author | wenzelm |
Mon, 17 Apr 2000 14:03:51 +0200 | |
changeset 8721 | 453b493ece0a |
parent 8149 | 941afb897532 |
child 9094 | 530e7a33b3dd |
permissions | -rw-r--r-- |
1588 | 1 |
(* Title: search |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson and Norbert Voelker |
|
4 |
||
5 |
Search tacticals |
|
6 |
*) |
|
7 |
||
2672
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
8 |
infix 1 THEN_MAYBE THEN_MAYBE'; |
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
9 |
|
1588 | 10 |
signature SEARCH = |
11 |
sig |
|
2869
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
12 |
val DEEPEN : int*int -> (int->int->tactic) -> int -> int -> tactic |
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
13 |
|
2672
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
14 |
val THEN_MAYBE : tactic * tactic -> tactic |
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
15 |
val THEN_MAYBE' : ('a -> tactic) * ('a -> tactic) -> ('a -> tactic) |
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
16 |
|
1588 | 17 |
val trace_DEPTH_FIRST : bool ref |
18 |
val DEPTH_FIRST : (thm -> bool) -> tactic -> tactic |
|
19 |
val DEPTH_SOLVE : tactic -> tactic |
|
20 |
val DEPTH_SOLVE_1 : tactic -> tactic |
|
21 |
val ITER_DEEPEN : (thm->bool) -> (int->tactic) -> tactic |
|
22 |
val THEN_ITER_DEEPEN : tactic -> (thm->bool) -> (int->tactic) -> tactic |
|
23 |
||
24 |
val has_fewer_prems : int -> thm -> bool |
|
25 |
val IF_UNSOLVED : tactic -> tactic |
|
5754 | 26 |
val SOLVE : tactic -> tactic |
8149
941afb897532
added tacticals DETERM_UNTIL and DETERM_UNTIL_SOLVED
oheimb
parents:
5956
diff
changeset
|
27 |
val DETERM_UNTIL_SOLVED: tactic -> tactic |
1588 | 28 |
val trace_BEST_FIRST : bool ref |
29 |
val BEST_FIRST : (thm -> bool) * (thm -> int) -> tactic -> tactic |
|
30 |
val THEN_BEST_FIRST : tactic -> (thm->bool) * (thm->int) -> tactic |
|
31 |
-> tactic |
|
32 |
val trace_ASTAR : bool ref |
|
33 |
val ASTAR : (thm -> bool) * (int->thm->int) -> tactic -> tactic |
|
34 |
val THEN_ASTAR : tactic -> (thm->bool) * (int->thm->int) -> tactic |
|
35 |
-> tactic |
|
36 |
val BREADTH_FIRST : (thm -> bool) -> tactic -> tactic |
|
5693 | 37 |
val QUIET_BREADTH_FIRST : (thm -> bool) -> tactic -> tactic |
1588 | 38 |
end; |
39 |
||
40 |
structure Search : SEARCH = |
|
41 |
struct |
|
42 |
||
43 |
(**** Depth-first search ****) |
|
44 |
||
45 |
val trace_DEPTH_FIRST = ref false; |
|
46 |
||
47 |
(*Searches until "satp" reports proof tree as satisfied. |
|
48 |
Suppresses duplicate solutions to minimize search space.*) |
|
49 |
fun DEPTH_FIRST satp tac = |
|
50 |
let val tac = tracify trace_DEPTH_FIRST tac |
|
51 |
fun depth used [] = None |
|
52 |
| depth used (q::qs) = |
|
4270 | 53 |
case Seq.pull q of |
1588 | 54 |
None => depth used qs |
55 |
| Some(st,stq) => |
|
56 |
if satp st andalso not (gen_mem eq_thm (st, used)) |
|
4270 | 57 |
then Some(st, Seq.make |
1588 | 58 |
(fn()=> depth (st::used) (stq::qs))) |
59 |
else depth used (tac st :: stq :: qs) |
|
4270 | 60 |
in traced_tac (fn st => depth [] ([Seq.single st])) end; |
1588 | 61 |
|
62 |
||
63 |
||
64 |
(*Predicate: Does the rule have fewer than n premises?*) |
|
65 |
fun has_fewer_prems n rule = (nprems_of rule < n); |
|
66 |
||
67 |
(*Apply a tactic if subgoals remain, else do nothing.*) |
|
68 |
val IF_UNSOLVED = COND (has_fewer_prems 1) all_tac; |
|
69 |
||
5754 | 70 |
(*Force a tactic to solve its goal completely, otherwise fail *) |
71 |
fun SOLVE tac = tac THEN COND (has_fewer_prems 1) all_tac no_tac; |
|
72 |
||
8149
941afb897532
added tacticals DETERM_UNTIL and DETERM_UNTIL_SOLVED
oheimb
parents:
5956
diff
changeset
|
73 |
(*Force repeated application of tactic until goal is solved completely *) |
941afb897532
added tacticals DETERM_UNTIL and DETERM_UNTIL_SOLVED
oheimb
parents:
5956
diff
changeset
|
74 |
val DETERM_UNTIL_SOLVED = DETERM_UNTIL (has_fewer_prems 1); |
941afb897532
added tacticals DETERM_UNTIL and DETERM_UNTIL_SOLVED
oheimb
parents:
5956
diff
changeset
|
75 |
|
2672
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
76 |
(*Execute tac1, but only execute tac2 if there are at least as many subgoals |
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
77 |
as before. This ensures that tac2 is only applied to an outcome of tac1.*) |
3538 | 78 |
fun (tac1 THEN_MAYBE tac2) st = |
79 |
(tac1 THEN COND (has_fewer_prems (nprems_of st)) all_tac tac2) st; |
|
2672
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
80 |
|
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
81 |
fun (tac1 THEN_MAYBE' tac2) x = tac1 x THEN_MAYBE tac2 x; |
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
82 |
|
1588 | 83 |
(*Tactical to reduce the number of premises by 1. |
84 |
If no subgoals then it must fail! *) |
|
3538 | 85 |
fun DEPTH_SOLVE_1 tac st = st |> |
1588 | 86 |
(case nprems_of st of |
87 |
0 => no_tac |
|
3538 | 88 |
| n => DEPTH_FIRST (has_fewer_prems n) tac); |
1588 | 89 |
|
90 |
(*Uses depth-first search to solve ALL subgoals*) |
|
91 |
val DEPTH_SOLVE = DEPTH_FIRST (has_fewer_prems 1); |
|
92 |
||
93 |
||
94 |
||
2869
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
95 |
(**** Iterative deepening with pruning ****) |
1588 | 96 |
|
97 |
fun has_vars (Var _) = true |
|
98 |
| has_vars (Abs (_,_,t)) = has_vars t |
|
99 |
| has_vars (f$t) = has_vars f orelse has_vars t |
|
100 |
| has_vars _ = false; |
|
101 |
||
102 |
(*Counting of primitive inferences is APPROXIMATE, as the step tactic |
|
103 |
may perform >1 inference*) |
|
104 |
||
105 |
(*Pruning of rigid ancestor to prevent backtracking*) |
|
106 |
fun prune (new as (k', np':int, rgd', stq), qs) = |
|
107 |
let fun prune_aux (qs, []) = new::qs |
|
108 |
| prune_aux (qs, (k,np,rgd,q)::rqs) = |
|
109 |
if np'+1 = np andalso rgd then |
|
110 |
(if !trace_DEPTH_FIRST then |
|
111 |
writeln ("Pruning " ^ |
|
112 |
string_of_int (1+length rqs) ^ " levels") |
|
113 |
else (); |
|
114 |
(*Use OLD k: zero-cost solution; see Stickel, p 365*) |
|
115 |
(k, np', rgd', stq) :: qs) |
|
116 |
else prune_aux ((k,np,rgd,q)::qs, rqs) |
|
117 |
fun take ([], rqs) = ([], rqs) |
|
118 |
| take (arg as ((k,np,rgd,stq)::qs, rqs)) = |
|
119 |
if np' < np then take (qs, (k,np,rgd,stq)::rqs) |
|
120 |
else arg |
|
121 |
in prune_aux (take (qs, [])) end; |
|
122 |
||
123 |
||
124 |
(*Depth-first iterative deepening search for a state that satisfies satp |
|
125 |
tactic tac0 sets up the initial goal queue, while tac1 searches it. |
|
126 |
The solution sequence is redundant: the cutoff heuristic makes it impossible |
|
127 |
to suppress solutions arising from earlier searches, as the accumulated cost |
|
128 |
(k) can be wrong.*) |
|
129 |
fun THEN_ITER_DEEPEN tac0 satp tac1 = traced_tac (fn st => |
|
130 |
let val countr = ref 0 |
|
131 |
and tf = tracify trace_DEPTH_FIRST (tac1 1) |
|
132 |
and qs0 = tac0 st |
|
133 |
(*bnd = depth bound; inc = estimate of increment required next*) |
|
134 |
fun depth (bnd,inc) [] = |
|
135 |
(writeln (string_of_int (!countr) ^ |
|
136 |
" inferences so far. Searching to depth " ^ |
|
137 |
string_of_int bnd); |
|
138 |
(*larger increments make it run slower for the hard problems*) |
|
139 |
depth (bnd+inc, 10)) [(0, 1, false, qs0)] |
|
140 |
| depth (bnd,inc) ((k,np,rgd,q)::qs) = |
|
141 |
if k>=bnd then depth (bnd,inc) qs |
|
142 |
else |
|
143 |
case (countr := !countr+1; |
|
144 |
if !trace_DEPTH_FIRST then |
|
145 |
writeln (string_of_int np ^ |
|
146 |
implode (map (fn _ => "*") qs)) |
|
147 |
else (); |
|
4270 | 148 |
Seq.pull q) of |
1588 | 149 |
None => depth (bnd,inc) qs |
150 |
| Some(st,stq) => |
|
151 |
if satp st (*solution!*) |
|
4270 | 152 |
then Some(st, Seq.make |
1588 | 153 |
(fn()=> depth (bnd,inc) ((k,np,rgd,stq)::qs))) |
154 |
||
155 |
else |
|
156 |
let val np' = nprems_of st |
|
157 |
(*rgd' calculation assumes tactic operates on subgoal 1*) |
|
158 |
val rgd' = not (has_vars (hd (prems_of st))) |
|
159 |
val k' = k+np'-np+1 (*difference in # of subgoals, +1*) |
|
160 |
in if k'+np' >= bnd |
|
2143 | 161 |
then depth (bnd, Int.min(inc, k'+np'+1-bnd)) qs |
1588 | 162 |
else if np' < np (*solved a subgoal; prune rigid ancestors*) |
163 |
then depth (bnd,inc) |
|
164 |
(prune ((k', np', rgd', tf st), (k,np,rgd,stq) :: qs)) |
|
165 |
else depth (bnd,inc) ((k', np', rgd', tf st) :: |
|
166 |
(k,np,rgd,stq) :: qs) |
|
167 |
end |
|
168 |
in depth (0,5) [] end); |
|
169 |
||
170 |
val ITER_DEEPEN = THEN_ITER_DEEPEN all_tac; |
|
171 |
||
172 |
||
2869
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
173 |
(*Simple iterative deepening tactical. It merely "deepens" any search tactic |
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
174 |
using increment "inc" up to limit "lim". *) |
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
175 |
fun DEEPEN (inc,lim) tacf m i = |
3538 | 176 |
let fun dpn m st = st |> (if has_fewer_prems i st then no_tac |
177 |
else if m>lim then |
|
178 |
(writeln "Giving up..."; no_tac) |
|
179 |
else (writeln ("Depth = " ^ string_of_int m); |
|
180 |
tacf m i ORELSE dpn (m+inc))) |
|
2869
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
181 |
in dpn m end; |
acee08856cc9
DEEPEN now takes an upper bound for terminating searches
paulson
parents:
2672
diff
changeset
|
182 |
|
1588 | 183 |
(*** Best-first search ***) |
184 |
||
185 |
val trace_BEST_FIRST = ref false; |
|
186 |
||
187 |
(*Insertion into priority queue of states *) |
|
188 |
fun insert (nth: int*thm, []) = [nth] |
|
189 |
| insert ((m,th), (n,th')::nths) = |
|
190 |
if n<m then (n,th') :: insert ((m,th), nths) |
|
191 |
else if n=m andalso eq_thm(th,th') |
|
192 |
then (n,th')::nths |
|
193 |
else (m,th)::(n,th')::nths; |
|
194 |
||
195 |
(*For creating output sequence*) |
|
196 |
fun some_of_list [] = None |
|
4270 | 197 |
| some_of_list (x::l) = Some (x, Seq.make (fn () => some_of_list l)); |
1588 | 198 |
|
199 |
||
200 |
(*Best-first search for a state that satisfies satp (incl initial state) |
|
201 |
Function sizef estimates size of problem remaining (smaller means better). |
|
202 |
tactic tac0 sets up the initial priority queue, while tac1 searches it. *) |
|
203 |
fun THEN_BEST_FIRST tac0 (satp, sizef) tac1 = |
|
204 |
let val tac = tracify trace_BEST_FIRST tac1 |
|
205 |
fun pairsize th = (sizef th, th); |
|
206 |
fun bfs (news,nprfs) = |
|
207 |
(case partition satp news of |
|
208 |
([],nonsats) => next(foldr insert |
|
209 |
(map pairsize nonsats, nprfs)) |
|
210 |
| (sats,_) => some_of_list sats) |
|
211 |
and next [] = None |
|
212 |
| next ((n,prf)::nprfs) = |
|
213 |
(if !trace_BEST_FIRST |
|
214 |
then writeln("state size = " ^ string_of_int n ^ |
|
215 |
" queue length =" ^ string_of_int (length nprfs)) |
|
216 |
else (); |
|
4270 | 217 |
bfs (Seq.list_of (tac prf), nprfs)) |
218 |
fun btac st = bfs (Seq.list_of (tac0 st), []) |
|
1588 | 219 |
in traced_tac btac end; |
220 |
||
221 |
(*Ordinary best-first search, with no initial tactic*) |
|
222 |
val BEST_FIRST = THEN_BEST_FIRST all_tac; |
|
223 |
||
224 |
(*Breadth-first search to satisfy satpred (including initial state) |
|
225 |
SLOW -- SHOULD NOT USE APPEND!*) |
|
5693 | 226 |
fun gen_BREADTH_FIRST message satpred (tac:tactic) = |
4270 | 227 |
let val tacf = Seq.list_of o tac; |
1588 | 228 |
fun bfs prfs = |
229 |
(case partition satpred prfs of |
|
230 |
([],[]) => [] |
|
231 |
| ([],nonsats) => |
|
5956 | 232 |
(message("breadth=" ^ string_of_int(length nonsats)); |
2672
85d7e800d754
Replaced "flat" by the Basis Library function List.concat
paulson
parents:
2143
diff
changeset
|
233 |
bfs (List.concat (map tacf nonsats))) |
1588 | 234 |
| (sats,_) => sats) |
4270 | 235 |
in (fn st => Seq.of_list (bfs [st])) end; |
1588 | 236 |
|
5956 | 237 |
val BREADTH_FIRST = gen_BREADTH_FIRST writeln; |
5693 | 238 |
val QUIET_BREADTH_FIRST = gen_BREADTH_FIRST (K ()); |
239 |
||
1588 | 240 |
|
241 |
(* Author: Norbert Voelker, FernUniversitaet Hagen |
|
242 |
Remarks: Implementation of A*-like proof procedure by modification |
|
243 |
of the existing code for BEST_FIRST and best_tac so that the |
|
244 |
current level of search is taken into account. |
|
245 |
*) |
|
246 |
||
247 |
(*Insertion into priority queue of states, marked with level *) |
|
248 |
fun insert_with_level (lnth: int*int*thm, []) = [lnth] |
|
249 |
| insert_with_level ((l,m,th), (l',n,th')::nths) = |
|
250 |
if n<m then (l',n,th') :: insert_with_level ((l,m,th), nths) |
|
251 |
else if n=m andalso eq_thm(th,th') |
|
252 |
then (l',n,th')::nths |
|
253 |
else (l,m,th)::(l',n,th')::nths; |
|
254 |
||
255 |
(*For creating output sequence*) |
|
256 |
fun some_of_list [] = None |
|
4270 | 257 |
| some_of_list (x::l) = Some (x, Seq.make (fn () => some_of_list l)); |
1588 | 258 |
|
259 |
val trace_ASTAR = ref false; |
|
260 |
||
261 |
fun THEN_ASTAR tac0 (satp, costf) tac1 = |
|
262 |
let val tf = tracify trace_ASTAR tac1; |
|
263 |
fun bfs (news,nprfs,level) = |
|
264 |
let fun cost thm = (level, costf level thm, thm) |
|
265 |
in (case partition satp news of |
|
266 |
([],nonsats) |
|
267 |
=> next (foldr insert_with_level (map cost nonsats, nprfs)) |
|
268 |
| (sats,_) => some_of_list sats) |
|
269 |
end and |
|
270 |
next [] = None |
|
271 |
| next ((level,n,prf)::nprfs) = |
|
272 |
(if !trace_ASTAR |
|
273 |
then writeln("level = " ^ string_of_int level ^ |
|
274 |
" cost = " ^ string_of_int n ^ |
|
275 |
" queue length =" ^ string_of_int (length nprfs)) |
|
276 |
else (); |
|
4270 | 277 |
bfs (Seq.list_of (tf prf), nprfs,level+1)) |
278 |
fun tf st = bfs (Seq.list_of (tac0 st), [], 0) |
|
1588 | 279 |
in traced_tac tf end; |
280 |
||
281 |
(*Ordinary ASTAR, with no initial tactic*) |
|
282 |
val ASTAR = THEN_ASTAR all_tac; |
|
283 |
||
284 |
end; |
|
285 |
||
286 |
open Search; |