.Snd, parts.Body])));  | 
|
664  | 
qed "parts_synth";  | 
|
665  | 
Addsimps [parts_synth];  | 
|
666  | 
||
667  | 
Goal "analz (analz G Un H) = analz (G Un H)";  | 
|
668  | 
by (REPEAT_FIRST (resolve_tac [equalityI, analz_subset_cong]));  | 
|
669  | 
by (ALLGOALS Simp_tac);  | 
|
670  | 
qed "analz_analz_Un";  | 
|
671  | 
||
672  | 
Goal "analz (synth G Un H) = analz (G Un H) Un synth G";  | 
|
673  | 
by (rtac equalityI 1);  | 
|
674  | 
by (rtac subsetI 1);  | 
|
675  | 
by (etac analz.induct 1);  | 
|
676  | 
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 5);  | 
|
677  | 
by (ALLGOALS  | 
|
678  | 
(blast_tac (claset() addIs [analz.Fst, analz.Snd, analz.Decrypt])));  | 
|
679  | 
qed "analz_synth_Un";  | 
|
680  | 
||
681  | 
Goal "analz (synth H) = analz H Un synth H";  | 
|
682  | 
by (cut_inst_tac [("H","{}")] analz_synth_Un 1);
 | 
|
683  | 
by (Full_simp_tac 1);  | 
|
684  | 
qed "analz_synth";  | 
|
685  | 
Addsimps [analz_analz_Un, analz_synth_Un, analz_synth];  | 
|
686  | 
||
687  | 
||
688  | 
(** For reasoning about the Fake rule in traces **)  | 
|
689  | 
||
| 11251 | 690  | 
Goal "X\\<in> G ==> parts(insert X H) \\<subseteq> parts G Un parts H";  | 
| 11189 | 691  | 
by (rtac ([parts_mono, parts_Un_subset2] MRS subset_trans) 1);  | 
692  | 
by (Blast_tac 1);  | 
|
693  | 
qed "parts_insert_subset_Un";  | 
|
694  | 
||
695  | 
(*More specifically for Fake. Very occasionally we could do with a version  | 
|
| 11251 | 696  | 
  of the form  parts{X} \\<subseteq> synth (analz H) Un parts H *)
 | 
697  | 
Goal "X\\<in> synth (analz H) ==> \  | 
|
698  | 
\ parts (insert X H) \\<subseteq> synth (analz H) Un parts H";  | 
|
| 11189 | 699  | 
by (dtac parts_insert_subset_Un 1);  | 
700  | 
by (Full_simp_tac 1);  | 
|
701  | 
by (Blast_tac 1);  | 
|
702  | 
qed "Fake_parts_insert";  | 
|
703  | 
||
704  | 
(*H is sometimes (Key ` KK Un spies evs), so can't put G=H*)  | 
|
| 11251 | 705  | 
Goal "X\\<in> synth (analz G) ==> \  | 
706  | 
\ analz (insert X H) \\<subseteq> synth (analz G) Un analz (G Un H)";  | 
|
| 11189 | 707  | 
by (rtac subsetI 1);  | 
| 11217 | 708  | 
by (subgoal_tac "x \\<in> analz (synth (analz G) Un H)" 1);  | 
| 11189 | 709  | 
by (blast_tac (claset() addIs [impOfSubs analz_mono,  | 
710  | 
impOfSubs (analz_mono RS synth_mono)]) 2);  | 
|
711  | 
by (Full_simp_tac 1);  | 
|
712  | 
by (Blast_tac 1);  | 
|
713  | 
qed "Fake_analz_insert";  | 
|
714  | 
||
| 11251 | 715  | 
Goal "(X\\<in> analz H & X\\<in> parts H) = (X\\<in> analz H)";  | 
| 11189 | 716  | 
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1);  | 
717  | 
val analz_conj_parts = result();  | 
|
718  | 
||
| 11251 | 719  | 
Goal "(X\\<in> analz H | X\\<in> parts H) = (X\\<in> parts H)";  | 
| 11189 | 720  | 
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1);  | 
721  | 
val analz_disj_parts = result();  | 
|
722  | 
||
723  | 
AddIffs [analz_conj_parts, analz_disj_parts];  | 
|
724  | 
||
725  | 
(*Without this equation, other rules for synth and analz would yield  | 
|
726  | 
redundant cases*)  | 
|
| 11217 | 727  | 
Goal "({|X,Y|} \\<in> synth (analz H)) = \
 | 
728  | 
\ (X \\<in> synth (analz H) & Y \\<in> synth (analz H))";  | 
|
| 11189 | 729  | 
by (Blast_tac 1);  | 
730  | 
qed "MPair_synth_analz";  | 
|
731  | 
||
732  | 
AddIffs [MPair_synth_analz];  | 
|
733  | 
||
| 11217 | 734  | 
Goal "[| Key K \\<in> analz H; Key (invKey K) \\<in> analz H |] \  | 
735  | 
\ ==> (Crypt K X \\<in> synth (analz H)) = (X \\<in> synth (analz H))";  | 
|
| 11189 | 736  | 
by (Blast_tac 1);  | 
737  | 
qed "Crypt_synth_analz";  | 
|
738  | 
||
739  | 
||
| 11217 | 740  | 
Goal "X \\<notin> synth (analz H) \  | 
741  | 
\     ==> (Hash{|X,Y|} \\<in> synth (analz H)) = (Hash{|X,Y|} \\<in> analz H)";
 | 
|
| 11189 | 742  | 
by (Blast_tac 1);  | 
743  | 
qed "Hash_synth_analz";  | 
|
744  | 
Addsimps [Hash_synth_analz];  | 
|
745  | 
||
746  | 
||
747  | 
(**** HPair: a combination of Hash and MPair ****)  | 
|
748  | 
||
749  | 
(*** Freeness ***)  | 
|
750  | 
||
751  | 
Goalw [HPair_def] "Agent A ~= Hash[X] Y";  | 
|
752  | 
by (Simp_tac 1);  | 
|
753  | 
qed "Agent_neq_HPair";  | 
|
754  | 
||
755  | 
Goalw [HPair_def] "Nonce N ~= Hash[X] Y";  | 
|
756  | 
by (Simp_tac 1);  | 
|
757  | 
qed "Nonce_neq_HPair";  | 
|
758  | 
||
759  | 
Goalw [HPair_def] "Number N ~= Hash[X] Y";  | 
|
760  | 
by (Simp_tac 1);  | 
|
761  | 
qed "Number_neq_HPair";  | 
|
762  | 
||
763  | 
Goalw [HPair_def] "Key K ~= Hash[X] Y";  | 
|
764  | 
by (Simp_tac 1);  | 
|
765  | 
qed "Key_neq_HPair";  | 
|
766  | 
||
767  | 
Goalw [HPair_def] "Hash Z ~= Hash[X] Y";  | 
|
768  | 
by (Simp_tac 1);  | 
|
769  | 
qed "Hash_neq_HPair";  | 
|
770  | 
||
771  | 
Goalw [HPair_def] "Crypt K X' ~= Hash[X] Y";  | 
|
772  | 
by (Simp_tac 1);  | 
|
773  | 
qed "Crypt_neq_HPair";  | 
|
774  | 
||
775  | 
val HPair_neqs = [Agent_neq_HPair, Nonce_neq_HPair, Number_neq_HPair,  | 
|
776  | 
Key_neq_HPair, Hash_neq_HPair, Crypt_neq_HPair];  | 
|
777  | 
||
778  | 
AddIffs HPair_neqs;  | 
|
779  | 
AddIffs (HPair_neqs RL [not_sym]);  | 
|
780  | 
||
781  | 
Goalw [HPair_def] "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)";  | 
|
782  | 
by (Simp_tac 1);  | 
|
783  | 
qed "HPair_eq";  | 
|
784  | 
||
785  | 
Goalw [HPair_def] "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)";
 | 
|
786  | 
by (Simp_tac 1);  | 
|
787  | 
qed "MPair_eq_HPair";  | 
|
788  | 
||
789  | 
Goalw [HPair_def] "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)";
 | 
|
790  | 
by Auto_tac;  | 
|
791  | 
qed "HPair_eq_MPair";  | 
|
792  | 
||
793  | 
AddIffs [HPair_eq, MPair_eq_HPair, HPair_eq_MPair];  | 
|
794  | 
||
795  | 
||
796  | 
(*** Specialized laws, proved in terms of those for Hash and MPair ***)  | 
|
797  | 
||
798  | 
Goalw [HPair_def] "keysFor (insert (Hash[X] Y) H) = keysFor H";  | 
|
799  | 
by (Simp_tac 1);  | 
|
800  | 
qed "keysFor_insert_HPair";  | 
|
801  | 
||
802  | 
Goalw [HPair_def]  | 
|
803  | 
"parts (insert (Hash[X] Y) H) = \  | 
|
804  | 
\    insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))";
 | 
|
805  | 
by (Simp_tac 1);  | 
|
806  | 
qed "parts_insert_HPair";  | 
|
807  | 
||
808  | 
Goalw [HPair_def]  | 
|
809  | 
"analz (insert (Hash[X] Y) H) = \  | 
|
810  | 
\    insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))";
 | 
|
811  | 
by (Simp_tac 1);  | 
|
812  | 
qed "analz_insert_HPair";  | 
|
813  | 
||
| 11217 | 814  | 
Goalw [HPair_def] "X \\<notin> synth (analz H) \  | 
815  | 
\ ==> (Hash[X] Y \\<in> synth (analz H)) = \  | 
|
816  | 
\       (Hash {|X, Y|} \\<in> analz H & Y \\<in> synth (analz H))";
 | 
|
| 11189 | 817  | 
by (Simp_tac 1);  | 
818  | 
by (Blast_tac 1);  | 
|
819  | 
qed "HPair_synth_analz";  | 
|
820  | 
||
821  | 
Addsimps [keysFor_insert_HPair, parts_insert_HPair, analz_insert_HPair,  | 
|
822  | 
HPair_synth_analz, HPair_synth_analz];  | 
|
823  | 
||
824  | 
||
825  | 
(*We do NOT want Crypt... messages broken up in protocols!!*)  | 
|
826  | 
Delrules [make_elim parts.Body];  | 
|
827  | 
||
828  | 
||
829  | 
(** Rewrites to push in Key and Crypt messages, so that other messages can  | 
|
830  | 
be pulled out using the analz_insert rules **)  | 
|
831  | 
||
832  | 
fun insComm x y = inst "x" x (inst "y" y insert_commute);  | 
|
833  | 
||
834  | 
val pushKeys = map (insComm "Key ?K")  | 
|
835  | 
["Agent ?C", "Nonce ?N", "Number ?N",  | 
|
836  | 
"Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"];  | 
|
837  | 
||
838  | 
val pushCrypts = map (insComm "Crypt ?X ?K")  | 
|
839  | 
["Agent ?C", "Nonce ?N", "Number ?N",  | 
|
840  | 
"Hash ?X'", "MPair ?X' ?Y"];  | 
|
841  | 
||
842  | 
(*Cannot be added with Addsimps -- we don't always want to re-order messages*)  | 
|
843  | 
bind_thms ("pushes", pushKeys@pushCrypts);
 | 
|
844  | 
||
845  | 
||
846  | 
(*** Tactics useful for many protocol proofs ***)  | 
|
847  | 
||
848  | 
(*Prove base case (subgoal i) and simplify others. A typical base case  | 
|
| 11217 | 849  | 
concerns Crypt K X \\<notin> Key`shrK`bad and cannot be proved by rewriting  | 
| 11189 | 850  | 
alone.*)  | 
851  | 
fun prove_simple_subgoals_tac i =  | 
|
852  | 
force_tac (claset(), simpset() addsimps [image_eq_UN]) i THEN  | 
|
853  | 
ALLGOALS Asm_simp_tac;  | 
|
854  | 
||
855  | 
fun Fake_parts_insert_tac i =  | 
|
856  | 
blast_tac (claset() addIs [parts_insertI]  | 
|
857  | 
addDs [impOfSubs analz_subset_parts,  | 
|
858  | 
impOfSubs Fake_parts_insert]) i;  | 
|
859  | 
||
860  | 
(*Apply rules to break down assumptions of the form  | 
|
| 11217 | 861  | 
Y \\<in> parts(insert X H) and Y \\<in> analz(insert X H)  | 
| 11189 | 862  | 
*)  | 
863  | 
val Fake_insert_tac =  | 
|
864  | 
dresolve_tac [impOfSubs Fake_analz_insert,  | 
|
865  | 
impOfSubs Fake_parts_insert] THEN'  | 
|
866  | 
eresolve_tac [asm_rl, synth.Inj];  | 
|
867  | 
||
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
868  | 
fun Fake_insert_simp_tac ss i =  | 
| 
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
869  | 
REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;  | 
| 11189 | 870  | 
|
871  | 
||
872  | 
(*Analysis of Fake cases. Also works for messages that forward unknown parts,  | 
|
873  | 
but this application is no longer necessary if analz_insert_eq is used.  | 
|
874  | 
Abstraction over i is ESSENTIAL: it delays the dereferencing of claset  | 
|
875  | 
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)  | 
|
876  | 
||
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
877  | 
fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL  | 
| 
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
878  | 
(Fake_insert_simp_tac ss 1  | 
| 11189 | 879  | 
THEN  | 
880  | 
IF_UNSOLVED (Blast.depth_tac  | 
|
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
881  | 
(cs addIs [analz_insertI,  | 
| 11189 | 882  | 
impOfSubs analz_subset_parts]) 4 1));  | 
883  | 
||
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
884  | 
(*The explicit claset and simpset arguments help it work with Isar*)  | 
| 
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
885  | 
fun gen_spy_analz_tac (cs,ss) i =  | 
| 11189 | 886  | 
DETERM  | 
887  | 
(SELECT_GOAL  | 
|
888  | 
(EVERY  | 
|
889  | 
[ (*push in occurrences of X...*)  | 
|
890  | 
(REPEAT o CHANGED)  | 
|
891  | 
           (res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
 | 
|
892  | 
(*...allowing further simplifications*)  | 
|
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
893  | 
simp_tac ss 1,  | 
| 11189 | 894  | 
REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),  | 
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
895  | 
DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i);  | 
| 
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
896  | 
|
| 
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11264 
diff
changeset
 | 
897  | 
fun spy_analz_tac i = gen_spy_analz_tac (claset(), simpset()) i;  | 
| 11189 | 898  | 
|
899  | 
(*By default only o_apply is built-in. But in the presence of eta-expansion  | 
|
900  | 
this means that some terms displayed as (f o g) will be rewritten, and others  | 
|
901  | 
will not!*)  | 
|
902  | 
Addsimps [o_def];  |