| author | wenzelm | 
| Fri, 11 Dec 2009 20:43:41 +0100 | |
| changeset 34075 | 451b0c8a15cf | 
| parent 34055 | fdf294ee08b2 | 
| child 36319 | 8feb2c4bef1a | 
| permissions | -rw-r--r-- | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 1 | (* Title: HOL/ex/set.thy | 
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 2 | ID: $Id$ | 
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 3 | Author: Tobias Nipkow and Lawrence C Paulson | 
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 4 | Copyright 1991 University of Cambridge | 
| 13107 | 5 | *) | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 6 | |
| 19982 | 7 | header {* Set Theory examples: Cantor's Theorem, Schröder-Bernstein Theorem, etc. *}
 | 
| 9100 | 8 | |
| 16417 | 9 | theory set imports Main begin | 
| 9100 | 10 | |
| 13107 | 11 | text{*
 | 
| 12 | These two are cited in Benzmueller and Kohlhase's system description | |
| 13 | of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not | |
| 14 | prove. | |
| 15 | *} | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 16 | |
| 13107 | 17 | lemma "(X = Y \<union> Z) = | 
| 18 | (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" | |
| 19 | by blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 20 | |
| 13107 | 21 | lemma "(X = Y \<inter> Z) = | 
| 22 | (X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))" | |
| 23 | by blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 24 | |
| 13107 | 25 | text {*
 | 
| 26 | Trivial example of term synthesis: apparently hard for some provers! | |
| 27 | *} | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 28 | |
| 13107 | 29 | lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X" | 
| 30 | by blast | |
| 31 | ||
| 32 | ||
| 33 | subsection {* Examples for the @{text blast} paper *}
 | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 34 | |
| 13107 | 35 | lemma "(\<Union>x \<in> C. f x \<union> g x) = \<Union>(f ` C) \<union> \<Union>(g ` C)" | 
| 36 |   -- {* Union-image, called @{text Un_Union_image} in Main HOL *}
 | |
| 37 | by blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 38 | |
| 13107 | 39 | lemma "(\<Inter>x \<in> C. f x \<inter> g x) = \<Inter>(f ` C) \<inter> \<Inter>(g ` C)" | 
| 40 |   -- {* Inter-image, called @{text Int_Inter_image} in Main HOL *}
 | |
| 41 | by blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 42 | |
| 16898 | 43 | lemma singleton_example_1: | 
| 44 |      "\<And>S::'a set set. \<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
 | |
| 18391 | 45 | by blast | 
| 16898 | 46 | |
| 47 | lemma singleton_example_2: | |
| 48 |      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
 | |
| 49 |   -- {*Variant of the problem above. *}
 | |
| 18391 | 50 | by blast | 
| 13107 | 51 | |
| 52 | lemma "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y" | |
| 53 |   -- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *}
 | |
| 24573 | 54 | by metis | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 55 | |
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 56 | |
| 13107 | 57 | subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *}
 | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 58 | |
| 13107 | 59 | lemma cantor1: "\<not> (\<exists>f:: 'a \<Rightarrow> 'a set. \<forall>S. \<exists>x. f x = S)" | 
| 60 |   -- {* Requires best-first search because it is undirectional. *}
 | |
| 61 | by best | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 62 | |
| 13107 | 63 | lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f" | 
| 64 |   -- {*This form displays the diagonal term. *}
 | |
| 65 | by best | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 66 | |
| 13107 | 67 | lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" | 
| 68 |   -- {* This form exploits the set constructs. *}
 | |
| 69 | by (rule notI, erule rangeE, best) | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 70 | |
| 13107 | 71 | lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" | 
| 72 |   -- {* Or just this! *}
 | |
| 73 | by best | |
| 74 | ||
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 75 | |
| 13107 | 76 | subsection {* The Schröder-Berstein Theorem *}
 | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 77 | |
| 13107 | 78 | lemma disj_lemma: "- (f ` X) = g ` (-X) \<Longrightarrow> f a = g b \<Longrightarrow> a \<in> X \<Longrightarrow> b \<in> X" | 
| 79 | by blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 80 | |
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 81 | lemma surj_if_then_else: | 
| 13107 | 82 | "-(f ` X) = g ` (-X) \<Longrightarrow> surj (\<lambda>z. if z \<in> X then f z else g z)" | 
| 83 | by (simp add: surj_def) blast | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 84 | |
| 13107 | 85 | lemma bij_if_then_else: | 
| 86 | "inj_on f X \<Longrightarrow> inj_on g (-X) \<Longrightarrow> -(f ` X) = g ` (-X) \<Longrightarrow> | |
| 87 | h = (\<lambda>z. if z \<in> X then f z else g z) \<Longrightarrow> inj h \<and> surj h" | |
| 88 | apply (unfold inj_on_def) | |
| 89 | apply (simp add: surj_if_then_else) | |
| 90 | apply (blast dest: disj_lemma sym) | |
| 91 | done | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 92 | |
| 13107 | 93 | lemma decomposition: "\<exists>X. X = - (g ` (- (f ` X)))" | 
| 94 | apply (rule exI) | |
| 95 | apply (rule lfp_unfold) | |
| 96 | apply (rule monoI, blast) | |
| 97 | done | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 98 | |
| 13107 | 99 | theorem Schroeder_Bernstein: | 
| 100 | "inj (f :: 'a \<Rightarrow> 'b) \<Longrightarrow> inj (g :: 'b \<Rightarrow> 'a) | |
| 101 | \<Longrightarrow> \<exists>h:: 'a \<Rightarrow> 'b. inj h \<and> surj h" | |
| 15488 | 102 | apply (rule decomposition [where f=f and g=g, THEN exE]) | 
| 103 | apply (rule_tac x = "(\<lambda>z. if z \<in> x then f z else inv g z)" in exI) | |
| 104 |     --{*The term above can be synthesized by a sufficiently detailed proof.*}
 | |
| 13107 | 105 | apply (rule bij_if_then_else) | 
| 106 | apply (rule_tac [4] refl) | |
| 33057 | 107 | apply (rule_tac [2] inj_on_inv_into) | 
| 15306 | 108 | apply (erule subset_inj_on [OF _ subset_UNIV]) | 
| 15488 | 109 | apply blast | 
| 110 | apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric]) | |
| 13107 | 111 | done | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 112 | |
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 113 | |
| 24853 | 114 | subsection {* A simple party theorem *}
 | 
| 115 | ||
| 116 | text{* \emph{At any party there are two people who know the same
 | |
| 117 | number of people}. Provided the party consists of at least two people | |
| 118 | and the knows relation is symmetric. Knowing yourself does not count | |
| 119 | --- otherwise knows needs to be reflexive. (From Freek Wiedijk's talk | |
| 120 | at TPHOLs 2007.) *} | |
| 121 | ||
| 122 | lemma equal_number_of_acquaintances: | |
| 123 | assumes "Domain R <= A" and "sym R" and "card A \<ge> 2" | |
| 124 | shows "\<not> inj_on (%a. card(R `` {a} - {a})) A"
 | |
| 125 | proof - | |
| 126 |   let ?N = "%a. card(R `` {a} - {a})"
 | |
| 127 | let ?n = "card A" | |
| 128 | have "finite A" using `card A \<ge> 2` by(auto intro:ccontr) | |
| 129 | have 0: "R `` A <= A" using `sym R` `Domain R <= A` | |
| 130 | unfolding Domain_def sym_def by blast | |
| 131 |   have h: "ALL a:A. R `` {a} <= A" using 0 by blast
 | |
| 132 |   hence 1: "ALL a:A. finite(R `` {a})" using `finite A`
 | |
| 133 | by(blast intro: finite_subset) | |
| 134 |   have sub: "?N ` A <= {0..<?n}"
 | |
| 135 | proof - | |
| 136 |     have "ALL a:A. R `` {a} - {a} < A" using h by blast
 | |
| 137 | thus ?thesis using psubset_card_mono[OF `finite A`] by auto | |
| 138 | qed | |
| 139 | show "~ inj_on ?N A" (is "~ ?I") | |
| 140 | proof | |
| 141 | assume ?I | |
| 142 | hence "?n = card(?N ` A)" by(rule card_image[symmetric]) | |
| 143 |     with sub `finite A` have 2[simp]: "?N ` A = {0..<?n}"
 | |
| 144 | using subset_card_intvl_is_intvl[of _ 0] by(auto) | |
| 145 | have "0 : ?N ` A" and "?n - 1 : ?N ` A" using `card A \<ge> 2` by simp+ | |
| 146 | then obtain a b where ab: "a:A" "b:A" and Na: "?N a = 0" and Nb: "?N b = ?n - 1" | |
| 147 | by (auto simp del: 2) | |
| 148 | have "a \<noteq> b" using Na Nb `card A \<ge> 2` by auto | |
| 149 |     have "R `` {a} - {a} = {}" by (metis 1 Na ab card_eq_0_iff finite_Diff)
 | |
| 150 |     hence "b \<notin> R `` {a}" using `a\<noteq>b` by blast
 | |
| 151 |     hence "a \<notin> R `` {b}" by (metis Image_singleton_iff assms(2) sym_def)
 | |
| 152 |     hence 3: "R `` {b} - {b} <= A - {a,b}" using 0 ab by blast
 | |
| 153 |     have 4: "finite (A - {a,b})" using `finite A` by simp
 | |
| 154 | have "?N b <= ?n - 2" using ab `a\<noteq>b` `finite A` card_mono[OF 4 3] by simp | |
| 155 | then show False using Nb `card A \<ge> 2` by arith | |
| 156 | qed | |
| 157 | qed | |
| 158 | ||
| 13107 | 159 | text {*
 | 
| 160 | From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages | |
| 161 | 293-314. | |
| 162 | ||
| 163 | Isabelle can prove the easy examples without any special mechanisms, | |
| 164 | but it can't prove the hard ones. | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 165 | *} | 
| 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 166 | |
| 13107 | 167 | lemma "\<exists>A. (\<forall>x \<in> A. x \<le> (0::int))" | 
| 168 |   -- {* Example 1, page 295. *}
 | |
| 169 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 170 | |
| 13107 | 171 | lemma "D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B" | 
| 172 |   -- {* Example 2. *}
 | |
| 173 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 174 | |
| 13107 | 175 | lemma "P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)" | 
| 176 |   -- {* Example 3. *}
 | |
| 177 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 178 | |
| 13107 | 179 | lemma "a < b \<and> b < (c::int) \<Longrightarrow> \<exists>A. a \<notin> A \<and> b \<in> A \<and> c \<notin> A" | 
| 180 |   -- {* Example 4. *}
 | |
| 181 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 182 | |
| 13107 | 183 | lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" | 
| 184 |   -- {*Example 5, page 298. *}
 | |
| 185 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 186 | |
| 13107 | 187 | lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" | 
| 188 |   -- {* Example 6. *}
 | |
| 189 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 190 | |
| 13107 | 191 | lemma "\<exists>A. a \<notin> A" | 
| 192 |   -- {* Example 7. *}
 | |
| 193 | by force | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 194 | |
| 13107 | 195 | lemma "(\<forall>u v. u < (0::int) \<longrightarrow> u \<noteq> abs v) | 
| 196 | \<longrightarrow> (\<exists>A::int set. (\<forall>y. abs y \<notin> A) \<and> -2 \<in> A)" | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
13107diff
changeset | 197 |   -- {* Example 8 now needs a small hint. *}
 | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
13107diff
changeset | 198 | by (simp add: abs_if, force) | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
13107diff
changeset | 199 |     -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *}
 | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 200 | |
| 13107 | 201 | text {* Example 9 omitted (requires the reals). *}
 | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 202 | |
| 13107 | 203 | text {* The paper has no Example 10! *}
 | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 204 | |
| 13107 | 205 | lemma "(\<forall>A. 0 \<in> A \<and> (\<forall>x \<in> A. Suc x \<in> A) \<longrightarrow> n \<in> A) \<and> | 
| 206 | P 0 \<and> (\<forall>x. P x \<longrightarrow> P (Suc x)) \<longrightarrow> P n" | |
| 207 |   -- {* Example 11: needs a hint. *}
 | |
| 34055 | 208 | by(metis Nat.induct) | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 209 | |
| 13107 | 210 | lemma | 
| 211 | "(\<forall>A. (0, 0) \<in> A \<and> (\<forall>x y. (x, y) \<in> A \<longrightarrow> (Suc x, Suc y) \<in> A) \<longrightarrow> (n, m) \<in> A) | |
| 212 | \<and> P n \<longrightarrow> P m" | |
| 213 |   -- {* Example 12. *}
 | |
| 214 | by auto | |
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 215 | |
| 13107 | 216 | lemma | 
| 217 | "(\<forall>x. (\<exists>u. x = 2 * u) = (\<not> (\<exists>v. Suc x = 2 * v))) \<longrightarrow> | |
| 218 | (\<exists>A. \<forall>x. (x \<in> A) = (Suc x \<notin> A))" | |
| 219 |   -- {* Example EO1: typo in article, and with the obvious fix it seems
 | |
| 220 | to require arithmetic reasoning. *} | |
| 221 | apply clarify | |
| 222 |   apply (rule_tac x = "{x. \<exists>u. x = 2 * u}" in exI, auto)
 | |
| 34055 | 223 | apply metis+ | 
| 13107 | 224 | done | 
| 13058 
ad6106d7b4bb
converted theory "set" to Isar and added some SET-VAR examples
 paulson parents: 
9100diff
changeset | 225 | |
| 9100 | 226 | end |