| 12224 |      1 | (*  Title       : MacLaurin.thy
 | 
|  |      2 |     Author      : Jacques D. Fleuriot
 | 
|  |      3 |     Copyright   : 2001 University of Edinburgh
 | 
|  |      4 |     Description : MacLaurin series
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
 | 
|  |      8 | by (induct_tac "n" 1);
 | 
|  |      9 | by Auto_tac;
 | 
|  |     10 | qed "sumr_offset";
 | 
|  |     11 | 
 | 
|  |     12 | Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
 | 
|  |     13 | by (induct_tac "n" 1);
 | 
|  |     14 | by Auto_tac;
 | 
|  |     15 | qed "sumr_offset2";
 | 
|  |     16 | 
 | 
|  |     17 | Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
 | 
|  |     18 | by (simp_tac (simpset() addsimps [sumr_offset]) 1);
 | 
|  |     19 | qed "sumr_offset3";
 | 
|  |     20 | 
 | 
|  |     21 | Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
 | 
|  |     22 | by (simp_tac (simpset() addsimps [sumr_offset]) 1);
 | 
|  |     23 | qed "sumr_offset4";
 | 
|  |     24 | 
 | 
|  |     25 | Goal "0 < n ==> \
 | 
|  |     26 | \     sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
 | 
|  |     27 | \            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
 | 
|  |     28 | \     sumr 0 (Suc n) (%n. (if even(n) then 0 else \
 | 
|  |     29 | \            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
 | 
|  |     30 | by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
 | 
|  |     31 | by Auto_tac;
 | 
|  |     32 | qed "sumr_from_1_from_0";
 | 
|  |     33 | 
 | 
|  |     34 | (*---------------------------------------------------------------------------*)
 | 
|  |     35 | (* Maclaurin's theorem with Lagrange form of remainder                       *)
 | 
|  |     36 | (*---------------------------------------------------------------------------*)
 | 
|  |     37 | 
 | 
|  |     38 | (* Annoying: Proof is now even longer due mostly to 
 | 
|  |     39 |    change in behaviour of simplifier  since Isabelle99 *)
 | 
|  |     40 | Goal " [| 0 < h; 0 < n; diff 0 = f; \
 | 
|  |     41 | \      ALL m t. \
 | 
|  |     42 | \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
 | 
|  |     43 | \   ==> EX t. 0 < t & \
 | 
|  |     44 | \             t < h & \
 | 
|  |     45 | \             f h = \
 | 
|  |     46 | \             sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
 | 
|  |     47 | \             (diff n t / real (fact n)) * h ^ n";
 | 
|  |     48 | by (case_tac "n = 0" 1);
 | 
|  |     49 | by (Force_tac 1);
 | 
|  |     50 | by (dtac not0_implies_Suc 1);
 | 
|  |     51 | by (etac exE 1);
 | 
|  |     52 | by (subgoal_tac 
 | 
|  |     53 |      "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
 | 
|  |     54 | \                  + (B * ((h ^ n) / real (fact n)))" 1);
 | 
|  |     55 | 
 | 
|  |     56 | by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
 | 
|  |     57 |     ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
 | 
|  |     58 | by (res_inst_tac 
 | 
|  |     59 |   [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
 | 
|  |     60 | \        * real (fact n) / (h ^ n)")] exI 2);
 | 
|  |     61 | by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
 | 
|  |     62 |  by (rtac (CLAIM "x = (1::real) ==>  a = a * (x::real)") 2);
 | 
|  |     63 | by (asm_simp_tac (HOL_ss addsimps 
 | 
|  |     64 |     [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
 | 
|  |     65 |      delsimps [realpow_Suc]) 2);
 | 
| 12486 |     66 | by (stac real_mult_inv_left 2);
 | 
|  |     67 | by (stac real_mult_inv_left 3);
 | 
| 12224 |     68 | by (dtac (realpow_gt_zero RS real_not_refl2 RS not_sym) 2);
 | 
|  |     69 | by (assume_tac 2);
 | 
|  |     70 | by (rtac real_of_nat_fact_not_zero 2);
 | 
|  |     71 | by (Simp_tac 2);
 | 
|  |     72 | by (etac exE 1);
 | 
|  |     73 | by (cut_inst_tac [("b","%t. f t - \
 | 
|  |     74 | \      (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
 | 
|  |     75 | \                       (B * ((t ^ n) / real (fact n))))")] 
 | 
|  |     76 |     (CLAIM "EX g. g = b") 1);
 | 
|  |     77 | by (etac exE 1);
 | 
|  |     78 | by (subgoal_tac "g 0 = 0 & g h =0" 1);
 | 
|  |     79 | by (asm_simp_tac (simpset() addsimps 
 | 
|  |     80 |     [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
 | 
|  |     81 |     delsimps [sumr_Suc]) 2);
 | 
|  |     82 | by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
 | 
|  |     83 | by (asm_full_simp_tac (simpset() addsimps 
 | 
|  |     84 |     [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
 | 
|  |     85 |     delsimps [sumr_Suc]) 2);
 | 
|  |     86 | by (cut_inst_tac [("b","%m t. diff m t - \
 | 
|  |     87 | \      (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
 | 
|  |     88 | \       + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] 
 | 
|  |     89 |     (CLAIM "EX difg. difg = b") 1);
 | 
|  |     90 | by (etac exE 1);
 | 
|  |     91 | by (subgoal_tac "difg 0 = g" 1);
 | 
|  |     92 | by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
 | 
|  |     93 | by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
 | 
|  |     94 | \                   DERIV (difg m) t :> difg (Suc m) t" 1);
 | 
|  |     95 | by (Clarify_tac 2);
 | 
|  |     96 | by (rtac DERIV_diff 2);
 | 
|  |     97 | by (Asm_simp_tac 2);
 | 
|  |     98 | by DERIV_tac;
 | 
|  |     99 | by DERIV_tac;
 | 
|  |    100 | by (rtac lemma_DERIV_subst 3);
 | 
|  |    101 | by (rtac DERIV_quotient 3);
 | 
|  |    102 | by (rtac DERIV_const 4);
 | 
|  |    103 | by (rtac DERIV_pow 3);
 | 
|  |    104 | by (asm_simp_tac (simpset() addsimps [real_inverse_distrib,
 | 
|  |    105 |     CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" 
 | 
|  |    106 |     real_mult_ac,fact_diff_Suc]) 4);
 | 
|  |    107 | by (Asm_simp_tac 3);
 | 
|  |    108 | by (forw_inst_tac [("m","ma")] less_add_one 2);
 | 
|  |    109 | by (Clarify_tac 2);
 | 
|  |    110 | by (asm_simp_tac (simpset() addsimps 
 | 
|  |    111 |     [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
 | 
|  |    112 |     delsimps [sumr_Suc]) 2);
 | 
|  |    113 | by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
 | 
|  |    114 |           (read_instantiate [("k","1")] sumr_offset4))] 
 | 
|  |    115 |     delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
 | 
|  |    116 | by (rtac lemma_DERIV_subst 2);
 | 
|  |    117 | by (rtac DERIV_add 2);
 | 
|  |    118 | by (rtac DERIV_const 3);
 | 
|  |    119 | by (rtac DERIV_sumr 2);
 | 
|  |    120 | by (Clarify_tac 2);
 | 
|  |    121 | by (Simp_tac 3);
 | 
|  |    122 | by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] 
 | 
|  |    123 |     delsimps [fact_Suc,realpow_Suc]) 2);
 | 
|  |    124 | by (rtac DERIV_cmult 2);
 | 
|  |    125 | by (rtac lemma_DERIV_subst 2);
 | 
|  |    126 | by DERIV_tac;
 | 
| 12486 |    127 | by (stac fact_Suc 2);
 | 
|  |    128 | by (stac real_of_nat_mult 2);
 | 
| 12224 |    129 | by (simp_tac (simpset() addsimps [real_inverse_distrib] @
 | 
|  |    130 |     real_mult_ac) 2);
 | 
|  |    131 | by (subgoal_tac "ALL ma. ma < n --> \
 | 
|  |    132 | \        (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
 | 
|  |    133 | by (rotate_tac 11 1);
 | 
|  |    134 | by (dres_inst_tac [("x","m")] spec 1);
 | 
|  |    135 | by (etac impE 1);
 | 
|  |    136 | by (Asm_simp_tac 1);
 | 
|  |    137 | by (etac exE 1);
 | 
|  |    138 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    139 | by (asm_full_simp_tac (simpset() addsimps 
 | 
|  |    140 |      [ARITH_PROVE "(x - y = 0) = (y = (x::real))"] 
 | 
|  |    141 |       delsimps [realpow_Suc,fact_Suc]) 1);
 | 
|  |    142 | by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
 | 
|  |    143 | by (Clarify_tac 2);
 | 
|  |    144 | by (Asm_simp_tac 2);
 | 
|  |    145 | by (forw_inst_tac [("m","ma")] less_add_one 2);
 | 
|  |    146 | by (Clarify_tac 2);
 | 
|  |    147 | by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
 | 
|  |    148 | by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
 | 
|  |    149 |           (read_instantiate [("k","1")] sumr_offset4))] 
 | 
|  |    150 |     delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
 | 
|  |    151 | by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
 | 
|  |    152 | \                DERIV (difg m) t :> 0)" 1);
 | 
|  |    153 | by (rtac allI 1 THEN rtac impI 1);
 | 
|  |    154 | by (rotate_tac 12 1);
 | 
|  |    155 | by (dres_inst_tac [("x","ma")] spec 1);
 | 
|  |    156 | by (etac impE 1 THEN assume_tac 1);
 | 
|  |    157 | by (etac exE 1);
 | 
|  |    158 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    159 | (* do some tidying up *)
 | 
|  |    160 | by (ALLGOALS(thin_tac "difg = \
 | 
|  |    161 | \          (%m t. diff m t - \
 | 
|  |    162 | \                 (sumr 0 (n - m) \
 | 
|  |    163 | \                   (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
 | 
|  |    164 | \                  B * (t ^ (n - m) / real (fact (n - m)))))"));
 | 
|  |    165 | by (ALLGOALS(thin_tac "g = \
 | 
|  |    166 | \          (%t. f t - \
 | 
|  |    167 | \               (sumr 0 n (%m. diff m 0 / real  (fact m) * t ^ m) + \
 | 
|  |    168 | \                B * (t ^ n / real (fact n))))"));
 | 
|  |    169 | by (ALLGOALS(thin_tac "f h = \
 | 
|  |    170 | \          sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    171 | \          B * (h ^ n / real (fact n))"));
 | 
|  |    172 | (* back to business *)
 | 
|  |    173 | by (Asm_simp_tac 1);
 | 
|  |    174 | by (rtac DERIV_unique 1);
 | 
|  |    175 | by (Blast_tac 2);
 | 
|  |    176 | by (Force_tac 1);
 | 
|  |    177 | by (rtac allI 1 THEN induct_tac "ma" 1);
 | 
|  |    178 | by (rtac impI 1 THEN rtac Rolle 1);
 | 
|  |    179 | by (assume_tac 1);
 | 
|  |    180 | by (Asm_full_simp_tac 1);
 | 
|  |    181 | by (Asm_full_simp_tac 1);
 | 
|  |    182 | by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
 | 
|  |    183 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
 | 
|  |    184 | by (blast_tac (claset() addDs [DERIV_isCont]) 1);
 | 
|  |    185 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
 | 
|  |    186 | by (Clarify_tac 1);
 | 
|  |    187 | by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
 | 
|  |    188 | by (Force_tac 1);
 | 
|  |    189 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
 | 
|  |    190 | by (Clarify_tac 1);
 | 
|  |    191 | by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
 | 
|  |    192 | by (Force_tac 1);
 | 
|  |    193 | by (Step_tac 1);
 | 
|  |    194 | by (Force_tac 1);
 | 
|  |    195 | by (subgoal_tac "EX ta. 0 < ta & ta < t & \
 | 
|  |    196 | \                DERIV difg (Suc n) ta :> 0" 1);
 | 
|  |    197 | by (rtac Rolle 2 THEN assume_tac 2);
 | 
|  |    198 | by (Asm_full_simp_tac 2);
 | 
|  |    199 | by (rotate_tac 2 2);
 | 
|  |    200 | by (dres_inst_tac [("x","n")] spec 2);
 | 
|  |    201 | by (ftac (ARITH_PROVE "n < m  ==> n < Suc m") 2);
 | 
|  |    202 | by (rtac DERIV_unique 2);
 | 
|  |    203 | by (assume_tac 3);
 | 
|  |    204 | by (Force_tac 2);
 | 
|  |    205 | by (subgoal_tac 
 | 
|  |    206 |     "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
 | 
|  |    207 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
 | 
|  |    208 | by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
 | 
|  |    209 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
 | 
|  |    210 | by (Clarify_tac 2);
 | 
|  |    211 | by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
 | 
|  |    212 | by (Force_tac 2);
 | 
|  |    213 | by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
 | 
|  |    214 | by (Clarify_tac 2);
 | 
|  |    215 | by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
 | 
|  |    216 | by (Force_tac 2);
 | 
|  |    217 | by (Step_tac 1);
 | 
|  |    218 | by (res_inst_tac [("x","ta")] exI 1);
 | 
|  |    219 | by (Force_tac 1);
 | 
|  |    220 | qed "Maclaurin";
 | 
|  |    221 | 
 | 
|  |    222 | Goal "0 < h & 0 < n & diff 0 = f & \
 | 
|  |    223 | \      (ALL m t. \
 | 
|  |    224 | \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
 | 
|  |    225 | \   --> (EX t. 0 < t & \
 | 
|  |    226 | \             t < h & \
 | 
|  |    227 | \             f h = \
 | 
|  |    228 | \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    229 | \             diff n t / real (fact n) * h ^ n)";
 | 
|  |    230 | by (blast_tac (claset() addIs [Maclaurin]) 1);
 | 
|  |    231 | qed "Maclaurin_objl";
 | 
|  |    232 | 
 | 
|  |    233 | Goal " [| 0 < h; diff 0 = f; \
 | 
|  |    234 | \      ALL m t. \
 | 
|  |    235 | \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
 | 
|  |    236 | \   ==> EX t. 0 < t & \
 | 
|  |    237 | \             t <= h & \
 | 
|  |    238 | \             f h = \
 | 
|  |    239 | \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    240 | \             diff n t / real (fact n) * h ^ n";
 | 
|  |    241 | by (case_tac "n" 1);
 | 
|  |    242 | by Auto_tac;
 | 
|  |    243 | by (dtac Maclaurin 1 THEN Auto_tac);
 | 
|  |    244 | qed "Maclaurin2";
 | 
|  |    245 | 
 | 
|  |    246 | Goal "0 < h & diff 0 = f & \
 | 
|  |    247 | \      (ALL m t. \
 | 
|  |    248 | \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
 | 
|  |    249 | \   --> (EX t. 0 < t & \
 | 
|  |    250 | \             t <= h & \
 | 
|  |    251 | \             f h = \
 | 
|  |    252 | \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    253 | \             diff n t / real (fact n) * h ^ n)";
 | 
|  |    254 | by (blast_tac (claset() addIs [Maclaurin2]) 1);
 | 
|  |    255 | qed "Maclaurin2_objl";
 | 
|  |    256 | 
 | 
|  |    257 | Goal " [| h < 0; 0 < n; diff 0 = f; \
 | 
|  |    258 | \      ALL m t. \
 | 
|  |    259 | \         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
 | 
|  |    260 | \   ==> EX t. h < t & \
 | 
|  |    261 | \             t < 0 & \
 | 
|  |    262 | \             f h = \
 | 
|  |    263 | \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    264 | \             diff n t / real (fact n) * h ^ n";
 | 
|  |    265 | by (cut_inst_tac [("f","%x. f (-x)"),
 | 
|  |    266 |                  ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
 | 
|  |    267 |                  ("h","-h"),("n","n")] Maclaurin_objl 1);
 | 
|  |    268 | by (Asm_full_simp_tac 1);
 | 
|  |    269 | by (etac impE 1 THEN Step_tac 1);
 | 
| 12486 |    270 | by (stac real_minus_mult_eq2 1);
 | 
| 12224 |    271 | by (rtac DERIV_cmult 1);
 | 
|  |    272 | by (rtac lemma_DERIV_subst 1);
 | 
|  |    273 | by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
 | 
|  |    274 | by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
 | 
|  |    275 | by (Force_tac 2);
 | 
|  |    276 | by (Force_tac 1);
 | 
|  |    277 | by (res_inst_tac [("x","-t")] exI 1);
 | 
|  |    278 | by Auto_tac;
 | 
|  |    279 | by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
 | 
|  |    280 | by (rtac sumr_fun_eq 1);
 | 
|  |    281 | by (Asm_full_simp_tac 1);
 | 
|  |    282 | by (auto_tac (claset(),simpset() addsimps [real_divide_def,
 | 
|  |    283 |     CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
 | 
|  |    284 |     realpow_mult RS sym]));
 | 
|  |    285 | qed "Maclaurin_minus";
 | 
|  |    286 | 
 | 
|  |    287 | Goal "(h < 0 & 0 < n & diff 0 = f & \
 | 
|  |    288 | \      (ALL m t. \
 | 
|  |    289 | \         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
 | 
|  |    290 | \   --> (EX t. h < t & \
 | 
|  |    291 | \             t < 0 & \
 | 
|  |    292 | \             f h = \
 | 
|  |    293 | \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
 | 
|  |    294 | \             diff n t / real (fact n) * h ^ n)";
 | 
|  |    295 | by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
 | 
|  |    296 | qed "Maclaurin_minus_objl";
 | 
|  |    297 | 
 | 
|  |    298 | (* ------------------------------------------------------------------------- *)
 | 
|  |    299 | (* More convenient "bidirectional" version.                                  *)
 | 
|  |    300 | (* ------------------------------------------------------------------------- *)
 | 
|  |    301 | 
 | 
|  |    302 | (* not good for PVS sin_approx, cos_approx *)
 | 
|  |    303 | Goal " [| diff 0 = f; \
 | 
|  |    304 | \      ALL m t. \
 | 
|  |    305 | \         m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
 | 
|  |    306 | \   ==> EX t. abs t <= abs x & \
 | 
|  |    307 | \             f x = \
 | 
|  |    308 | \             sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
 | 
|  |    309 | \             diff n t / real (fact n) * x ^ n";
 | 
|  |    310 | by (case_tac "n = 0" 1);
 | 
|  |    311 | by (Force_tac 1);
 | 
|  |    312 | by (case_tac "x = 0" 1);
 | 
|  |    313 | by (res_inst_tac [("x","0")] exI 1);
 | 
|  |    314 | by (Asm_full_simp_tac 1);
 | 
|  |    315 | by (res_inst_tac [("P","0 < n")] impE 1);
 | 
|  |    316 | by (assume_tac 2 THEN assume_tac 2);
 | 
|  |    317 | by (induct_tac "n" 1);
 | 
|  |    318 | by (Simp_tac 1);
 | 
|  |    319 | by Auto_tac;
 | 
|  |    320 | by (cut_inst_tac [("R1.0","x"),("R2.0","0")] real_linear 1);
 | 
|  |    321 | by Auto_tac;
 | 
|  |    322 | by (cut_inst_tac [("f","diff 0"),
 | 
|  |    323 |                  ("diff","diff"),
 | 
|  |    324 |                  ("h","x"),("n","n")] Maclaurin_objl 2);
 | 
|  |    325 | by (Step_tac 2);
 | 
|  |    326 | by (blast_tac (claset() addDs 
 | 
|  |    327 |     [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
 | 
|  |    328 | by (res_inst_tac [("x","t")] exI 2);
 | 
|  |    329 | by (force_tac (claset() addIs 
 | 
|  |    330 |     [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
 | 
|  |    331 | by (cut_inst_tac [("f","diff 0"),
 | 
|  |    332 |                  ("diff","diff"),
 | 
|  |    333 |                  ("h","x"),("n","n")] Maclaurin_minus_objl 1);
 | 
|  |    334 | by (Step_tac 1);
 | 
|  |    335 | by (blast_tac (claset() addDs 
 | 
|  |    336 |     [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
 | 
|  |    337 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    338 | by (force_tac (claset() addIs 
 | 
|  |    339 |     [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
 | 
|  |    340 | qed "Maclaurin_bi_le";
 | 
|  |    341 | 
 | 
|  |    342 | Goal "[| diff 0 = f; \
 | 
|  |    343 | \        ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ 
 | 
|  |    344 | \       x ~= 0; 0 < n \
 | 
|  |    345 | \     |] ==> EX t. 0 < abs t & abs t < abs x & \
 | 
|  |    346 | \              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
 | 
|  |    347 | \                    (diff n t / real (fact n)) * x ^ n";
 | 
|  |    348 | by (res_inst_tac [("R1.0","x"),("R2.0","0")] real_linear_less2 1);
 | 
|  |    349 | by (Blast_tac 2);
 | 
|  |    350 | by (dtac Maclaurin_minus 1);
 | 
|  |    351 | by (dtac Maclaurin 5);
 | 
|  |    352 | by (TRYALL(assume_tac));
 | 
|  |    353 | by (Blast_tac 1);
 | 
|  |    354 | by (Blast_tac 2);
 | 
|  |    355 | by (Step_tac 1);
 | 
|  |    356 | by (ALLGOALS(res_inst_tac [("x","t")] exI));
 | 
|  |    357 | by (Step_tac 1);
 | 
|  |    358 | by (ALLGOALS(arith_tac));
 | 
|  |    359 | qed "Maclaurin_all_lt";
 | 
|  |    360 | 
 | 
|  |    361 | Goal "diff 0 = f & \
 | 
|  |    362 | \     (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
 | 
|  |    363 | \     x ~= 0 & 0 < n \
 | 
|  |    364 | \     --> (EX t. 0 < abs t & abs t < abs x & \
 | 
|  |    365 | \              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
 | 
|  |    366 | \                    (diff n t / real (fact n)) * x ^ n)";
 | 
|  |    367 | by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
 | 
|  |    368 | qed "Maclaurin_all_lt_objl";
 | 
|  |    369 | 
 | 
|  |    370 | Goal "x = (0::real)  \
 | 
|  |    371 | \     ==> 0 < n --> \
 | 
|  |    372 | \         sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
 | 
|  |    373 | \         diff 0 0";
 | 
|  |    374 | by (Asm_simp_tac 1);
 | 
|  |    375 | by (induct_tac "n" 1);
 | 
|  |    376 | by Auto_tac; 
 | 
|  |    377 | qed_spec_mp "Maclaurin_zero";
 | 
|  |    378 | 
 | 
|  |    379 | Goal "[| diff 0 = f; \
 | 
|  |    380 | \       ALL m x. DERIV (diff m) x :> diff (Suc m) x \
 | 
|  |    381 | \     |] ==> EX t. abs t <= abs x & \
 | 
|  |    382 | \             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
 | 
|  |    383 | \                   (diff n t / real (fact n)) * x ^ n";
 | 
|  |    384 | by (cut_inst_tac [("n","n"),("m","0")] 
 | 
|  |    385 |        (ARITH_PROVE "n <= m | m < (n::nat)") 1);
 | 
|  |    386 | by (etac disjE 1);
 | 
|  |    387 | by (Force_tac 1);
 | 
|  |    388 | by (case_tac "x = 0" 1);
 | 
|  |    389 | by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
 | 
|  |    390 | by (assume_tac 1);
 | 
|  |    391 | by (dtac (gr_implies_not0 RS  not0_implies_Suc) 1);
 | 
|  |    392 | by (res_inst_tac [("x","0")] exI 1);
 | 
|  |    393 | by (Force_tac 1);
 | 
|  |    394 | by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
 | 
|  |    395 | by (TRYALL(assume_tac));
 | 
|  |    396 | by (Step_tac 1);
 | 
|  |    397 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    398 | by Auto_tac;
 | 
|  |    399 | qed "Maclaurin_all_le";
 | 
|  |    400 | 
 | 
|  |    401 | Goal "diff 0 = f & \
 | 
|  |    402 | \     (ALL m x. DERIV (diff m) x :> diff (Suc m) x)  \
 | 
|  |    403 | \     --> (EX t. abs t <= abs x & \
 | 
|  |    404 | \             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
 | 
|  |    405 | \                   (diff n t / real (fact n)) * x ^ n)";
 | 
|  |    406 | by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
 | 
|  |    407 | qed "Maclaurin_all_le_objl";
 | 
|  |    408 | 
 | 
|  |    409 | (* ------------------------------------------------------------------------- *)
 | 
|  |    410 | (* Version for exp.                                                          *)
 | 
|  |    411 | (* ------------------------------------------------------------------------- *)
 | 
|  |    412 | 
 | 
|  |    413 | Goal "[| x ~= 0; 0 < n |] \
 | 
|  |    414 | \     ==> (EX t. 0 < abs t & \
 | 
|  |    415 | \               abs t < abs x & \
 | 
|  |    416 | \               exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
 | 
|  |    417 | \                       (exp t / real (fact n)) * x ^ n)";
 | 
|  |    418 | by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
 | 
|  |    419 |     Maclaurin_all_lt_objl 1);
 | 
|  |    420 | by Auto_tac;
 | 
|  |    421 | qed "Maclaurin_exp_lt";
 | 
|  |    422 | 
 | 
|  |    423 | Goal "EX t. abs t <= abs x & \
 | 
|  |    424 | \           exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
 | 
|  |    425 | \                      (exp t / real (fact n)) * x ^ n";
 | 
|  |    426 | by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
 | 
|  |    427 |     Maclaurin_all_le_objl 1);
 | 
|  |    428 | by Auto_tac;
 | 
|  |    429 | qed "Maclaurin_exp_le";
 | 
|  |    430 | 
 | 
|  |    431 | (* ------------------------------------------------------------------------- *)
 | 
|  |    432 | (* Version for sin function                                                  *)
 | 
|  |    433 | (* ------------------------------------------------------------------------- *)
 | 
|  |    434 | 
 | 
|  |    435 | Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
 | 
|  |    436 | \     ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
 | 
|  |    437 | by (dtac MVT 1);
 | 
|  |    438 | by (blast_tac (claset() addIs [DERIV_isCont]) 1);
 | 
|  |    439 | by (force_tac (claset() addDs [order_less_imp_le],
 | 
|  |    440 |     simpset() addsimps [differentiable_def]) 1);
 | 
|  |    441 | by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
 | 
|  |    442 | qed "MVT2";
 | 
|  |    443 | 
 | 
|  |    444 | Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
 | 
|  |    445 | by (case_tac "d" 1 THEN Auto_tac);
 | 
|  |    446 | by (case_tac "nat" 1 THEN Auto_tac);
 | 
|  |    447 | by (case_tac "nata" 1 THEN Auto_tac);
 | 
|  |    448 | qed "lemma_exhaust_less_4";
 | 
|  |    449 | 
 | 
|  |    450 | bind_thm ("real_mult_le_lemma",
 | 
|  |    451 |           simplify (simpset()) (inst "y" "1" real_mult_le_le_mono2));
 | 
|  |    452 | 
 | 
|  |    453 | 
 | 
|  |    454 | Goal "abs(sin x - \
 | 
|  |    455 | \          sumr 0 n (%m. (if even m then 0 \
 | 
|  |    456 | \                         else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
 | 
|  |    457 | \                         x ^ m)) \
 | 
|  |    458 | \      <= inverse(real (fact n)) * abs(x) ^ n";
 | 
|  |    459 | by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
|  |    460 |        ("diff","%n x. if n mod 4 = 0 then sin(x) \
 | 
|  |    461 | \                     else if n mod 4 = 1 then cos(x) \
 | 
|  |    462 | \                     else if n mod 4 = 2 then -sin(x) \
 | 
|  |    463 | \                     else -cos(x)")] Maclaurin_all_le_objl 1);
 | 
|  |    464 | by (Step_tac 1);
 | 
|  |    465 | by (Asm_full_simp_tac 1);
 | 
| 12486 |    466 | by (stac mod_Suc_eq_Suc_mod 1);
 | 
| 12224 |    467 | by (cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
 | 
|  |    468 |     RS lemma_exhaust_less_4) 1);
 | 
|  |    469 | by (Step_tac 1);
 | 
|  |    470 | by (Asm_simp_tac 1);
 | 
|  |    471 | by (Asm_simp_tac 1);
 | 
|  |    472 | by (Asm_simp_tac 1);
 | 
|  |    473 | by (rtac DERIV_minus 1 THEN Simp_tac 1);
 | 
|  |    474 | by (Asm_simp_tac 1);
 | 
|  |    475 | by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_minus 1 THEN rtac DERIV_cos 1);
 | 
|  |    476 | by (Simp_tac 1);
 | 
|  |    477 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    478 | by (rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1);
 | 
|  |    479 | by (rtac sumr_fun_eq 1);
 | 
|  |    480 | by (Step_tac 1);
 | 
|  |    481 | by (rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1);
 | 
| 12486 |    482 | by (stac even_even_mod_4_iff 1);
 | 
| 12224 |    483 | by (cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
 | 
|  |    484 |     RS lemma_exhaust_less_4) 1);
 | 
|  |    485 | by (Step_tac 1);
 | 
|  |    486 | by (Asm_simp_tac 1);
 | 
|  |    487 | by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
 | 
|  |    488 | by (asm_simp_tac (simpset() addsimps [even_num_iff]) 1);
 | 
|  |    489 | by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
 | 
|  |    490 | by (dtac lemma_even_mod_4_div_2 1);
 | 
|  |    491 | by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2,real_divide_def]) 1);
 | 
|  |    492 | by (dtac lemma_odd_mod_4_div_2 1);
 | 
|  |    493 | by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2, real_divide_def]) 1);
 | 
|  |    494 | by (auto_tac (claset() addSIs [real_mult_le_lemma,real_mult_le_le_mono2],
 | 
| 12330 |    495 |       simpset() addsimps [real_divide_def,abs_mult,abs_inverse,realpow_abs RS
 | 
|  |    496 | sym]));
 | 
| 12224 |    497 | qed "Maclaurin_sin_bound";
 | 
|  |    498 | 
 | 
|  |    499 | Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
 | 
|  |    500 | by (induct_tac "n" 1);
 | 
|  |    501 | by Auto_tac;
 | 
|  |    502 | qed_spec_mp "Suc_Suc_mult_two_diff_two";
 | 
|  |    503 | Addsimps [Suc_Suc_mult_two_diff_two];
 | 
|  |    504 | 
 | 
|  |    505 | Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
 | 
|  |    506 | by (induct_tac "n" 1);
 | 
|  |    507 | by Auto_tac;
 | 
|  |    508 | qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
 | 
|  |    509 | Addsimps [lemma_Suc_Suc_4n_diff_2];
 | 
|  |    510 | 
 | 
|  |    511 | Goal "0 < n --> Suc (2 * n - 1) = 2*n";
 | 
|  |    512 | by (induct_tac "n" 1);
 | 
|  |    513 | by Auto_tac;
 | 
|  |    514 | qed_spec_mp "Suc_mult_two_diff_one";
 | 
|  |    515 | Addsimps [Suc_mult_two_diff_one];
 | 
|  |    516 | 
 | 
|  |    517 | Goal "EX t. sin x = \
 | 
|  |    518 | \      (sumr 0 n (%m. (if even m then 0 \
 | 
|  |    519 | \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
 | 
|  |    520 | \                      x ^ m)) \
 | 
|  |    521 | \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    522 | by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
|  |    523 |        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
|  |    524 |        Maclaurin_all_lt_objl 1);
 | 
|  |    525 | by (Step_tac 1);
 | 
|  |    526 | by (Simp_tac 1);
 | 
|  |    527 | by (Simp_tac 1);
 | 
|  |    528 | by (case_tac "n" 1);
 | 
|  |    529 | by (Clarify_tac 1); 
 | 
|  |    530 | by (Asm_full_simp_tac 1);
 | 
|  |    531 | by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
 | 
|  |    532 | by (Asm_full_simp_tac 1);
 | 
|  |    533 | by (rtac ccontr 1);
 | 
|  |    534 | by (Asm_full_simp_tac 1);
 | 
|  |    535 | by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
|  |    536 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    537 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    538 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    539 | by (rtac sumr_fun_eq 1);
 | 
|  |    540 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    541 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    542 |     even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
 | 
|  |    543 | qed "Maclaurin_sin_expansion";
 | 
|  |    544 | 
 | 
|  |    545 | Goal "EX t. abs t <= abs x &  \
 | 
|  |    546 | \      sin x = \
 | 
|  |    547 | \      (sumr 0 n (%m. (if even m then 0 \
 | 
|  |    548 | \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
 | 
|  |    549 | \                      x ^ m)) \
 | 
|  |    550 | \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    551 | 
 | 
|  |    552 | by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
|  |    553 |        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
|  |    554 |        Maclaurin_all_lt_objl 1);
 | 
|  |    555 | by (Step_tac 1);
 | 
|  |    556 | by (Simp_tac 1);
 | 
|  |    557 | by (Simp_tac 1);
 | 
|  |    558 | by (case_tac "n" 1);
 | 
|  |    559 | by (Clarify_tac 1); 
 | 
|  |    560 | by (Asm_full_simp_tac 1);
 | 
|  |    561 | by (Asm_full_simp_tac 1);
 | 
|  |    562 | by (rtac ccontr 1);
 | 
|  |    563 | by (Asm_full_simp_tac 1);
 | 
|  |    564 | by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
|  |    565 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    566 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    567 | by (rtac conjI 1);
 | 
|  |    568 | by (arith_tac 1);
 | 
|  |    569 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    570 | by (rtac sumr_fun_eq 1);
 | 
|  |    571 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    572 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    573 |     even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
 | 
|  |    574 | qed "Maclaurin_sin_expansion2";
 | 
|  |    575 | 
 | 
|  |    576 | Goal "[| 0 < n; 0 < x |] ==> \
 | 
|  |    577 | \      EX t. 0 < t & t < x & \
 | 
|  |    578 | \      sin x = \
 | 
|  |    579 | \      (sumr 0 n (%m. (if even m then 0 \
 | 
|  |    580 | \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
 | 
|  |    581 | \                      x ^ m)) \
 | 
|  |    582 | \     + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    583 | by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
 | 
|  |    584 |        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
|  |    585 |        Maclaurin_objl 1);
 | 
|  |    586 | by (Step_tac 1);
 | 
|  |    587 | by (Asm_full_simp_tac 1);
 | 
|  |    588 | by (Simp_tac 1);
 | 
|  |    589 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    590 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    591 | by (rtac conjI 1 THEN rtac conjI 2);
 | 
|  |    592 | by (assume_tac 1 THEN assume_tac 1);
 | 
|  |    593 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    594 | by (rtac sumr_fun_eq 1);
 | 
|  |    595 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    596 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    597 |     even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
 | 
|  |    598 | qed "Maclaurin_sin_expansion3";
 | 
|  |    599 | 
 | 
|  |    600 | Goal "0 < x ==> \
 | 
|  |    601 | \      EX t. 0 < t & t <= x & \
 | 
|  |    602 | \      sin x = \
 | 
|  |    603 | \      (sumr 0 n (%m. (if even m then 0 \
 | 
|  |    604 | \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
 | 
|  |    605 | \                      x ^ m)) \
 | 
|  |    606 | \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    607 | by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
 | 
|  |    608 |        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
|  |    609 |        Maclaurin2_objl 1);
 | 
|  |    610 | by (Step_tac 1);
 | 
|  |    611 | by (Asm_full_simp_tac 1);
 | 
|  |    612 | by (Simp_tac 1);
 | 
|  |    613 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    614 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    615 | by (rtac conjI 1 THEN rtac conjI 2);
 | 
|  |    616 | by (assume_tac 1 THEN assume_tac 1);
 | 
|  |    617 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    618 | by (rtac sumr_fun_eq 1);
 | 
|  |    619 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    620 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    621 |     even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
 | 
|  |    622 | qed "Maclaurin_sin_expansion4";
 | 
|  |    623 | 
 | 
|  |    624 | (*-----------------------------------------------------------------------------*)
 | 
|  |    625 | (* Maclaurin expansion for cos                                                 *)
 | 
|  |    626 | (*-----------------------------------------------------------------------------*)
 | 
|  |    627 | 
 | 
|  |    628 | Goal "sumr 0 (Suc n) \
 | 
|  |    629 | \        (%m. (if even m \
 | 
|  |    630 | \              then (- 1) ^ (m div 2)/(real  (fact m)) \
 | 
|  |    631 | \              else 0) * \
 | 
|  |    632 | \             0 ^ m) = 1";
 | 
|  |    633 | by (induct_tac "n" 1);
 | 
|  |    634 | by Auto_tac;
 | 
|  |    635 | qed "sumr_cos_zero_one";
 | 
|  |    636 | Addsimps [sumr_cos_zero_one];
 | 
|  |    637 | 
 | 
|  |    638 | Goal "EX t. abs t <= abs x & \
 | 
|  |    639 | \      cos x = \
 | 
|  |    640 | \      (sumr 0 n (%m. (if even m \
 | 
|  |    641 | \                      then (- 1) ^ (m div 2)/(real (fact m)) \
 | 
|  |    642 | \                      else 0) * \
 | 
|  |    643 | \                      x ^ m)) \
 | 
|  |    644 | \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    645 | by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
 | 
|  |    646 |        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
|  |    647 |        Maclaurin_all_lt_objl 1);
 | 
|  |    648 | by (Step_tac 1);
 | 
|  |    649 | by (Simp_tac 1);
 | 
|  |    650 | by (Simp_tac 1);
 | 
|  |    651 | by (case_tac "n" 1);
 | 
|  |    652 | by (Asm_full_simp_tac 1);
 | 
|  |    653 | by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
 | 
|  |    654 | by (rtac ccontr 1);
 | 
|  |    655 | by (Asm_full_simp_tac 1);
 | 
|  |    656 | by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
|  |    657 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    658 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    659 | by (rtac conjI 1);
 | 
|  |    660 | by (arith_tac 1);
 | 
|  |    661 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    662 | by (rtac sumr_fun_eq 1);
 | 
|  |    663 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    664 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    665 |     even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
 | 
|  |    666 |     [fact_Suc,realpow_Suc]));
 | 
|  |    667 | by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
 | 
|  |    668 | qed "Maclaurin_cos_expansion";
 | 
|  |    669 | 
 | 
|  |    670 | Goal "[| 0 < x; 0 < n |] ==> \
 | 
|  |    671 | \      EX t. 0 < t & t < x & \
 | 
|  |    672 | \      cos x = \
 | 
|  |    673 | \      (sumr 0 n (%m. (if even m \
 | 
|  |    674 | \                      then (- 1) ^ (m div 2)/(real (fact m)) \
 | 
|  |    675 | \                      else 0) * \
 | 
|  |    676 | \                      x ^ m)) \
 | 
|  |    677 | \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    678 | by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
 | 
|  |    679 |        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
|  |    680 |        Maclaurin_objl 1);
 | 
|  |    681 | by (Step_tac 1);
 | 
|  |    682 | by (Asm_full_simp_tac 1);
 | 
|  |    683 | by (Simp_tac 1);
 | 
|  |    684 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    685 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    686 | by (rtac conjI 1 THEN rtac conjI 2);
 | 
|  |    687 | by (assume_tac 1 THEN assume_tac 1);
 | 
|  |    688 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    689 | by (rtac sumr_fun_eq 1);
 | 
|  |    690 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    691 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    692 |     even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
 | 
|  |    693 |     [fact_Suc,realpow_Suc]));
 | 
|  |    694 | by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
 | 
|  |    695 | qed "Maclaurin_cos_expansion2";
 | 
|  |    696 | 
 | 
|  |    697 | Goal "[| x < 0; 0 < n |] ==> \
 | 
|  |    698 | \      EX t. x < t & t < 0 & \
 | 
|  |    699 | \      cos x = \
 | 
|  |    700 | \      (sumr 0 n (%m. (if even m \
 | 
|  |    701 | \                      then (- 1) ^ (m div 2)/(real (fact m)) \
 | 
|  |    702 | \                      else 0) * \
 | 
|  |    703 | \                      x ^ m)) \
 | 
|  |    704 | \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
 | 
|  |    705 | by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
 | 
|  |    706 |        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
|  |    707 |        Maclaurin_minus_objl 1);
 | 
|  |    708 | by (Step_tac 1);
 | 
|  |    709 | by (Asm_full_simp_tac 1);
 | 
|  |    710 | by (Simp_tac 1);
 | 
|  |    711 | by (dtac ssubst 1 THEN assume_tac 2);
 | 
|  |    712 | by (res_inst_tac [("x","t")] exI 1);
 | 
|  |    713 | by (rtac conjI 1 THEN rtac conjI 2);
 | 
|  |    714 | by (assume_tac 1 THEN assume_tac 1);
 | 
|  |    715 | by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
 | 
|  |    716 | by (rtac sumr_fun_eq 1);
 | 
|  |    717 | by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
 | 
|  |    718 | by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
 | 
|  |    719 |     even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
 | 
|  |    720 |     [fact_Suc,realpow_Suc]));
 | 
|  |    721 | by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
 | 
|  |    722 | qed "Maclaurin_minus_cos_expansion";
 | 
|  |    723 | 
 | 
|  |    724 | (* ------------------------------------------------------------------------- *)
 | 
|  |    725 | (* Version for ln(1 +/- x). Where is it??                                    *)
 | 
|  |    726 | (* ------------------------------------------------------------------------- *)
 | 
|  |    727 | 
 |