69620
|
1 |
(* Title: HOL/Analysis/Path_Connected.thy
|
|
2 |
Authors: LC Paulson and Robert Himmelmann (TU Muenchen), based on material from HOL Light
|
|
3 |
*)
|
|
4 |
|
|
5 |
section \<open>Homotopy of Maps\<close>
|
|
6 |
|
|
7 |
theory Homotopy
|
|
8 |
imports Path_Connected Continuum_Not_Denumerable
|
|
9 |
begin
|
|
10 |
|
|
11 |
definition%important homotopic_with ::
|
|
12 |
"[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
|
|
13 |
where
|
|
14 |
"homotopic_with P X Y p q \<equiv>
|
|
15 |
(\<exists>h:: real \<times> 'a \<Rightarrow> 'b.
|
|
16 |
continuous_on ({0..1} \<times> X) h \<and>
|
|
17 |
h ` ({0..1} \<times> X) \<subseteq> Y \<and>
|
|
18 |
(\<forall>x. h(0, x) = p x) \<and>
|
|
19 |
(\<forall>x. h(1, x) = q x) \<and>
|
|
20 |
(\<forall>t \<in> {0..1}. P(\<lambda>x. h(t, x))))"
|
|
21 |
|
|
22 |
text\<open>\<open>p\<close>, \<open>q\<close> are functions \<open>X \<rightarrow> Y\<close>, and the property \<open>P\<close> restricts all intermediate maps.
|
|
23 |
We often just want to require that \<open>P\<close> fixes some subset, but to include the case of a loop homotopy,
|
|
24 |
it is convenient to have a general property \<open>P\<close>.\<close>
|
|
25 |
|
|
26 |
text \<open>We often want to just localize the ending function equality or whatever.\<close>
|
|
27 |
text%important \<open>%whitespace\<close>
|
|
28 |
proposition homotopic_with:
|
|
29 |
fixes X :: "'a::topological_space set" and Y :: "'b::topological_space set"
|
|
30 |
assumes "\<And>h k. (\<And>x. x \<in> X \<Longrightarrow> h x = k x) \<Longrightarrow> (P h \<longleftrightarrow> P k)"
|
|
31 |
shows "homotopic_with P X Y p q \<longleftrightarrow>
|
|
32 |
(\<exists>h :: real \<times> 'a \<Rightarrow> 'b.
|
|
33 |
continuous_on ({0..1} \<times> X) h \<and>
|
|
34 |
h ` ({0..1} \<times> X) \<subseteq> Y \<and>
|
|
35 |
(\<forall>x \<in> X. h(0,x) = p x) \<and>
|
|
36 |
(\<forall>x \<in> X. h(1,x) = q x) \<and>
|
|
37 |
(\<forall>t \<in> {0..1}. P(\<lambda>x. h(t, x))))"
|
|
38 |
unfolding homotopic_with_def
|
|
39 |
apply (rule iffI, blast, clarify)
|
|
40 |
apply (rule_tac x="\<lambda>(u,v). if v \<in> X then h(u,v) else if u = 0 then p v else q v" in exI)
|
|
41 |
apply auto
|
|
42 |
apply (force elim: continuous_on_eq)
|
|
43 |
apply (drule_tac x=t in bspec, force)
|
|
44 |
apply (subst assms; simp)
|
|
45 |
done
|
|
46 |
|
|
47 |
proposition homotopic_with_eq:
|
|
48 |
assumes h: "homotopic_with P X Y f g"
|
|
49 |
and f': "\<And>x. x \<in> X \<Longrightarrow> f' x = f x"
|
|
50 |
and g': "\<And>x. x \<in> X \<Longrightarrow> g' x = g x"
|
|
51 |
and P: "(\<And>h k. (\<And>x. x \<in> X \<Longrightarrow> h x = k x) \<Longrightarrow> (P h \<longleftrightarrow> P k))"
|
|
52 |
shows "homotopic_with P X Y f' g'"
|
|
53 |
using h unfolding homotopic_with_def
|
|
54 |
apply safe
|
|
55 |
apply (rule_tac x="\<lambda>(u,v). if v \<in> X then h(u,v) else if u = 0 then f' v else g' v" in exI)
|
|
56 |
apply (simp add: f' g', safe)
|
|
57 |
apply (fastforce intro: continuous_on_eq, fastforce)
|
|
58 |
apply (subst P; fastforce)
|
|
59 |
done
|
|
60 |
|
|
61 |
proposition homotopic_with_equal:
|
|
62 |
assumes contf: "continuous_on X f" and fXY: "f ` X \<subseteq> Y"
|
|
63 |
and gf: "\<And>x. x \<in> X \<Longrightarrow> g x = f x"
|
|
64 |
and P: "P f" "P g"
|
|
65 |
shows "homotopic_with P X Y f g"
|
|
66 |
unfolding homotopic_with_def
|
|
67 |
apply (rule_tac x="\<lambda>(u,v). if u = 1 then g v else f v" in exI)
|
|
68 |
using assms
|
|
69 |
apply (intro conjI)
|
|
70 |
apply (rule continuous_on_eq [where f = "f \<circ> snd"])
|
|
71 |
apply (rule continuous_intros | force)+
|
|
72 |
apply clarify
|
|
73 |
apply (case_tac "t=1"; force)
|
|
74 |
done
|
|
75 |
|
|
76 |
|
|
77 |
lemma image_Pair_const: "(\<lambda>x. (x, c)) ` A = A \<times> {c}"
|
|
78 |
by auto
|
|
79 |
|
|
80 |
lemma homotopic_constant_maps:
|
|
81 |
"homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b) \<longleftrightarrow> s = {} \<or> path_component t a b"
|
|
82 |
proof (cases "s = {} \<or> t = {}")
|
|
83 |
case True with continuous_on_const show ?thesis
|
|
84 |
by (auto simp: homotopic_with path_component_def)
|
|
85 |
next
|
|
86 |
case False
|
|
87 |
then obtain c where "c \<in> s" by blast
|
|
88 |
show ?thesis
|
|
89 |
proof
|
|
90 |
assume "homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b)"
|
|
91 |
then obtain h :: "real \<times> 'a \<Rightarrow> 'b"
|
|
92 |
where conth: "continuous_on ({0..1} \<times> s) h"
|
|
93 |
and h: "h ` ({0..1} \<times> s) \<subseteq> t" "(\<forall>x\<in>s. h (0, x) = a)" "(\<forall>x\<in>s. h (1, x) = b)"
|
|
94 |
by (auto simp: homotopic_with)
|
|
95 |
have "continuous_on {0..1} (h \<circ> (\<lambda>t. (t, c)))"
|
|
96 |
apply (rule continuous_intros conth | simp add: image_Pair_const)+
|
|
97 |
apply (blast intro: \<open>c \<in> s\<close> continuous_on_subset [OF conth])
|
|
98 |
done
|
|
99 |
with \<open>c \<in> s\<close> h show "s = {} \<or> path_component t a b"
|
|
100 |
apply (simp_all add: homotopic_with path_component_def, auto)
|
|
101 |
apply (drule_tac x="h \<circ> (\<lambda>t. (t, c))" in spec)
|
|
102 |
apply (auto simp: pathstart_def pathfinish_def path_image_def path_def)
|
|
103 |
done
|
|
104 |
next
|
|
105 |
assume "s = {} \<or> path_component t a b"
|
|
106 |
with False show "homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b)"
|
|
107 |
apply (clarsimp simp: homotopic_with path_component_def pathstart_def pathfinish_def path_image_def path_def)
|
|
108 |
apply (rule_tac x="g \<circ> fst" in exI)
|
|
109 |
apply (rule conjI continuous_intros | force)+
|
|
110 |
done
|
|
111 |
qed
|
|
112 |
qed
|
|
113 |
|
|
114 |
|
|
115 |
subsection%unimportant\<open>Trivial properties\<close>
|
|
116 |
|
|
117 |
lemma homotopic_with_imp_property: "homotopic_with P X Y f g \<Longrightarrow> P f \<and> P g"
|
|
118 |
unfolding homotopic_with_def Ball_def
|
|
119 |
apply clarify
|
|
120 |
apply (frule_tac x=0 in spec)
|
|
121 |
apply (drule_tac x=1 in spec, auto)
|
|
122 |
done
|
|
123 |
|
|
124 |
lemma continuous_on_o_Pair: "\<lbrakk>continuous_on (T \<times> X) h; t \<in> T\<rbrakk> \<Longrightarrow> continuous_on X (h \<circ> Pair t)"
|
|
125 |
by (fast intro: continuous_intros elim!: continuous_on_subset)
|
|
126 |
|
|
127 |
lemma homotopic_with_imp_continuous:
|
|
128 |
assumes "homotopic_with P X Y f g"
|
|
129 |
shows "continuous_on X f \<and> continuous_on X g"
|
|
130 |
proof -
|
|
131 |
obtain h :: "real \<times> 'a \<Rightarrow> 'b"
|
|
132 |
where conth: "continuous_on ({0..1} \<times> X) h"
|
|
133 |
and h: "\<forall>x. h (0, x) = f x" "\<forall>x. h (1, x) = g x"
|
|
134 |
using assms by (auto simp: homotopic_with_def)
|
|
135 |
have *: "t \<in> {0..1} \<Longrightarrow> continuous_on X (h \<circ> (\<lambda>x. (t,x)))" for t
|
|
136 |
by (rule continuous_intros continuous_on_subset [OF conth] | force)+
|
|
137 |
show ?thesis
|
|
138 |
using h *[of 0] *[of 1] by auto
|
|
139 |
qed
|
|
140 |
|
|
141 |
proposition homotopic_with_imp_subset1:
|
|
142 |
"homotopic_with P X Y f g \<Longrightarrow> f ` X \<subseteq> Y"
|
|
143 |
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)
|
|
144 |
|
|
145 |
proposition homotopic_with_imp_subset2:
|
|
146 |
"homotopic_with P X Y f g \<Longrightarrow> g ` X \<subseteq> Y"
|
|
147 |
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)
|
|
148 |
|
|
149 |
proposition homotopic_with_mono:
|
|
150 |
assumes hom: "homotopic_with P X Y f g"
|
|
151 |
and Q: "\<And>h. \<lbrakk>continuous_on X h; image h X \<subseteq> Y \<and> P h\<rbrakk> \<Longrightarrow> Q h"
|
|
152 |
shows "homotopic_with Q X Y f g"
|
|
153 |
using hom
|
|
154 |
apply (simp add: homotopic_with_def)
|
|
155 |
apply (erule ex_forward)
|
|
156 |
apply (force simp: intro!: Q dest: continuous_on_o_Pair)
|
|
157 |
done
|
|
158 |
|
|
159 |
proposition homotopic_with_subset_left:
|
|
160 |
"\<lbrakk>homotopic_with P X Y f g; Z \<subseteq> X\<rbrakk> \<Longrightarrow> homotopic_with P Z Y f g"
|
|
161 |
apply (simp add: homotopic_with_def)
|
|
162 |
apply (fast elim!: continuous_on_subset ex_forward)
|
|
163 |
done
|
|
164 |
|
|
165 |
proposition homotopic_with_subset_right:
|
|
166 |
"\<lbrakk>homotopic_with P X Y f g; Y \<subseteq> Z\<rbrakk> \<Longrightarrow> homotopic_with P X Z f g"
|
|
167 |
apply (simp add: homotopic_with_def)
|
|
168 |
apply (fast elim!: continuous_on_subset ex_forward)
|
|
169 |
done
|
|
170 |
|
|
171 |
proposition homotopic_with_compose_continuous_right:
|
|
172 |
"\<lbrakk>homotopic_with (\<lambda>f. p (f \<circ> h)) X Y f g; continuous_on W h; h ` W \<subseteq> X\<rbrakk>
|
|
173 |
\<Longrightarrow> homotopic_with p W Y (f \<circ> h) (g \<circ> h)"
|
|
174 |
apply (clarsimp simp add: homotopic_with_def)
|
|
175 |
apply (rename_tac k)
|
|
176 |
apply (rule_tac x="k \<circ> (\<lambda>y. (fst y, h (snd y)))" in exI)
|
|
177 |
apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
|
|
178 |
apply (erule continuous_on_subset)
|
|
179 |
apply (fastforce simp: o_def)+
|
|
180 |
done
|
|
181 |
|
|
182 |
proposition homotopic_compose_continuous_right:
|
|
183 |
"\<lbrakk>homotopic_with (\<lambda>f. True) X Y f g; continuous_on W h; h ` W \<subseteq> X\<rbrakk>
|
|
184 |
\<Longrightarrow> homotopic_with (\<lambda>f. True) W Y (f \<circ> h) (g \<circ> h)"
|
|
185 |
using homotopic_with_compose_continuous_right by fastforce
|
|
186 |
|
|
187 |
proposition homotopic_with_compose_continuous_left:
|
|
188 |
"\<lbrakk>homotopic_with (\<lambda>f. p (h \<circ> f)) X Y f g; continuous_on Y h; h ` Y \<subseteq> Z\<rbrakk>
|
|
189 |
\<Longrightarrow> homotopic_with p X Z (h \<circ> f) (h \<circ> g)"
|
|
190 |
apply (clarsimp simp add: homotopic_with_def)
|
|
191 |
apply (rename_tac k)
|
|
192 |
apply (rule_tac x="h \<circ> k" in exI)
|
|
193 |
apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
|
|
194 |
apply (erule continuous_on_subset)
|
|
195 |
apply (fastforce simp: o_def)+
|
|
196 |
done
|
|
197 |
|
|
198 |
proposition homotopic_compose_continuous_left:
|
|
199 |
"\<lbrakk>homotopic_with (\<lambda>_. True) X Y f g;
|
|
200 |
continuous_on Y h; h ` Y \<subseteq> Z\<rbrakk>
|
|
201 |
\<Longrightarrow> homotopic_with (\<lambda>f. True) X Z (h \<circ> f) (h \<circ> g)"
|
|
202 |
using homotopic_with_compose_continuous_left by fastforce
|
|
203 |
|
|
204 |
proposition homotopic_with_Pair:
|
|
205 |
assumes hom: "homotopic_with p s t f g" "homotopic_with p' s' t' f' g'"
|
|
206 |
and q: "\<And>f g. \<lbrakk>p f; p' g\<rbrakk> \<Longrightarrow> q(\<lambda>(x,y). (f x, g y))"
|
|
207 |
shows "homotopic_with q (s \<times> s') (t \<times> t')
|
|
208 |
(\<lambda>(x,y). (f x, f' y)) (\<lambda>(x,y). (g x, g' y))"
|
|
209 |
using hom
|
|
210 |
apply (clarsimp simp add: homotopic_with_def)
|
|
211 |
apply (rename_tac k k')
|
|
212 |
apply (rule_tac x="\<lambda>z. ((k \<circ> (\<lambda>x. (fst x, fst (snd x)))) z, (k' \<circ> (\<lambda>x. (fst x, snd (snd x)))) z)" in exI)
|
|
213 |
apply (rule conjI continuous_intros | erule continuous_on_subset | clarsimp)+
|
|
214 |
apply (auto intro!: q [unfolded case_prod_unfold])
|
|
215 |
done
|
|
216 |
|
|
217 |
lemma homotopic_on_empty [simp]: "homotopic_with (\<lambda>x. True) {} t f g"
|
|
218 |
by (metis continuous_on_def empty_iff homotopic_with_equal image_subset_iff)
|
|
219 |
|
|
220 |
|
|
221 |
text\<open>Homotopy with P is an equivalence relation (on continuous functions mapping X into Y that satisfy P,
|
|
222 |
though this only affects reflexivity.\<close>
|
|
223 |
|
|
224 |
|
|
225 |
proposition homotopic_with_refl:
|
|
226 |
"homotopic_with P X Y f f \<longleftrightarrow> continuous_on X f \<and> image f X \<subseteq> Y \<and> P f"
|
|
227 |
apply (rule iffI)
|
|
228 |
using homotopic_with_imp_continuous homotopic_with_imp_property homotopic_with_imp_subset2 apply blast
|
|
229 |
apply (simp add: homotopic_with_def)
|
|
230 |
apply (rule_tac x="f \<circ> snd" in exI)
|
|
231 |
apply (rule conjI continuous_intros | force)+
|
|
232 |
done
|
|
233 |
|
|
234 |
lemma homotopic_with_symD:
|
|
235 |
fixes X :: "'a::real_normed_vector set"
|
|
236 |
assumes "homotopic_with P X Y f g"
|
|
237 |
shows "homotopic_with P X Y g f"
|
|
238 |
using assms
|
|
239 |
apply (clarsimp simp add: homotopic_with_def)
|
|
240 |
apply (rename_tac h)
|
|
241 |
apply (rule_tac x="h \<circ> (\<lambda>y. (1 - fst y, snd y))" in exI)
|
|
242 |
apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: image_subset_iff)+
|
|
243 |
done
|
|
244 |
|
|
245 |
proposition homotopic_with_sym:
|
|
246 |
fixes X :: "'a::real_normed_vector set"
|
|
247 |
shows "homotopic_with P X Y f g \<longleftrightarrow> homotopic_with P X Y g f"
|
|
248 |
using homotopic_with_symD by blast
|
|
249 |
|
|
250 |
lemma split_01: "{0..1::real} = {0..1/2} \<union> {1/2..1}"
|
|
251 |
by force
|
|
252 |
|
|
253 |
lemma split_01_prod: "{0..1::real} \<times> X = ({0..1/2} \<times> X) \<union> ({1/2..1} \<times> X)"
|
|
254 |
by force
|
|
255 |
|
|
256 |
proposition homotopic_with_trans:
|
|
257 |
fixes X :: "'a::real_normed_vector set"
|
|
258 |
assumes "homotopic_with P X Y f g" and "homotopic_with P X Y g h"
|
|
259 |
shows "homotopic_with P X Y f h"
|
|
260 |
proof -
|
|
261 |
have clo1: "closedin (subtopology euclidean ({0..1/2} \<times> X \<union> {1/2..1} \<times> X)) ({0..1/2::real} \<times> X)"
|
|
262 |
apply (simp add: closedin_closed split_01_prod [symmetric])
|
|
263 |
apply (rule_tac x="{0..1/2} \<times> UNIV" in exI)
|
|
264 |
apply (force simp: closed_Times)
|
|
265 |
done
|
|
266 |
have clo2: "closedin (subtopology euclidean ({0..1/2} \<times> X \<union> {1/2..1} \<times> X)) ({1/2..1::real} \<times> X)"
|
|
267 |
apply (simp add: closedin_closed split_01_prod [symmetric])
|
|
268 |
apply (rule_tac x="{1/2..1} \<times> UNIV" in exI)
|
|
269 |
apply (force simp: closed_Times)
|
|
270 |
done
|
|
271 |
{ fix k1 k2:: "real \<times> 'a \<Rightarrow> 'b"
|
|
272 |
assume cont: "continuous_on ({0..1} \<times> X) k1" "continuous_on ({0..1} \<times> X) k2"
|
|
273 |
and Y: "k1 ` ({0..1} \<times> X) \<subseteq> Y" "k2 ` ({0..1} \<times> X) \<subseteq> Y"
|
|
274 |
and geq: "\<forall>x. k1 (1, x) = g x" "\<forall>x. k2 (0, x) = g x"
|
|
275 |
and k12: "\<forall>x. k1 (0, x) = f x" "\<forall>x. k2 (1, x) = h x"
|
|
276 |
and P: "\<forall>t\<in>{0..1}. P (\<lambda>x. k1 (t, x))" "\<forall>t\<in>{0..1}. P (\<lambda>x. k2 (t, x))"
|
|
277 |
define k where "k y =
|
|
278 |
(if fst y \<le> 1 / 2
|
|
279 |
then (k1 \<circ> (\<lambda>x. (2 *\<^sub>R fst x, snd x))) y
|
|
280 |
else (k2 \<circ> (\<lambda>x. (2 *\<^sub>R fst x -1, snd x))) y)" for y
|
|
281 |
have keq: "k1 (2 * u, v) = k2 (2 * u - 1, v)" if "u = 1/2" for u v
|
|
282 |
by (simp add: geq that)
|
|
283 |
have "continuous_on ({0..1} \<times> X) k"
|
|
284 |
using cont
|
|
285 |
apply (simp add: split_01_prod k_def)
|
|
286 |
apply (rule clo1 clo2 continuous_on_cases_local continuous_intros | erule continuous_on_subset | simp add: linear image_subset_iff)+
|
|
287 |
apply (force simp: keq)
|
|
288 |
done
|
|
289 |
moreover have "k ` ({0..1} \<times> X) \<subseteq> Y"
|
|
290 |
using Y by (force simp: k_def)
|
|
291 |
moreover have "\<forall>x. k (0, x) = f x"
|
|
292 |
by (simp add: k_def k12)
|
|
293 |
moreover have "(\<forall>x. k (1, x) = h x)"
|
|
294 |
by (simp add: k_def k12)
|
|
295 |
moreover have "\<forall>t\<in>{0..1}. P (\<lambda>x. k (t, x))"
|
|
296 |
using P
|
|
297 |
apply (clarsimp simp add: k_def)
|
|
298 |
apply (case_tac "t \<le> 1/2", auto)
|
|
299 |
done
|
|
300 |
ultimately have *: "\<exists>k :: real \<times> 'a \<Rightarrow> 'b.
|
|
301 |
continuous_on ({0..1} \<times> X) k \<and> k ` ({0..1} \<times> X) \<subseteq> Y \<and>
|
|
302 |
(\<forall>x. k (0, x) = f x) \<and> (\<forall>x. k (1, x) = h x) \<and> (\<forall>t\<in>{0..1}. P (\<lambda>x. k (t, x)))"
|
|
303 |
by blast
|
|
304 |
} note * = this
|
|
305 |
show ?thesis
|
|
306 |
using assms by (auto intro: * simp add: homotopic_with_def)
|
|
307 |
qed
|
|
308 |
|
|
309 |
proposition homotopic_compose:
|
|
310 |
fixes s :: "'a::real_normed_vector set"
|
|
311 |
shows "\<lbrakk>homotopic_with (\<lambda>x. True) s t f f'; homotopic_with (\<lambda>x. True) t u g g'\<rbrakk>
|
|
312 |
\<Longrightarrow> homotopic_with (\<lambda>x. True) s u (g \<circ> f) (g' \<circ> f')"
|
|
313 |
apply (rule homotopic_with_trans [where g = "g \<circ> f'"])
|
|
314 |
apply (metis homotopic_compose_continuous_left homotopic_with_imp_continuous homotopic_with_imp_subset1)
|
|
315 |
by (metis homotopic_compose_continuous_right homotopic_with_imp_continuous homotopic_with_imp_subset2)
|
|
316 |
|
|
317 |
|
|
318 |
text\<open>Homotopic triviality implicitly incorporates path-connectedness.\<close>
|
|
319 |
lemma homotopic_triviality:
|
|
320 |
fixes S :: "'a::real_normed_vector set"
|
|
321 |
shows "(\<forall>f g. continuous_on S f \<and> f ` S \<subseteq> T \<and>
|
|
322 |
continuous_on S g \<and> g ` S \<subseteq> T
|
|
323 |
\<longrightarrow> homotopic_with (\<lambda>x. True) S T f g) \<longleftrightarrow>
|
|
324 |
(S = {} \<or> path_connected T) \<and>
|
|
325 |
(\<forall>f. continuous_on S f \<and> f ` S \<subseteq> T \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)))"
|
|
326 |
(is "?lhs = ?rhs")
|
|
327 |
proof (cases "S = {} \<or> T = {}")
|
|
328 |
case True then show ?thesis by auto
|
|
329 |
next
|
|
330 |
case False show ?thesis
|
|
331 |
proof
|
|
332 |
assume LHS [rule_format]: ?lhs
|
|
333 |
have pab: "path_component T a b" if "a \<in> T" "b \<in> T" for a b
|
|
334 |
proof -
|
|
335 |
have "homotopic_with (\<lambda>x. True) S T (\<lambda>x. a) (\<lambda>x. b)"
|
|
336 |
by (simp add: LHS continuous_on_const image_subset_iff that)
|
|
337 |
then show ?thesis
|
|
338 |
using False homotopic_constant_maps by blast
|
|
339 |
qed
|
|
340 |
moreover
|
|
341 |
have "\<exists>c. homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)" if "continuous_on S f" "f ` S \<subseteq> T" for f
|
|
342 |
by (metis (full_types) False LHS equals0I homotopic_constant_maps homotopic_with_imp_continuous homotopic_with_imp_subset2 pab that)
|
|
343 |
ultimately show ?rhs
|
|
344 |
by (simp add: path_connected_component)
|
|
345 |
next
|
|
346 |
assume RHS: ?rhs
|
|
347 |
with False have T: "path_connected T"
|
|
348 |
by blast
|
|
349 |
show ?lhs
|
|
350 |
proof clarify
|
|
351 |
fix f g
|
|
352 |
assume "continuous_on S f" "f ` S \<subseteq> T" "continuous_on S g" "g ` S \<subseteq> T"
|
|
353 |
obtain c d where c: "homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)" and d: "homotopic_with (\<lambda>x. True) S T g (\<lambda>x. d)"
|
|
354 |
using False \<open>continuous_on S f\<close> \<open>f ` S \<subseteq> T\<close> RHS \<open>continuous_on S g\<close> \<open>g ` S \<subseteq> T\<close> by blast
|
|
355 |
then have "c \<in> T" "d \<in> T"
|
|
356 |
using False homotopic_with_imp_subset2 by fastforce+
|
|
357 |
with T have "path_component T c d"
|
|
358 |
using path_connected_component by blast
|
|
359 |
then have "homotopic_with (\<lambda>x. True) S T (\<lambda>x. c) (\<lambda>x. d)"
|
|
360 |
by (simp add: homotopic_constant_maps)
|
|
361 |
with c d show "homotopic_with (\<lambda>x. True) S T f g"
|
|
362 |
by (meson homotopic_with_symD homotopic_with_trans)
|
|
363 |
qed
|
|
364 |
qed
|
|
365 |
qed
|
|
366 |
|
|
367 |
|
|
368 |
subsection\<open>Homotopy of paths, maintaining the same endpoints\<close>
|
|
369 |
|
|
370 |
|
|
371 |
definition%important homotopic_paths :: "['a set, real \<Rightarrow> 'a, real \<Rightarrow> 'a::topological_space] \<Rightarrow> bool"
|
|
372 |
where
|
|
373 |
"homotopic_paths s p q \<equiv>
|
|
374 |
homotopic_with (\<lambda>r. pathstart r = pathstart p \<and> pathfinish r = pathfinish p) {0..1} s p q"
|
|
375 |
|
|
376 |
lemma homotopic_paths:
|
|
377 |
"homotopic_paths s p q \<longleftrightarrow>
|
|
378 |
(\<exists>h. continuous_on ({0..1} \<times> {0..1}) h \<and>
|
|
379 |
h ` ({0..1} \<times> {0..1}) \<subseteq> s \<and>
|
|
380 |
(\<forall>x \<in> {0..1}. h(0,x) = p x) \<and>
|
|
381 |
(\<forall>x \<in> {0..1}. h(1,x) = q x) \<and>
|
|
382 |
(\<forall>t \<in> {0..1::real}. pathstart(h \<circ> Pair t) = pathstart p \<and>
|
|
383 |
pathfinish(h \<circ> Pair t) = pathfinish p))"
|
|
384 |
by (auto simp: homotopic_paths_def homotopic_with pathstart_def pathfinish_def)
|
|
385 |
|
|
386 |
proposition homotopic_paths_imp_pathstart:
|
|
387 |
"homotopic_paths s p q \<Longrightarrow> pathstart p = pathstart q"
|
|
388 |
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
|
|
389 |
|
|
390 |
proposition homotopic_paths_imp_pathfinish:
|
|
391 |
"homotopic_paths s p q \<Longrightarrow> pathfinish p = pathfinish q"
|
|
392 |
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
|
|
393 |
|
|
394 |
lemma homotopic_paths_imp_path:
|
|
395 |
"homotopic_paths s p q \<Longrightarrow> path p \<and> path q"
|
|
396 |
using homotopic_paths_def homotopic_with_imp_continuous path_def by blast
|
|
397 |
|
|
398 |
lemma homotopic_paths_imp_subset:
|
|
399 |
"homotopic_paths s p q \<Longrightarrow> path_image p \<subseteq> s \<and> path_image q \<subseteq> s"
|
|
400 |
by (simp add: homotopic_paths_def homotopic_with_imp_subset1 homotopic_with_imp_subset2 path_image_def)
|
|
401 |
|
|
402 |
proposition homotopic_paths_refl [simp]: "homotopic_paths s p p \<longleftrightarrow> path p \<and> path_image p \<subseteq> s"
|
|
403 |
by (simp add: homotopic_paths_def homotopic_with_refl path_def path_image_def)
|
|
404 |
|
|
405 |
proposition homotopic_paths_sym: "homotopic_paths s p q \<Longrightarrow> homotopic_paths s q p"
|
|
406 |
by (metis (mono_tags) homotopic_paths_def homotopic_paths_imp_pathfinish homotopic_paths_imp_pathstart homotopic_with_symD)
|
|
407 |
|
|
408 |
proposition homotopic_paths_sym_eq: "homotopic_paths s p q \<longleftrightarrow> homotopic_paths s q p"
|
|
409 |
by (metis homotopic_paths_sym)
|
|
410 |
|
|
411 |
proposition homotopic_paths_trans [trans]:
|
|
412 |
"\<lbrakk>homotopic_paths s p q; homotopic_paths s q r\<rbrakk> \<Longrightarrow> homotopic_paths s p r"
|
|
413 |
apply (simp add: homotopic_paths_def)
|
|
414 |
apply (rule homotopic_with_trans, assumption)
|
|
415 |
by (metis (mono_tags, lifting) homotopic_with_imp_property homotopic_with_mono)
|
|
416 |
|
|
417 |
proposition homotopic_paths_eq:
|
|
418 |
"\<lbrakk>path p; path_image p \<subseteq> s; \<And>t. t \<in> {0..1} \<Longrightarrow> p t = q t\<rbrakk> \<Longrightarrow> homotopic_paths s p q"
|
|
419 |
apply (simp add: homotopic_paths_def)
|
|
420 |
apply (rule homotopic_with_eq)
|
|
421 |
apply (auto simp: path_def homotopic_with_refl pathstart_def pathfinish_def path_image_def elim: continuous_on_eq)
|
|
422 |
done
|
|
423 |
|
|
424 |
proposition homotopic_paths_reparametrize:
|
|
425 |
assumes "path p"
|
|
426 |
and pips: "path_image p \<subseteq> s"
|
|
427 |
and contf: "continuous_on {0..1} f"
|
|
428 |
and f01:"f ` {0..1} \<subseteq> {0..1}"
|
|
429 |
and [simp]: "f(0) = 0" "f(1) = 1"
|
|
430 |
and q: "\<And>t. t \<in> {0..1} \<Longrightarrow> q(t) = p(f t)"
|
|
431 |
shows "homotopic_paths s p q"
|
|
432 |
proof -
|
|
433 |
have contp: "continuous_on {0..1} p"
|
|
434 |
by (metis \<open>path p\<close> path_def)
|
|
435 |
then have "continuous_on {0..1} (p \<circ> f)"
|
|
436 |
using contf continuous_on_compose continuous_on_subset f01 by blast
|
|
437 |
then have "path q"
|
|
438 |
by (simp add: path_def) (metis q continuous_on_cong)
|
|
439 |
have piqs: "path_image q \<subseteq> s"
|
|
440 |
by (metis (no_types, hide_lams) pips f01 image_subset_iff path_image_def q)
|
|
441 |
have fb0: "\<And>a b. \<lbrakk>0 \<le> a; a \<le> 1; 0 \<le> b; b \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> (1 - a) * f b + a * b"
|
|
442 |
using f01 by force
|
|
443 |
have fb1: "\<lbrakk>0 \<le> a; a \<le> 1; 0 \<le> b; b \<le> 1\<rbrakk> \<Longrightarrow> (1 - a) * f b + a * b \<le> 1" for a b
|
|
444 |
using f01 [THEN subsetD, of "f b"] by (simp add: convex_bound_le)
|
|
445 |
have "homotopic_paths s q p"
|
|
446 |
proof (rule homotopic_paths_trans)
|
|
447 |
show "homotopic_paths s q (p \<circ> f)"
|
|
448 |
using q by (force intro: homotopic_paths_eq [OF \<open>path q\<close> piqs])
|
|
449 |
next
|
|
450 |
show "homotopic_paths s (p \<circ> f) p"
|
|
451 |
apply (simp add: homotopic_paths_def homotopic_with_def)
|
|
452 |
apply (rule_tac x="p \<circ> (\<lambda>y. (1 - (fst y)) *\<^sub>R ((f \<circ> snd) y) + (fst y) *\<^sub>R snd y)" in exI)
|
|
453 |
apply (rule conjI contf continuous_intros continuous_on_subset [OF contp] | simp)+
|
|
454 |
using pips [unfolded path_image_def]
|
|
455 |
apply (auto simp: fb0 fb1 pathstart_def pathfinish_def)
|
|
456 |
done
|
|
457 |
qed
|
|
458 |
then show ?thesis
|
|
459 |
by (simp add: homotopic_paths_sym)
|
|
460 |
qed
|
|
461 |
|
|
462 |
lemma homotopic_paths_subset: "\<lbrakk>homotopic_paths s p q; s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_paths t p q"
|
|
463 |
using homotopic_paths_def homotopic_with_subset_right by blast
|
|
464 |
|
|
465 |
|
|
466 |
text\<open> A slightly ad-hoc but useful lemma in constructing homotopies.\<close>
|
|
467 |
lemma homotopic_join_lemma:
|
|
468 |
fixes q :: "[real,real] \<Rightarrow> 'a::topological_space"
|
|
469 |
assumes p: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. p (fst y) (snd y))"
|
|
470 |
and q: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. q (fst y) (snd y))"
|
|
471 |
and pf: "\<And>t. t \<in> {0..1} \<Longrightarrow> pathfinish(p t) = pathstart(q t)"
|
|
472 |
shows "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. (p(fst y) +++ q(fst y)) (snd y))"
|
|
473 |
proof -
|
|
474 |
have 1: "(\<lambda>y. p (fst y) (2 * snd y)) = (\<lambda>y. p (fst y) (snd y)) \<circ> (\<lambda>y. (fst y, 2 * snd y))"
|
|
475 |
by (rule ext) (simp)
|
|
476 |
have 2: "(\<lambda>y. q (fst y) (2 * snd y - 1)) = (\<lambda>y. q (fst y) (snd y)) \<circ> (\<lambda>y. (fst y, 2 * snd y - 1))"
|
|
477 |
by (rule ext) (simp)
|
|
478 |
show ?thesis
|
|
479 |
apply (simp add: joinpaths_def)
|
|
480 |
apply (rule continuous_on_cases_le)
|
|
481 |
apply (simp_all only: 1 2)
|
|
482 |
apply (rule continuous_intros continuous_on_subset [OF p] continuous_on_subset [OF q] | force)+
|
|
483 |
using pf
|
|
484 |
apply (auto simp: mult.commute pathstart_def pathfinish_def)
|
|
485 |
done
|
|
486 |
qed
|
|
487 |
|
|
488 |
text\<open> Congruence properties of homotopy w.r.t. path-combining operations.\<close>
|
|
489 |
|
|
490 |
lemma homotopic_paths_reversepath_D:
|
|
491 |
assumes "homotopic_paths s p q"
|
|
492 |
shows "homotopic_paths s (reversepath p) (reversepath q)"
|
|
493 |
using assms
|
|
494 |
apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
|
|
495 |
apply (rule_tac x="h \<circ> (\<lambda>x. (fst x, 1 - snd x))" in exI)
|
|
496 |
apply (rule conjI continuous_intros)+
|
|
497 |
apply (auto simp: reversepath_def pathstart_def pathfinish_def elim!: continuous_on_subset)
|
|
498 |
done
|
|
499 |
|
|
500 |
proposition homotopic_paths_reversepath:
|
|
501 |
"homotopic_paths s (reversepath p) (reversepath q) \<longleftrightarrow> homotopic_paths s p q"
|
|
502 |
using homotopic_paths_reversepath_D by force
|
|
503 |
|
|
504 |
|
|
505 |
proposition homotopic_paths_join:
|
|
506 |
"\<lbrakk>homotopic_paths s p p'; homotopic_paths s q q'; pathfinish p = pathstart q\<rbrakk> \<Longrightarrow> homotopic_paths s (p +++ q) (p' +++ q')"
|
|
507 |
apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
|
|
508 |
apply (rename_tac k1 k2)
|
|
509 |
apply (rule_tac x="(\<lambda>y. ((k1 \<circ> Pair (fst y)) +++ (k2 \<circ> Pair (fst y))) (snd y))" in exI)
|
|
510 |
apply (rule conjI continuous_intros homotopic_join_lemma)+
|
|
511 |
apply (auto simp: joinpaths_def pathstart_def pathfinish_def path_image_def)
|
|
512 |
done
|
|
513 |
|
|
514 |
proposition homotopic_paths_continuous_image:
|
|
515 |
"\<lbrakk>homotopic_paths s f g; continuous_on s h; h ` s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_paths t (h \<circ> f) (h \<circ> g)"
|
|
516 |
unfolding homotopic_paths_def
|
|
517 |
apply (rule homotopic_with_compose_continuous_left [of _ _ _ s])
|
|
518 |
apply (auto simp: pathstart_def pathfinish_def elim!: homotopic_with_mono)
|
|
519 |
done
|
|
520 |
|
|
521 |
|
|
522 |
subsection\<open>Group properties for homotopy of paths\<close>
|
|
523 |
|
|
524 |
text%important\<open>So taking equivalence classes under homotopy would give the fundamental group\<close>
|
|
525 |
|
|
526 |
proposition homotopic_paths_rid:
|
|
527 |
"\<lbrakk>path p; path_image p \<subseteq> s\<rbrakk> \<Longrightarrow> homotopic_paths s (p +++ linepath (pathfinish p) (pathfinish p)) p"
|
|
528 |
apply (subst homotopic_paths_sym)
|
|
529 |
apply (rule homotopic_paths_reparametrize [where f = "\<lambda>t. if t \<le> 1 / 2 then 2 *\<^sub>R t else 1"])
|
|
530 |
apply (simp_all del: le_divide_eq_numeral1)
|
|
531 |
apply (subst split_01)
|
|
532 |
apply (rule continuous_on_cases continuous_intros | force simp: pathfinish_def joinpaths_def)+
|
|
533 |
done
|
|
534 |
|
|
535 |
proposition homotopic_paths_lid:
|
|
536 |
"\<lbrakk>path p; path_image p \<subseteq> s\<rbrakk> \<Longrightarrow> homotopic_paths s (linepath (pathstart p) (pathstart p) +++ p) p"
|
|
537 |
using homotopic_paths_rid [of "reversepath p" s]
|
|
538 |
by (metis homotopic_paths_reversepath path_image_reversepath path_reversepath pathfinish_linepath
|
|
539 |
pathfinish_reversepath reversepath_joinpaths reversepath_linepath)
|
|
540 |
|
|
541 |
proposition homotopic_paths_assoc:
|
|
542 |
"\<lbrakk>path p; path_image p \<subseteq> s; path q; path_image q \<subseteq> s; path r; path_image r \<subseteq> s; pathfinish p = pathstart q;
|
|
543 |
pathfinish q = pathstart r\<rbrakk>
|
|
544 |
\<Longrightarrow> homotopic_paths s (p +++ (q +++ r)) ((p +++ q) +++ r)"
|
|
545 |
apply (subst homotopic_paths_sym)
|
|
546 |
apply (rule homotopic_paths_reparametrize
|
|
547 |
[where f = "\<lambda>t. if t \<le> 1 / 2 then inverse 2 *\<^sub>R t
|
|
548 |
else if t \<le> 3 / 4 then t - (1 / 4)
|
|
549 |
else 2 *\<^sub>R t - 1"])
|
|
550 |
apply (simp_all del: le_divide_eq_numeral1)
|
|
551 |
apply (simp add: subset_path_image_join)
|
|
552 |
apply (rule continuous_on_cases_1 continuous_intros)+
|
|
553 |
apply (auto simp: joinpaths_def)
|
|
554 |
done
|
|
555 |
|
|
556 |
proposition homotopic_paths_rinv:
|
|
557 |
assumes "path p" "path_image p \<subseteq> s"
|
|
558 |
shows "homotopic_paths s (p +++ reversepath p) (linepath (pathstart p) (pathstart p))"
|
|
559 |
proof -
|
|
560 |
have "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. (subpath 0 (fst x) p +++ reversepath (subpath 0 (fst x) p)) (snd x))"
|
|
561 |
using assms
|
|
562 |
apply (simp add: joinpaths_def subpath_def reversepath_def path_def del: le_divide_eq_numeral1)
|
|
563 |
apply (rule continuous_on_cases_le)
|
|
564 |
apply (rule_tac [2] continuous_on_compose [of _ _ p, unfolded o_def])
|
|
565 |
apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
|
|
566 |
apply (auto intro!: continuous_intros simp del: eq_divide_eq_numeral1)
|
|
567 |
apply (force elim!: continuous_on_subset simp add: mult_le_one)+
|
|
568 |
done
|
|
569 |
then show ?thesis
|
|
570 |
using assms
|
|
571 |
apply (subst homotopic_paths_sym_eq)
|
|
572 |
unfolding homotopic_paths_def homotopic_with_def
|
|
573 |
apply (rule_tac x="(\<lambda>y. (subpath 0 (fst y) p +++ reversepath(subpath 0 (fst y) p)) (snd y))" in exI)
|
|
574 |
apply (simp add: path_defs joinpaths_def subpath_def reversepath_def)
|
|
575 |
apply (force simp: mult_le_one)
|
|
576 |
done
|
|
577 |
qed
|
|
578 |
|
|
579 |
proposition homotopic_paths_linv:
|
|
580 |
assumes "path p" "path_image p \<subseteq> s"
|
|
581 |
shows "homotopic_paths s (reversepath p +++ p) (linepath (pathfinish p) (pathfinish p))"
|
|
582 |
using homotopic_paths_rinv [of "reversepath p" s] assms by simp
|
|
583 |
|
|
584 |
|
|
585 |
subsection\<open>Homotopy of loops without requiring preservation of endpoints\<close>
|
|
586 |
|
|
587 |
definition%important homotopic_loops :: "'a::topological_space set \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> bool" where
|
|
588 |
"homotopic_loops s p q \<equiv>
|
|
589 |
homotopic_with (\<lambda>r. pathfinish r = pathstart r) {0..1} s p q"
|
|
590 |
|
|
591 |
lemma homotopic_loops:
|
|
592 |
"homotopic_loops s p q \<longleftrightarrow>
|
|
593 |
(\<exists>h. continuous_on ({0..1::real} \<times> {0..1}) h \<and>
|
|
594 |
image h ({0..1} \<times> {0..1}) \<subseteq> s \<and>
|
|
595 |
(\<forall>x \<in> {0..1}. h(0,x) = p x) \<and>
|
|
596 |
(\<forall>x \<in> {0..1}. h(1,x) = q x) \<and>
|
|
597 |
(\<forall>t \<in> {0..1}. pathfinish(h \<circ> Pair t) = pathstart(h \<circ> Pair t)))"
|
|
598 |
by (simp add: homotopic_loops_def pathstart_def pathfinish_def homotopic_with)
|
|
599 |
|
|
600 |
proposition homotopic_loops_imp_loop:
|
|
601 |
"homotopic_loops s p q \<Longrightarrow> pathfinish p = pathstart p \<and> pathfinish q = pathstart q"
|
|
602 |
using homotopic_with_imp_property homotopic_loops_def by blast
|
|
603 |
|
|
604 |
proposition homotopic_loops_imp_path:
|
|
605 |
"homotopic_loops s p q \<Longrightarrow> path p \<and> path q"
|
|
606 |
unfolding homotopic_loops_def path_def
|
|
607 |
using homotopic_with_imp_continuous by blast
|
|
608 |
|
|
609 |
proposition homotopic_loops_imp_subset:
|
|
610 |
"homotopic_loops s p q \<Longrightarrow> path_image p \<subseteq> s \<and> path_image q \<subseteq> s"
|
|
611 |
unfolding homotopic_loops_def path_image_def
|
|
612 |
by (metis homotopic_with_imp_subset1 homotopic_with_imp_subset2)
|
|
613 |
|
|
614 |
proposition homotopic_loops_refl:
|
|
615 |
"homotopic_loops s p p \<longleftrightarrow>
|
|
616 |
path p \<and> path_image p \<subseteq> s \<and> pathfinish p = pathstart p"
|
|
617 |
by (simp add: homotopic_loops_def homotopic_with_refl path_image_def path_def)
|
|
618 |
|
|
619 |
proposition homotopic_loops_sym: "homotopic_loops s p q \<Longrightarrow> homotopic_loops s q p"
|
|
620 |
by (simp add: homotopic_loops_def homotopic_with_sym)
|
|
621 |
|
|
622 |
proposition homotopic_loops_sym_eq: "homotopic_loops s p q \<longleftrightarrow> homotopic_loops s q p"
|
|
623 |
by (metis homotopic_loops_sym)
|
|
624 |
|
|
625 |
proposition homotopic_loops_trans:
|
|
626 |
"\<lbrakk>homotopic_loops s p q; homotopic_loops s q r\<rbrakk> \<Longrightarrow> homotopic_loops s p r"
|
|
627 |
unfolding homotopic_loops_def by (blast intro: homotopic_with_trans)
|
|
628 |
|
|
629 |
proposition homotopic_loops_subset:
|
|
630 |
"\<lbrakk>homotopic_loops s p q; s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_loops t p q"
|
|
631 |
by (simp add: homotopic_loops_def homotopic_with_subset_right)
|
|
632 |
|
|
633 |
proposition homotopic_loops_eq:
|
|
634 |
"\<lbrakk>path p; path_image p \<subseteq> s; pathfinish p = pathstart p; \<And>t. t \<in> {0..1} \<Longrightarrow> p(t) = q(t)\<rbrakk>
|
|
635 |
\<Longrightarrow> homotopic_loops s p q"
|
|
636 |
unfolding homotopic_loops_def
|
|
637 |
apply (rule homotopic_with_eq)
|
|
638 |
apply (rule homotopic_with_refl [where f = p, THEN iffD2])
|
|
639 |
apply (simp_all add: path_image_def path_def pathstart_def pathfinish_def)
|
|
640 |
done
|
|
641 |
|
|
642 |
proposition homotopic_loops_continuous_image:
|
|
643 |
"\<lbrakk>homotopic_loops s f g; continuous_on s h; h ` s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_loops t (h \<circ> f) (h \<circ> g)"
|
|
644 |
unfolding homotopic_loops_def
|
|
645 |
apply (rule homotopic_with_compose_continuous_left)
|
|
646 |
apply (erule homotopic_with_mono)
|
|
647 |
by (simp add: pathfinish_def pathstart_def)
|
|
648 |
|
|
649 |
|
|
650 |
subsection\<open>Relations between the two variants of homotopy\<close>
|
|
651 |
|
|
652 |
proposition homotopic_paths_imp_homotopic_loops:
|
|
653 |
"\<lbrakk>homotopic_paths s p q; pathfinish p = pathstart p; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> homotopic_loops s p q"
|
|
654 |
by (auto simp: homotopic_paths_def homotopic_loops_def intro: homotopic_with_mono)
|
|
655 |
|
|
656 |
proposition homotopic_loops_imp_homotopic_paths_null:
|
|
657 |
assumes "homotopic_loops s p (linepath a a)"
|
|
658 |
shows "homotopic_paths s p (linepath (pathstart p) (pathstart p))"
|
|
659 |
proof -
|
|
660 |
have "path p" by (metis assms homotopic_loops_imp_path)
|
|
661 |
have ploop: "pathfinish p = pathstart p" by (metis assms homotopic_loops_imp_loop)
|
|
662 |
have pip: "path_image p \<subseteq> s" by (metis assms homotopic_loops_imp_subset)
|
|
663 |
obtain h where conth: "continuous_on ({0..1::real} \<times> {0..1}) h"
|
|
664 |
and hs: "h ` ({0..1} \<times> {0..1}) \<subseteq> s"
|
|
665 |
and [simp]: "\<And>x. x \<in> {0..1} \<Longrightarrow> h(0,x) = p x"
|
|
666 |
and [simp]: "\<And>x. x \<in> {0..1} \<Longrightarrow> h(1,x) = a"
|
|
667 |
and ends: "\<And>t. t \<in> {0..1} \<Longrightarrow> pathfinish (h \<circ> Pair t) = pathstart (h \<circ> Pair t)"
|
|
668 |
using assms by (auto simp: homotopic_loops homotopic_with)
|
|
669 |
have conth0: "path (\<lambda>u. h (u, 0))"
|
|
670 |
unfolding path_def
|
|
671 |
apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
|
|
672 |
apply (force intro: continuous_intros continuous_on_subset [OF conth])+
|
|
673 |
done
|
|
674 |
have pih0: "path_image (\<lambda>u. h (u, 0)) \<subseteq> s"
|
|
675 |
using hs by (force simp: path_image_def)
|
|
676 |
have c1: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. h (fst x * snd x, 0))"
|
|
677 |
apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
|
|
678 |
apply (force simp: mult_le_one intro: continuous_intros continuous_on_subset [OF conth])+
|
|
679 |
done
|
|
680 |
have c2: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. h (fst x - fst x * snd x, 0))"
|
|
681 |
apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
|
|
682 |
apply (force simp: mult_left_le mult_le_one intro: continuous_intros continuous_on_subset [OF conth])+
|
|
683 |
apply (rule continuous_on_subset [OF conth])
|
|
684 |
apply (auto simp: algebra_simps add_increasing2 mult_left_le)
|
|
685 |
done
|
|
686 |
have [simp]: "\<And>t. \<lbrakk>0 \<le> t \<and> t \<le> 1\<rbrakk> \<Longrightarrow> h (t, 1) = h (t, 0)"
|
|
687 |
using ends by (simp add: pathfinish_def pathstart_def)
|
|
688 |
have adhoc_le: "c * 4 \<le> 1 + c * (d * 4)" if "\<not> d * 4 \<le> 3" "0 \<le> c" "c \<le> 1" for c d::real
|
|
689 |
proof -
|
|
690 |
have "c * 3 \<le> c * (d * 4)" using that less_eq_real_def by auto
|
|
691 |
with \<open>c \<le> 1\<close> show ?thesis by fastforce
|
|
692 |
qed
|
|
693 |
have *: "\<And>p x. (path p \<and> path(reversepath p)) \<and>
|
|
694 |
(path_image p \<subseteq> s \<and> path_image(reversepath p) \<subseteq> s) \<and>
|
|
695 |
(pathfinish p = pathstart(linepath a a +++ reversepath p) \<and>
|
|
696 |
pathstart(reversepath p) = a) \<and> pathstart p = x
|
|
697 |
\<Longrightarrow> homotopic_paths s (p +++ linepath a a +++ reversepath p) (linepath x x)"
|
|
698 |
by (metis homotopic_paths_lid homotopic_paths_join
|
|
699 |
homotopic_paths_trans homotopic_paths_sym homotopic_paths_rinv)
|
|
700 |
have 1: "homotopic_paths s p (p +++ linepath (pathfinish p) (pathfinish p))"
|
|
701 |
using \<open>path p\<close> homotopic_paths_rid homotopic_paths_sym pip by blast
|
|
702 |
moreover have "homotopic_paths s (p +++ linepath (pathfinish p) (pathfinish p))
|
|
703 |
(linepath (pathstart p) (pathstart p) +++ p +++ linepath (pathfinish p) (pathfinish p))"
|
|
704 |
apply (rule homotopic_paths_sym)
|
|
705 |
using homotopic_paths_lid [of "p +++ linepath (pathfinish p) (pathfinish p)" s]
|
|
706 |
by (metis 1 homotopic_paths_imp_path homotopic_paths_imp_pathstart homotopic_paths_imp_subset)
|
|
707 |
moreover have "homotopic_paths s (linepath (pathstart p) (pathstart p) +++ p +++ linepath (pathfinish p) (pathfinish p))
|
|
708 |
((\<lambda>u. h (u, 0)) +++ linepath a a +++ reversepath (\<lambda>u. h (u, 0)))"
|
|
709 |
apply (simp add: homotopic_paths_def homotopic_with_def)
|
|
710 |
apply (rule_tac x="\<lambda>y. (subpath 0 (fst y) (\<lambda>u. h (u, 0)) +++ (\<lambda>u. h (Pair (fst y) u)) +++ subpath (fst y) 0 (\<lambda>u. h (u, 0))) (snd y)" in exI)
|
|
711 |
apply (simp add: subpath_reversepath)
|
|
712 |
apply (intro conjI homotopic_join_lemma)
|
|
713 |
using ploop
|
|
714 |
apply (simp_all add: path_defs joinpaths_def o_def subpath_def conth c1 c2)
|
|
715 |
apply (force simp: algebra_simps mult_le_one mult_left_le intro: hs [THEN subsetD] adhoc_le)
|
|
716 |
done
|
|
717 |
moreover have "homotopic_paths s ((\<lambda>u. h (u, 0)) +++ linepath a a +++ reversepath (\<lambda>u. h (u, 0)))
|
|
718 |
(linepath (pathstart p) (pathstart p))"
|
|
719 |
apply (rule *)
|
|
720 |
apply (simp add: pih0 pathstart_def pathfinish_def conth0)
|
|
721 |
apply (simp add: reversepath_def joinpaths_def)
|
|
722 |
done
|
|
723 |
ultimately show ?thesis
|
|
724 |
by (blast intro: homotopic_paths_trans)
|
|
725 |
qed
|
|
726 |
|
|
727 |
proposition homotopic_loops_conjugate:
|
|
728 |
fixes s :: "'a::real_normed_vector set"
|
|
729 |
assumes "path p" "path q" and pip: "path_image p \<subseteq> s" and piq: "path_image q \<subseteq> s"
|
|
730 |
and papp: "pathfinish p = pathstart q" and qloop: "pathfinish q = pathstart q"
|
|
731 |
shows "homotopic_loops s (p +++ q +++ reversepath p) q"
|
|
732 |
proof -
|
|
733 |
have contp: "continuous_on {0..1} p" using \<open>path p\<close> [unfolded path_def] by blast
|
|
734 |
have contq: "continuous_on {0..1} q" using \<open>path q\<close> [unfolded path_def] by blast
|
|
735 |
have c1: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. p ((1 - fst x) * snd x + fst x))"
|
|
736 |
apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
|
|
737 |
apply (force simp: mult_le_one intro!: continuous_intros)
|
|
738 |
apply (rule continuous_on_subset [OF contp])
|
|
739 |
apply (auto simp: algebra_simps add_increasing2 mult_right_le_one_le sum_le_prod1)
|
|
740 |
done
|
|
741 |
have c2: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. p ((fst x - 1) * snd x + 1))"
|
|
742 |
apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
|
|
743 |
apply (force simp: mult_le_one intro!: continuous_intros)
|
|
744 |
apply (rule continuous_on_subset [OF contp])
|
|
745 |
apply (auto simp: algebra_simps add_increasing2 mult_left_le_one_le)
|
|
746 |
done
|
|
747 |
have ps1: "\<And>a b. \<lbrakk>b * 2 \<le> 1; 0 \<le> b; 0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> p ((1 - a) * (2 * b) + a) \<in> s"
|
|
748 |
using sum_le_prod1
|
|
749 |
by (force simp: algebra_simps add_increasing2 mult_left_le intro: pip [unfolded path_image_def, THEN subsetD])
|
|
750 |
have ps2: "\<And>a b. \<lbrakk>\<not> 4 * b \<le> 3; b \<le> 1; 0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> p ((a - 1) * (4 * b - 3) + 1) \<in> s"
|
|
751 |
apply (rule pip [unfolded path_image_def, THEN subsetD])
|
|
752 |
apply (rule image_eqI, blast)
|
|
753 |
apply (simp add: algebra_simps)
|
|
754 |
by (metis add_mono_thms_linordered_semiring(1) affine_ineq linear mult.commute mult.left_neutral mult_right_mono not_le
|
|
755 |
add.commute zero_le_numeral)
|
|
756 |
have qs: "\<And>a b. \<lbrakk>4 * b \<le> 3; \<not> b * 2 \<le> 1\<rbrakk> \<Longrightarrow> q (4 * b - 2) \<in> s"
|
|
757 |
using path_image_def piq by fastforce
|
|
758 |
have "homotopic_loops s (p +++ q +++ reversepath p)
|
|
759 |
(linepath (pathstart q) (pathstart q) +++ q +++ linepath (pathstart q) (pathstart q))"
|
|
760 |
apply (simp add: homotopic_loops_def homotopic_with_def)
|
|
761 |
apply (rule_tac x="(\<lambda>y. (subpath (fst y) 1 p +++ q +++ subpath 1 (fst y) p) (snd y))" in exI)
|
|
762 |
apply (simp add: subpath_refl subpath_reversepath)
|
|
763 |
apply (intro conjI homotopic_join_lemma)
|
|
764 |
using papp qloop
|
|
765 |
apply (simp_all add: path_defs joinpaths_def o_def subpath_def c1 c2)
|
|
766 |
apply (force simp: contq intro: continuous_on_compose [of _ _ q, unfolded o_def] continuous_on_id continuous_on_snd)
|
|
767 |
apply (auto simp: ps1 ps2 qs)
|
|
768 |
done
|
|
769 |
moreover have "homotopic_loops s (linepath (pathstart q) (pathstart q) +++ q +++ linepath (pathstart q) (pathstart q)) q"
|
|
770 |
proof -
|
|
771 |
have "homotopic_paths s (linepath (pathfinish q) (pathfinish q) +++ q) q"
|
|
772 |
using \<open>path q\<close> homotopic_paths_lid qloop piq by auto
|
|
773 |
hence 1: "\<And>f. homotopic_paths s f q \<or> \<not> homotopic_paths s f (linepath (pathfinish q) (pathfinish q) +++ q)"
|
|
774 |
using homotopic_paths_trans by blast
|
|
775 |
hence "homotopic_paths s (linepath (pathfinish q) (pathfinish q) +++ q +++ linepath (pathfinish q) (pathfinish q)) q"
|
|
776 |
proof -
|
|
777 |
have "homotopic_paths s (q +++ linepath (pathfinish q) (pathfinish q)) q"
|
|
778 |
by (simp add: \<open>path q\<close> homotopic_paths_rid piq)
|
|
779 |
thus ?thesis
|
|
780 |
by (metis (no_types) 1 \<open>path q\<close> homotopic_paths_join homotopic_paths_rinv homotopic_paths_sym
|
|
781 |
homotopic_paths_trans qloop pathfinish_linepath piq)
|
|
782 |
qed
|
|
783 |
thus ?thesis
|
|
784 |
by (metis (no_types) qloop homotopic_loops_sym homotopic_paths_imp_homotopic_loops homotopic_paths_imp_pathfinish homotopic_paths_sym)
|
|
785 |
qed
|
|
786 |
ultimately show ?thesis
|
|
787 |
by (blast intro: homotopic_loops_trans)
|
|
788 |
qed
|
|
789 |
|
|
790 |
lemma homotopic_paths_loop_parts:
|
|
791 |
assumes loops: "homotopic_loops S (p +++ reversepath q) (linepath a a)" and "path q"
|
|
792 |
shows "homotopic_paths S p q"
|
|
793 |
proof -
|
|
794 |
have paths: "homotopic_paths S (p +++ reversepath q) (linepath (pathstart p) (pathstart p))"
|
|
795 |
using homotopic_loops_imp_homotopic_paths_null [OF loops] by simp
|
|
796 |
then have "path p"
|
|
797 |
using \<open>path q\<close> homotopic_loops_imp_path loops path_join path_join_path_ends path_reversepath by blast
|
|
798 |
show ?thesis
|
|
799 |
proof (cases "pathfinish p = pathfinish q")
|
|
800 |
case True
|
|
801 |
have pipq: "path_image p \<subseteq> S" "path_image q \<subseteq> S"
|
|
802 |
by (metis Un_subset_iff paths \<open>path p\<close> \<open>path q\<close> homotopic_loops_imp_subset homotopic_paths_imp_path loops
|
|
803 |
path_image_join path_image_reversepath path_imp_reversepath path_join_eq)+
|
|
804 |
have "homotopic_paths S p (p +++ (linepath (pathfinish p) (pathfinish p)))"
|
|
805 |
using \<open>path p\<close> \<open>path_image p \<subseteq> S\<close> homotopic_paths_rid homotopic_paths_sym by blast
|
|
806 |
moreover have "homotopic_paths S (p +++ (linepath (pathfinish p) (pathfinish p))) (p +++ (reversepath q +++ q))"
|
|
807 |
by (simp add: True \<open>path p\<close> \<open>path q\<close> pipq homotopic_paths_join homotopic_paths_linv homotopic_paths_sym)
|
|
808 |
moreover have "homotopic_paths S (p +++ (reversepath q +++ q)) ((p +++ reversepath q) +++ q)"
|
|
809 |
by (simp add: True \<open>path p\<close> \<open>path q\<close> homotopic_paths_assoc pipq)
|
|
810 |
moreover have "homotopic_paths S ((p +++ reversepath q) +++ q) (linepath (pathstart p) (pathstart p) +++ q)"
|
|
811 |
by (simp add: \<open>path q\<close> homotopic_paths_join paths pipq)
|
|
812 |
moreover then have "homotopic_paths S (linepath (pathstart p) (pathstart p) +++ q) q"
|
|
813 |
by (metis \<open>path q\<close> homotopic_paths_imp_path homotopic_paths_lid linepath_trivial path_join_path_ends pathfinish_def pipq(2))
|
|
814 |
ultimately show ?thesis
|
|
815 |
using homotopic_paths_trans by metis
|
|
816 |
next
|
|
817 |
case False
|
|
818 |
then show ?thesis
|
|
819 |
using \<open>path q\<close> homotopic_loops_imp_path loops path_join_path_ends by fastforce
|
|
820 |
qed
|
|
821 |
qed
|
|
822 |
|
|
823 |
|
|
824 |
subsection%unimportant\<open>Homotopy of "nearby" function, paths and loops\<close>
|
|
825 |
|
|
826 |
lemma homotopic_with_linear:
|
|
827 |
fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
|
|
828 |
assumes contf: "continuous_on s f"
|
|
829 |
and contg:"continuous_on s g"
|
|
830 |
and sub: "\<And>x. x \<in> s \<Longrightarrow> closed_segment (f x) (g x) \<subseteq> t"
|
|
831 |
shows "homotopic_with (\<lambda>z. True) s t f g"
|
|
832 |
apply (simp add: homotopic_with_def)
|
|
833 |
apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R f(snd y) + (fst y) *\<^sub>R g(snd y))" in exI)
|
|
834 |
apply (intro conjI)
|
|
835 |
apply (rule subset_refl continuous_intros continuous_on_subset [OF contf] continuous_on_compose2 [where g=f]
|
|
836 |
continuous_on_subset [OF contg] continuous_on_compose2 [where g=g]| simp)+
|
|
837 |
using sub closed_segment_def apply fastforce+
|
|
838 |
done
|
|
839 |
|
|
840 |
lemma homotopic_paths_linear:
|
|
841 |
fixes g h :: "real \<Rightarrow> 'a::real_normed_vector"
|
|
842 |
assumes "path g" "path h" "pathstart h = pathstart g" "pathfinish h = pathfinish g"
|
|
843 |
"\<And>t. t \<in> {0..1} \<Longrightarrow> closed_segment (g t) (h t) \<subseteq> s"
|
|
844 |
shows "homotopic_paths s g h"
|
|
845 |
using assms
|
|
846 |
unfolding path_def
|
|
847 |
apply (simp add: closed_segment_def pathstart_def pathfinish_def homotopic_paths_def homotopic_with_def)
|
|
848 |
apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R (g \<circ> snd) y + (fst y) *\<^sub>R (h \<circ> snd) y)" in exI)
|
|
849 |
apply (intro conjI subsetI continuous_intros; force)
|
|
850 |
done
|
|
851 |
|
|
852 |
lemma homotopic_loops_linear:
|
|
853 |
fixes g h :: "real \<Rightarrow> 'a::real_normed_vector"
|
|
854 |
assumes "path g" "path h" "pathfinish g = pathstart g" "pathfinish h = pathstart h"
|
|
855 |
"\<And>t x. t \<in> {0..1} \<Longrightarrow> closed_segment (g t) (h t) \<subseteq> s"
|
|
856 |
shows "homotopic_loops s g h"
|
|
857 |
using assms
|
|
858 |
unfolding path_def
|
|
859 |
apply (simp add: pathstart_def pathfinish_def homotopic_loops_def homotopic_with_def)
|
|
860 |
apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R g(snd y) + (fst y) *\<^sub>R h(snd y))" in exI)
|
|
861 |
apply (auto intro!: continuous_intros intro: continuous_on_compose2 [where g=g] continuous_on_compose2 [where g=h])
|
|
862 |
apply (force simp: closed_segment_def)
|
|
863 |
done
|
|
864 |
|
|
865 |
lemma homotopic_paths_nearby_explicit:
|
|
866 |
assumes "path g" "path h" "pathstart h = pathstart g" "pathfinish h = pathfinish g"
|
|
867 |
and no: "\<And>t x. \<lbrakk>t \<in> {0..1}; x \<notin> s\<rbrakk> \<Longrightarrow> norm(h t - g t) < norm(g t - x)"
|
|
868 |
shows "homotopic_paths s g h"
|
|
869 |
apply (rule homotopic_paths_linear [OF assms(1-4)])
|
|
870 |
by (metis no segment_bound(1) subsetI norm_minus_commute not_le)
|
|
871 |
|
|
872 |
lemma homotopic_loops_nearby_explicit:
|
|
873 |
assumes "path g" "path h" "pathfinish g = pathstart g" "pathfinish h = pathstart h"
|
|
874 |
and no: "\<And>t x. \<lbrakk>t \<in> {0..1}; x \<notin> s\<rbrakk> \<Longrightarrow> norm(h t - g t) < norm(g t - x)"
|
|
875 |
shows "homotopic_loops s g h"
|
|
876 |
apply (rule homotopic_loops_linear [OF assms(1-4)])
|
|
877 |
by (metis no segment_bound(1) subsetI norm_minus_commute not_le)
|
|
878 |
|
|
879 |
lemma homotopic_nearby_paths:
|
|
880 |
fixes g h :: "real \<Rightarrow> 'a::euclidean_space"
|
|
881 |
assumes "path g" "open s" "path_image g \<subseteq> s"
|
|
882 |
shows "\<exists>e. 0 < e \<and>
|
|
883 |
(\<forall>h. path h \<and>
|
|
884 |
pathstart h = pathstart g \<and> pathfinish h = pathfinish g \<and>
|
|
885 |
(\<forall>t \<in> {0..1}. norm(h t - g t) < e) \<longrightarrow> homotopic_paths s g h)"
|
|
886 |
proof -
|
|
887 |
obtain e where "e > 0" and e: "\<And>x y. x \<in> path_image g \<Longrightarrow> y \<in> - s \<Longrightarrow> e \<le> dist x y"
|
|
888 |
using separate_compact_closed [of "path_image g" "-s"] assms by force
|
|
889 |
show ?thesis
|
|
890 |
apply (intro exI conjI)
|
|
891 |
using e [unfolded dist_norm]
|
|
892 |
apply (auto simp: intro!: homotopic_paths_nearby_explicit assms \<open>e > 0\<close>)
|
|
893 |
by (metis atLeastAtMost_iff imageI le_less_trans not_le path_image_def)
|
|
894 |
qed
|
|
895 |
|
|
896 |
lemma homotopic_nearby_loops:
|
|
897 |
fixes g h :: "real \<Rightarrow> 'a::euclidean_space"
|
|
898 |
assumes "path g" "open s" "path_image g \<subseteq> s" "pathfinish g = pathstart g"
|
|
899 |
shows "\<exists>e. 0 < e \<and>
|
|
900 |
(\<forall>h. path h \<and> pathfinish h = pathstart h \<and>
|
|
901 |
(\<forall>t \<in> {0..1}. norm(h t - g t) < e) \<longrightarrow> homotopic_loops s g h)"
|
|
902 |
proof -
|
|
903 |
obtain e where "e > 0" and e: "\<And>x y. x \<in> path_image g \<Longrightarrow> y \<in> - s \<Longrightarrow> e \<le> dist x y"
|
|
904 |
using separate_compact_closed [of "path_image g" "-s"] assms by force
|
|
905 |
show ?thesis
|
|
906 |
apply (intro exI conjI)
|
|
907 |
using e [unfolded dist_norm]
|
|
908 |
apply (auto simp: intro!: homotopic_loops_nearby_explicit assms \<open>e > 0\<close>)
|
|
909 |
by (metis atLeastAtMost_iff imageI le_less_trans not_le path_image_def)
|
|
910 |
qed
|
|
911 |
|
|
912 |
|
|
913 |
subsection\<open> Homotopy and subpaths\<close>
|
|
914 |
|
|
915 |
lemma homotopic_join_subpaths1:
|
|
916 |
assumes "path g" and pag: "path_image g \<subseteq> s"
|
|
917 |
and u: "u \<in> {0..1}" and v: "v \<in> {0..1}" and w: "w \<in> {0..1}" "u \<le> v" "v \<le> w"
|
|
918 |
shows "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
|
|
919 |
proof -
|
|
920 |
have 1: "t * 2 \<le> 1 \<Longrightarrow> u + t * (v * 2) \<le> v + t * (u * 2)" for t
|
|
921 |
using affine_ineq \<open>u \<le> v\<close> by fastforce
|
|
922 |
have 2: "t * 2 > 1 \<Longrightarrow> u + (2*t - 1) * v \<le> v + (2*t - 1) * w" for t
|
|
923 |
by (metis add_mono_thms_linordered_semiring(1) diff_gt_0_iff_gt less_eq_real_def mult.commute mult_right_mono \<open>u \<le> v\<close> \<open>v \<le> w\<close>)
|
|
924 |
have t2: "\<And>t::real. t*2 = 1 \<Longrightarrow> t = 1/2" by auto
|
|
925 |
show ?thesis
|
|
926 |
apply (rule homotopic_paths_subset [OF _ pag])
|
|
927 |
using assms
|
|
928 |
apply (cases "w = u")
|
|
929 |
using homotopic_paths_rinv [of "subpath u v g" "path_image g"]
|
|
930 |
apply (force simp: closed_segment_eq_real_ivl image_mono path_image_def subpath_refl)
|
|
931 |
apply (rule homotopic_paths_sym)
|
|
932 |
apply (rule homotopic_paths_reparametrize
|
|
933 |
[where f = "\<lambda>t. if t \<le> 1 / 2
|
|
934 |
then inverse((w - u)) *\<^sub>R (2 * (v - u)) *\<^sub>R t
|
|
935 |
else inverse((w - u)) *\<^sub>R ((v - u) + (w - v) *\<^sub>R (2 *\<^sub>R t - 1))"])
|
|
936 |
using \<open>path g\<close> path_subpath u w apply blast
|
|
937 |
using \<open>path g\<close> path_image_subpath_subset u w(1) apply blast
|
|
938 |
apply simp_all
|
|
939 |
apply (subst split_01)
|
|
940 |
apply (rule continuous_on_cases continuous_intros | force simp: pathfinish_def joinpaths_def)+
|
|
941 |
apply (simp_all add: field_simps not_le)
|
|
942 |
apply (force dest!: t2)
|
|
943 |
apply (force simp: algebra_simps mult_left_mono affine_ineq dest!: 1 2)
|
|
944 |
apply (simp add: joinpaths_def subpath_def)
|
|
945 |
apply (force simp: algebra_simps)
|
|
946 |
done
|
|
947 |
qed
|
|
948 |
|
|
949 |
lemma homotopic_join_subpaths2:
|
|
950 |
assumes "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
|
|
951 |
shows "homotopic_paths s (subpath w v g +++ subpath v u g) (subpath w u g)"
|
|
952 |
by (metis assms homotopic_paths_reversepath_D pathfinish_subpath pathstart_subpath reversepath_joinpaths reversepath_subpath)
|
|
953 |
|
|
954 |
lemma homotopic_join_subpaths3:
|
|
955 |
assumes hom: "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
|
|
956 |
and "path g" and pag: "path_image g \<subseteq> s"
|
|
957 |
and u: "u \<in> {0..1}" and v: "v \<in> {0..1}" and w: "w \<in> {0..1}"
|
|
958 |
shows "homotopic_paths s (subpath v w g +++ subpath w u g) (subpath v u g)"
|
|
959 |
proof -
|
|
960 |
have "homotopic_paths s (subpath u w g +++ subpath w v g) ((subpath u v g +++ subpath v w g) +++ subpath w v g)"
|
|
961 |
apply (rule homotopic_paths_join)
|
|
962 |
using hom homotopic_paths_sym_eq apply blast
|
|
963 |
apply (metis \<open>path g\<close> homotopic_paths_eq pag path_image_subpath_subset path_subpath subset_trans v w, simp)
|
|
964 |
done
|
|
965 |
also have "homotopic_paths s ((subpath u v g +++ subpath v w g) +++ subpath w v g) (subpath u v g +++ subpath v w g +++ subpath w v g)"
|
|
966 |
apply (rule homotopic_paths_sym [OF homotopic_paths_assoc])
|
|
967 |
using assms by (simp_all add: path_image_subpath_subset [THEN order_trans])
|
|
968 |
also have "homotopic_paths s (subpath u v g +++ subpath v w g +++ subpath w v g)
|
|
969 |
(subpath u v g +++ linepath (pathfinish (subpath u v g)) (pathfinish (subpath u v g)))"
|
|
970 |
apply (rule homotopic_paths_join)
|
|
971 |
apply (metis \<open>path g\<close> homotopic_paths_eq order.trans pag path_image_subpath_subset path_subpath u v)
|
|
972 |
apply (metis (no_types, lifting) \<open>path g\<close> homotopic_paths_linv order_trans pag path_image_subpath_subset path_subpath pathfinish_subpath reversepath_subpath v w)
|
|
973 |
apply simp
|
|
974 |
done
|
|
975 |
also have "homotopic_paths s (subpath u v g +++ linepath (pathfinish (subpath u v g)) (pathfinish (subpath u v g))) (subpath u v g)"
|
|
976 |
apply (rule homotopic_paths_rid)
|
|
977 |
using \<open>path g\<close> path_subpath u v apply blast
|
|
978 |
apply (meson \<open>path g\<close> order.trans pag path_image_subpath_subset u v)
|
|
979 |
done
|
|
980 |
finally have "homotopic_paths s (subpath u w g +++ subpath w v g) (subpath u v g)" .
|
|
981 |
then show ?thesis
|
|
982 |
using homotopic_join_subpaths2 by blast
|
|
983 |
qed
|
|
984 |
|
|
985 |
proposition homotopic_join_subpaths:
|
|
986 |
"\<lbrakk>path g; path_image g \<subseteq> s; u \<in> {0..1}; v \<in> {0..1}; w \<in> {0..1}\<rbrakk>
|
|
987 |
\<Longrightarrow> homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
|
|
988 |
apply (rule le_cases3 [of u v w])
|
|
989 |
using homotopic_join_subpaths1 homotopic_join_subpaths2 homotopic_join_subpaths3 by metis+
|
|
990 |
|
|
991 |
text\<open>Relating homotopy of trivial loops to path-connectedness.\<close>
|
|
992 |
|
|
993 |
lemma path_component_imp_homotopic_points:
|
|
994 |
"path_component S a b \<Longrightarrow> homotopic_loops S (linepath a a) (linepath b b)"
|
|
995 |
apply (simp add: path_component_def homotopic_loops_def homotopic_with_def
|
|
996 |
pathstart_def pathfinish_def path_image_def path_def, clarify)
|
|
997 |
apply (rule_tac x="g \<circ> fst" in exI)
|
|
998 |
apply (intro conjI continuous_intros continuous_on_compose)+
|
|
999 |
apply (auto elim!: continuous_on_subset)
|
|
1000 |
done
|
|
1001 |
|
|
1002 |
lemma homotopic_loops_imp_path_component_value:
|
|
1003 |
"\<lbrakk>homotopic_loops S p q; 0 \<le> t; t \<le> 1\<rbrakk>
|
|
1004 |
\<Longrightarrow> path_component S (p t) (q t)"
|
|
1005 |
apply (simp add: path_component_def homotopic_loops_def homotopic_with_def
|
|
1006 |
pathstart_def pathfinish_def path_image_def path_def, clarify)
|
|
1007 |
apply (rule_tac x="h \<circ> (\<lambda>u. (u, t))" in exI)
|
|
1008 |
apply (intro conjI continuous_intros continuous_on_compose)+
|
|
1009 |
apply (auto elim!: continuous_on_subset)
|
|
1010 |
done
|
|
1011 |
|
|
1012 |
lemma homotopic_points_eq_path_component:
|
|
1013 |
"homotopic_loops S (linepath a a) (linepath b b) \<longleftrightarrow>
|
|
1014 |
path_component S a b"
|
|
1015 |
by (auto simp: path_component_imp_homotopic_points
|
|
1016 |
dest: homotopic_loops_imp_path_component_value [where t=1])
|
|
1017 |
|
|
1018 |
lemma path_connected_eq_homotopic_points:
|
|
1019 |
"path_connected S \<longleftrightarrow>
|
|
1020 |
(\<forall>a b. a \<in> S \<and> b \<in> S \<longrightarrow> homotopic_loops S (linepath a a) (linepath b b))"
|
|
1021 |
by (auto simp: path_connected_def path_component_def homotopic_points_eq_path_component)
|
|
1022 |
|
|
1023 |
|
|
1024 |
subsection\<open>Simply connected sets\<close>
|
|
1025 |
|
|
1026 |
text%important\<open>defined as "all loops are homotopic (as loops)\<close>
|
|
1027 |
|
|
1028 |
definition%important simply_connected where
|
|
1029 |
"simply_connected S \<equiv>
|
|
1030 |
\<forall>p q. path p \<and> pathfinish p = pathstart p \<and> path_image p \<subseteq> S \<and>
|
|
1031 |
path q \<and> pathfinish q = pathstart q \<and> path_image q \<subseteq> S
|
|
1032 |
\<longrightarrow> homotopic_loops S p q"
|
|
1033 |
|
|
1034 |
lemma simply_connected_empty [iff]: "simply_connected {}"
|
|
1035 |
by (simp add: simply_connected_def)
|
|
1036 |
|
|
1037 |
lemma simply_connected_imp_path_connected:
|
|
1038 |
fixes S :: "_::real_normed_vector set"
|
|
1039 |
shows "simply_connected S \<Longrightarrow> path_connected S"
|
|
1040 |
by (simp add: simply_connected_def path_connected_eq_homotopic_points)
|
|
1041 |
|
|
1042 |
lemma simply_connected_imp_connected:
|
|
1043 |
fixes S :: "_::real_normed_vector set"
|
|
1044 |
shows "simply_connected S \<Longrightarrow> connected S"
|
|
1045 |
by (simp add: path_connected_imp_connected simply_connected_imp_path_connected)
|
|
1046 |
|
|
1047 |
lemma simply_connected_eq_contractible_loop_any:
|
|
1048 |
fixes S :: "_::real_normed_vector set"
|
|
1049 |
shows "simply_connected S \<longleftrightarrow>
|
|
1050 |
(\<forall>p a. path p \<and> path_image p \<subseteq> S \<and>
|
|
1051 |
pathfinish p = pathstart p \<and> a \<in> S
|
|
1052 |
\<longrightarrow> homotopic_loops S p (linepath a a))"
|
|
1053 |
apply (simp add: simply_connected_def)
|
|
1054 |
apply (rule iffI, force, clarify)
|
|
1055 |
apply (rule_tac q = "linepath (pathstart p) (pathstart p)" in homotopic_loops_trans)
|
|
1056 |
apply (fastforce simp add:)
|
|
1057 |
using homotopic_loops_sym apply blast
|
|
1058 |
done
|
|
1059 |
|
|
1060 |
lemma simply_connected_eq_contractible_loop_some:
|
|
1061 |
fixes S :: "_::real_normed_vector set"
|
|
1062 |
shows "simply_connected S \<longleftrightarrow>
|
|
1063 |
path_connected S \<and>
|
|
1064 |
(\<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
|
|
1065 |
\<longrightarrow> (\<exists>a. a \<in> S \<and> homotopic_loops S p (linepath a a)))"
|
|
1066 |
apply (rule iffI)
|
|
1067 |
apply (fastforce simp: simply_connected_imp_path_connected simply_connected_eq_contractible_loop_any)
|
|
1068 |
apply (clarsimp simp add: simply_connected_eq_contractible_loop_any)
|
|
1069 |
apply (drule_tac x=p in spec)
|
|
1070 |
using homotopic_loops_trans path_connected_eq_homotopic_points
|
|
1071 |
apply blast
|
|
1072 |
done
|
|
1073 |
|
|
1074 |
lemma simply_connected_eq_contractible_loop_all:
|
|
1075 |
fixes S :: "_::real_normed_vector set"
|
|
1076 |
shows "simply_connected S \<longleftrightarrow>
|
|
1077 |
S = {} \<or>
|
|
1078 |
(\<exists>a \<in> S. \<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
|
|
1079 |
\<longrightarrow> homotopic_loops S p (linepath a a))"
|
|
1080 |
(is "?lhs = ?rhs")
|
|
1081 |
proof (cases "S = {}")
|
|
1082 |
case True then show ?thesis by force
|
|
1083 |
next
|
|
1084 |
case False
|
|
1085 |
then obtain a where "a \<in> S" by blast
|
|
1086 |
show ?thesis
|
|
1087 |
proof
|
|
1088 |
assume "simply_connected S"
|
|
1089 |
then show ?rhs
|
|
1090 |
using \<open>a \<in> S\<close> \<open>simply_connected S\<close> simply_connected_eq_contractible_loop_any
|
|
1091 |
by blast
|
|
1092 |
next
|
|
1093 |
assume ?rhs
|
|
1094 |
then show "simply_connected S"
|
|
1095 |
apply (simp add: simply_connected_eq_contractible_loop_any False)
|
|
1096 |
by (meson homotopic_loops_refl homotopic_loops_sym homotopic_loops_trans
|
|
1097 |
path_component_imp_homotopic_points path_component_refl)
|
|
1098 |
qed
|
|
1099 |
qed
|
|
1100 |
|
|
1101 |
lemma simply_connected_eq_contractible_path:
|
|
1102 |
fixes S :: "_::real_normed_vector set"
|
|
1103 |
shows "simply_connected S \<longleftrightarrow>
|
|
1104 |
path_connected S \<and>
|
|
1105 |
(\<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
|
|
1106 |
\<longrightarrow> homotopic_paths S p (linepath (pathstart p) (pathstart p)))"
|
|
1107 |
apply (rule iffI)
|
|
1108 |
apply (simp add: simply_connected_imp_path_connected)
|
|
1109 |
apply (metis simply_connected_eq_contractible_loop_some homotopic_loops_imp_homotopic_paths_null)
|
|
1110 |
by (meson homotopic_paths_imp_homotopic_loops pathfinish_linepath pathstart_in_path_image
|
|
1111 |
simply_connected_eq_contractible_loop_some subset_iff)
|
|
1112 |
|
|
1113 |
lemma simply_connected_eq_homotopic_paths:
|
|
1114 |
fixes S :: "_::real_normed_vector set"
|
|
1115 |
shows "simply_connected S \<longleftrightarrow>
|
|
1116 |
path_connected S \<and>
|
|
1117 |
(\<forall>p q. path p \<and> path_image p \<subseteq> S \<and>
|
|
1118 |
path q \<and> path_image q \<subseteq> S \<and>
|
|
1119 |
pathstart q = pathstart p \<and> pathfinish q = pathfinish p
|
|
1120 |
\<longrightarrow> homotopic_paths S p q)"
|
|
1121 |
(is "?lhs = ?rhs")
|
|
1122 |
proof
|
|
1123 |
assume ?lhs
|
|
1124 |
then have pc: "path_connected S"
|
|
1125 |
and *: "\<And>p. \<lbrakk>path p; path_image p \<subseteq> S;
|
|
1126 |
pathfinish p = pathstart p\<rbrakk>
|
|
1127 |
\<Longrightarrow> homotopic_paths S p (linepath (pathstart p) (pathstart p))"
|
|
1128 |
by (auto simp: simply_connected_eq_contractible_path)
|
|
1129 |
have "homotopic_paths S p q"
|
|
1130 |
if "path p" "path_image p \<subseteq> S" "path q"
|
|
1131 |
"path_image q \<subseteq> S" "pathstart q = pathstart p"
|
|
1132 |
"pathfinish q = pathfinish p" for p q
|
|
1133 |
proof -
|
|
1134 |
have "homotopic_paths S p (p +++ linepath (pathfinish p) (pathfinish p))"
|
|
1135 |
by (simp add: homotopic_paths_rid homotopic_paths_sym that)
|
|
1136 |
also have "homotopic_paths S (p +++ linepath (pathfinish p) (pathfinish p))
|
|
1137 |
(p +++ reversepath q +++ q)"
|
|
1138 |
using that
|
|
1139 |
by (metis homotopic_paths_join homotopic_paths_linv homotopic_paths_refl homotopic_paths_sym_eq pathstart_linepath)
|
|
1140 |
also have "homotopic_paths S (p +++ reversepath q +++ q)
|
|
1141 |
((p +++ reversepath q) +++ q)"
|
|
1142 |
by (simp add: that homotopic_paths_assoc)
|
|
1143 |
also have "homotopic_paths S ((p +++ reversepath q) +++ q)
|
|
1144 |
(linepath (pathstart q) (pathstart q) +++ q)"
|
|
1145 |
using * [of "p +++ reversepath q"] that
|
|
1146 |
by (simp add: homotopic_paths_join path_image_join)
|
|
1147 |
also have "homotopic_paths S (linepath (pathstart q) (pathstart q) +++ q) q"
|
|
1148 |
using that homotopic_paths_lid by blast
|
|
1149 |
finally show ?thesis .
|
|
1150 |
qed
|
|
1151 |
then show ?rhs
|
|
1152 |
by (blast intro: pc *)
|
|
1153 |
next
|
|
1154 |
assume ?rhs
|
|
1155 |
then show ?lhs
|
|
1156 |
by (force simp: simply_connected_eq_contractible_path)
|
|
1157 |
qed
|
|
1158 |
|
|
1159 |
proposition simply_connected_Times:
|
|
1160 |
fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
|
|
1161 |
assumes S: "simply_connected S" and T: "simply_connected T"
|
|
1162 |
shows "simply_connected(S \<times> T)"
|
|
1163 |
proof -
|
|
1164 |
have "homotopic_loops (S \<times> T) p (linepath (a, b) (a, b))"
|
|
1165 |
if "path p" "path_image p \<subseteq> S \<times> T" "p 1 = p 0" "a \<in> S" "b \<in> T"
|
|
1166 |
for p a b
|
|
1167 |
proof -
|
|
1168 |
have "path (fst \<circ> p)"
|
|
1169 |
apply (rule Path_Connected.path_continuous_image [OF \<open>path p\<close>])
|
|
1170 |
apply (rule continuous_intros)+
|
|
1171 |
done
|
|
1172 |
moreover have "path_image (fst \<circ> p) \<subseteq> S"
|
|
1173 |
using that apply (simp add: path_image_def) by force
|
|
1174 |
ultimately have p1: "homotopic_loops S (fst \<circ> p) (linepath a a)"
|
|
1175 |
using S that
|
|
1176 |
apply (simp add: simply_connected_eq_contractible_loop_any)
|
|
1177 |
apply (drule_tac x="fst \<circ> p" in spec)
|
|
1178 |
apply (drule_tac x=a in spec)
|
|
1179 |
apply (auto simp: pathstart_def pathfinish_def)
|
|
1180 |
done
|
|
1181 |
have "path (snd \<circ> p)"
|
|
1182 |
apply (rule Path_Connected.path_continuous_image [OF \<open>path p\<close>])
|
|
1183 |
apply (rule continuous_intros)+
|
|
1184 |
done
|
|
1185 |
moreover have "path_image (snd \<circ> p) \<subseteq> T"
|
|
1186 |
using that apply (simp add: path_image_def) by force
|
|
1187 |
ultimately have p2: "homotopic_loops T (snd \<circ> p) (linepath b b)"
|
|
1188 |
using T that
|
|
1189 |
apply (simp add: simply_connected_eq_contractible_loop_any)
|
|
1190 |
apply (drule_tac x="snd \<circ> p" in spec)
|
|
1191 |
apply (drule_tac x=b in spec)
|
|
1192 |
apply (auto simp: pathstart_def pathfinish_def)
|
|
1193 |
done
|
|
1194 |
show ?thesis
|
|
1195 |
using p1 p2
|
|
1196 |
apply (simp add: homotopic_loops, clarify)
|
|
1197 |
apply (rename_tac h k)
|
|
1198 |
apply (rule_tac x="\<lambda>z. Pair (h z) (k z)" in exI)
|
|
1199 |
apply (intro conjI continuous_intros | assumption)+
|
|
1200 |
apply (auto simp: pathstart_def pathfinish_def)
|
|
1201 |
done
|
|
1202 |
qed
|
|
1203 |
with assms show ?thesis
|
|
1204 |
by (simp add: simply_connected_eq_contractible_loop_any pathfinish_def pathstart_def)
|
|
1205 |
qed
|
|
1206 |
|
|
1207 |
|
|
1208 |
subsection\<open>Contractible sets\<close>
|
|
1209 |
|
|
1210 |
definition%important contractible where
|
|
1211 |
"contractible S \<equiv> \<exists>a. homotopic_with (\<lambda>x. True) S S id (\<lambda>x. a)"
|
|
1212 |
|
|
1213 |
proposition contractible_imp_simply_connected:
|
|
1214 |
fixes S :: "_::real_normed_vector set"
|
|
1215 |
assumes "contractible S" shows "simply_connected S"
|
|
1216 |
proof (cases "S = {}")
|
|
1217 |
case True then show ?thesis by force
|
|
1218 |
next
|
|
1219 |
case False
|
|
1220 |
obtain a where a: "homotopic_with (\<lambda>x. True) S S id (\<lambda>x. a)"
|
|
1221 |
using assms by (force simp: contractible_def)
|
|
1222 |
then have "a \<in> S"
|
|
1223 |
by (metis False homotopic_constant_maps homotopic_with_symD homotopic_with_trans path_component_mem(2))
|
|
1224 |
show ?thesis
|
|
1225 |
apply (simp add: simply_connected_eq_contractible_loop_all False)
|
|
1226 |
apply (rule bexI [OF _ \<open>a \<in> S\<close>])
|
|
1227 |
using a apply (simp add: homotopic_loops_def homotopic_with_def path_def path_image_def pathfinish_def pathstart_def, clarify)
|
|
1228 |
apply (rule_tac x="(h \<circ> (\<lambda>y. (fst y, (p \<circ> snd) y)))" in exI)
|
|
1229 |
apply (intro conjI continuous_on_compose continuous_intros)
|
|
1230 |
apply (erule continuous_on_subset | force)+
|
|
1231 |
done
|
|
1232 |
qed
|
|
1233 |
|
|
1234 |
corollary contractible_imp_connected:
|
|
1235 |
fixes S :: "_::real_normed_vector set"
|
|
1236 |
shows "contractible S \<Longrightarrow> connected S"
|
|
1237 |
by (simp add: contractible_imp_simply_connected simply_connected_imp_connected)
|
|
1238 |
|
|
1239 |
lemma contractible_imp_path_connected:
|
|
1240 |
fixes S :: "_::real_normed_vector set"
|
|
1241 |
shows "contractible S \<Longrightarrow> path_connected S"
|
|
1242 |
by (simp add: contractible_imp_simply_connected simply_connected_imp_path_connected)
|
|
1243 |
|
|
1244 |
lemma nullhomotopic_through_contractible:
|
|
1245 |
fixes S :: "_::topological_space set"
|
|
1246 |
assumes f: "continuous_on S f" "f ` S \<subseteq> T"
|
|
1247 |
and g: "continuous_on T g" "g ` T \<subseteq> U"
|
|
1248 |
and T: "contractible T"
|
|
1249 |
obtains c where "homotopic_with (\<lambda>h. True) S U (g \<circ> f) (\<lambda>x. c)"
|
|
1250 |
proof -
|
|
1251 |
obtain b where b: "homotopic_with (\<lambda>x. True) T T id (\<lambda>x. b)"
|
|
1252 |
using assms by (force simp: contractible_def)
|
|
1253 |
have "homotopic_with (\<lambda>f. True) T U (g \<circ> id) (g \<circ> (\<lambda>x. b))"
|
|
1254 |
by (rule homotopic_compose_continuous_left [OF b g])
|
|
1255 |
then have "homotopic_with (\<lambda>f. True) S U (g \<circ> id \<circ> f) (g \<circ> (\<lambda>x. b) \<circ> f)"
|
|
1256 |
by (rule homotopic_compose_continuous_right [OF _ f])
|
|
1257 |
then show ?thesis
|
|
1258 |
by (simp add: comp_def that)
|
|
1259 |
qed
|
|
1260 |
|
|
1261 |
lemma nullhomotopic_into_contractible:
|
|
1262 |
assumes f: "continuous_on S f" "f ` S \<subseteq> T"
|
|
1263 |
and T: "contractible T"
|
|
1264 |
obtains c where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. c)"
|
|
1265 |
apply (rule nullhomotopic_through_contractible [OF f, of id T])
|
|
1266 |
using assms
|
|
1267 |
apply (auto simp: continuous_on_id)
|
|
1268 |
done
|
|
1269 |
|
|
1270 |
lemma nullhomotopic_from_contractible:
|
|
1271 |
assumes f: "continuous_on S f" "f ` S \<subseteq> T"
|
|
1272 |
and S: "contractible S"
|
|
1273 |
obtains c where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. c)"
|
|
1274 |
apply (rule nullhomotopic_through_contractible [OF continuous_on_id _ f S, of S])
|
|
1275 |
using assms
|
|
1276 |
apply (auto simp: comp_def)
|
|
1277 |
done
|
|
1278 |
|
|
1279 |
lemma homotopic_through_contractible:
|
|
1280 |
fixes S :: "_::real_normed_vector set"
|
|
1281 |
assumes "continuous_on S f1" "f1 ` S \<subseteq> T"
|
|
1282 |
"continuous_on T g1" "g1 ` T \<subseteq> U"
|
|
1283 |
"continuous_on S f2" "f2 ` S \<subseteq> T"
|
|
1284 |
"continuous_on T g2" "g2 ` T \<subseteq> U"
|
|
1285 |
"contractible T" "path_connected U"
|
|
1286 |
shows "homotopic_with (\<lambda>h. True) S U (g1 \<circ> f1) (g2 \<circ> f2)"
|
|
1287 |
proof -
|
|
1288 |
obtain c1 where c1: "homotopic_with (\<lambda>h. True) S U (g1 \<circ> f1) (\<lambda>x. c1)"
|
|
1289 |
apply (rule nullhomotopic_through_contractible [of S f1 T g1 U])
|
|
1290 |
using assms apply auto
|
|
1291 |
done
|
|
1292 |
obtain c2 where c2: "homotopic_with (\<lambda>h. True) S U (g2 \<circ> f2) (\<lambda>x. c2)"
|
|
1293 |
apply (rule nullhomotopic_through_contractible [of S f2 T g2 U])
|
|
1294 |
using assms apply auto
|
|
1295 |
done
|
|
1296 |
have *: "S = {} \<or> (\<exists>t. path_connected t \<and> t \<subseteq> U \<and> c2 \<in> t \<and> c1 \<in> t)"
|
|
1297 |
proof (cases "S = {}")
|
|
1298 |
case True then show ?thesis by force
|
|
1299 |
next
|
|
1300 |
case False
|
|
1301 |
with c1 c2 have "c1 \<in> U" "c2 \<in> U"
|
|
1302 |
using homotopic_with_imp_subset2 all_not_in_conv image_subset_iff by blast+
|
|
1303 |
with \<open>path_connected U\<close> show ?thesis by blast
|
|
1304 |
qed
|
|
1305 |
show ?thesis
|
|
1306 |
apply (rule homotopic_with_trans [OF c1])
|
|
1307 |
apply (rule homotopic_with_symD)
|
|
1308 |
apply (rule homotopic_with_trans [OF c2])
|
|
1309 |
apply (simp add: path_component homotopic_constant_maps *)
|
|
1310 |
done
|
|
1311 |
qed
|
|
1312 |
|
|
1313 |
lemma homotopic_into_contractible:
|
|
1314 |
fixes S :: "'a::real_normed_vector set" and T:: "'b::real_normed_vector set"
|
|
1315 |
assumes f: "continuous_on S f" "f ` S \<subseteq> T"
|
|
1316 |
and g: "continuous_on S g" "g ` S \<subseteq> T"
|
|
1317 |
and T: "contractible T"
|
|
1318 |
shows "homotopic_with (\<lambda>h. True) S T f g"
|
|
1319 |
using homotopic_through_contractible [of S f T id T g id]
|
|
1320 |
by (simp add: assms contractible_imp_path_connected continuous_on_id)
|
|
1321 |
|
|
1322 |
lemma homotopic_from_contractible:
|
|
1323 |
fixes S :: "'a::real_normed_vector set" and T:: "'b::real_normed_vector set"
|
|
1324 |
assumes f: "continuous_on S f" "f ` S \<subseteq> T"
|
|
1325 |
and g: "continuous_on S g" "g ` S \<subseteq> T"
|
|
1326 |
and "contractible S" "path_connected T"
|
|
1327 |
shows "homotopic_with (\<lambda>h. True) S T f g"
|
|
1328 |
using homotopic_through_contractible [of S id S f T id g]
|
|
1329 |
by (simp add: assms contractible_imp_path_connected continuous_on_id)
|
|
1330 |
|
|
1331 |
lemma starlike_imp_contractible_gen:
|
|
1332 |
fixes S :: "'a::real_normed_vector set"
|
|
1333 |
assumes S: "starlike S"
|
|
1334 |
and P: "\<And>a T. \<lbrakk>a \<in> S; 0 \<le> T; T \<le> 1\<rbrakk> \<Longrightarrow> P(\<lambda>x. (1 - T) *\<^sub>R x + T *\<^sub>R a)"
|
|
1335 |
obtains a where "homotopic_with P S S (\<lambda>x. x) (\<lambda>x. a)"
|
|
1336 |
proof -
|
|
1337 |
obtain a where "a \<in> S" and a: "\<And>x. x \<in> S \<Longrightarrow> closed_segment a x \<subseteq> S"
|
|
1338 |
using S by (auto simp: starlike_def)
|
|
1339 |
have "(\<lambda>y. (1 - fst y) *\<^sub>R snd y + fst y *\<^sub>R a) ` ({0..1} \<times> S) \<subseteq> S"
|
|
1340 |
apply clarify
|
|
1341 |
apply (erule a [unfolded closed_segment_def, THEN subsetD], simp)
|
|
1342 |
apply (metis add_diff_cancel_right' diff_ge_0_iff_ge le_add_diff_inverse pth_c(1))
|
|
1343 |
done
|
|
1344 |
then show ?thesis
|
|
1345 |
apply (rule_tac a=a in that)
|
|
1346 |
using \<open>a \<in> S\<close>
|
|
1347 |
apply (simp add: homotopic_with_def)
|
|
1348 |
apply (rule_tac x="\<lambda>y. (1 - (fst y)) *\<^sub>R snd y + (fst y) *\<^sub>R a" in exI)
|
|
1349 |
apply (intro conjI ballI continuous_on_compose continuous_intros)
|
|
1350 |
apply (simp_all add: P)
|
|
1351 |
done
|
|
1352 |
qed
|
|
1353 |
|
|
1354 |
lemma starlike_imp_contractible:
|
|
1355 |
fixes S :: "'a::real_normed_vector set"
|
|
1356 |
shows "starlike S \<Longrightarrow> contractible S"
|
|
1357 |
using starlike_imp_contractible_gen contractible_def by (fastforce simp: id_def)
|
|
1358 |
|
|
1359 |
lemma contractible_UNIV [simp]: "contractible (UNIV :: 'a::real_normed_vector set)"
|
|
1360 |
by (simp add: starlike_imp_contractible)
|
|
1361 |
|
|
1362 |
lemma starlike_imp_simply_connected:
|
|
1363 |
fixes S :: "'a::real_normed_vector set"
|
|
1364 |
shows "starlike S \<Longrightarrow> simply_connected S"
|
|
1365 |
by (simp add: contractible_imp_simply_connected starlike_imp_contractible)
|
|
1366 |
|
|
1367 |
lemma convex_imp_simply_connected:
|
|
1368 |
fixes S :: "'a::real_normed_vector set"
|
|
1369 |
shows "convex S \<Longrightarrow> simply_connected S"
|
|
1370 |
using convex_imp_starlike starlike_imp_simply_connected by blast
|
|
1371 |
|
|
1372 |
lemma starlike_imp_path_connected:
|
|
1373 |
fixes S :: "'a::real_normed_vector set"
|
|
1374 |
shows "starlike S \<Longrightarrow> path_connected S"
|
|
1375 |
by (simp add: simply_connected_imp_path_connected starlike_imp_simply_connected)
|
|
1376 |
|
|
1377 |
lemma starlike_imp_connected:
|
|
1378 |
fixes S :: "'a::real_normed_vector set"
|
|
1379 |
shows "starlike S \<Longrightarrow> connected S"
|
|
1380 |
by (simp add: path_connected_imp_connected starlike_imp_path_connected)
|
|
1381 |
|
|
1382 |
lemma is_interval_simply_connected_1:
|
|
1383 |
fixes S :: "real set"
|
|
1384 |
shows "is_interval S \<longleftrightarrow> simply_connected S"
|
|
1385 |
using convex_imp_simply_connected is_interval_convex_1 is_interval_path_connected_1 simply_connected_imp_path_connected by auto
|
|
1386 |
|
|
1387 |
lemma contractible_empty [simp]: "contractible {}"
|
|
1388 |
by (simp add: contractible_def homotopic_with)
|
|
1389 |
|
|
1390 |
lemma contractible_convex_tweak_boundary_points:
|
|
1391 |
fixes S :: "'a::euclidean_space set"
|
|
1392 |
assumes "convex S" and TS: "rel_interior S \<subseteq> T" "T \<subseteq> closure S"
|
|
1393 |
shows "contractible T"
|
|
1394 |
proof (cases "S = {}")
|
|
1395 |
case True
|
|
1396 |
with assms show ?thesis
|
|
1397 |
by (simp add: subsetCE)
|
|
1398 |
next
|
|
1399 |
case False
|
|
1400 |
show ?thesis
|
|
1401 |
apply (rule starlike_imp_contractible)
|
|
1402 |
apply (rule starlike_convex_tweak_boundary_points [OF \<open>convex S\<close> False TS])
|
|
1403 |
done
|
|
1404 |
qed
|
|
1405 |
|
|
1406 |
lemma convex_imp_contractible:
|
|
1407 |
fixes S :: "'a::real_normed_vector set"
|
|
1408 |
shows "convex S \<Longrightarrow> contractible S"
|
|
1409 |
using contractible_empty convex_imp_starlike starlike_imp_contractible by blast
|
|
1410 |
|
|
1411 |
lemma contractible_sing [simp]:
|
|
1412 |
fixes a :: "'a::real_normed_vector"
|
|
1413 |
shows "contractible {a}"
|
|
1414 |
by (rule convex_imp_contractible [OF convex_singleton])
|
|
1415 |
|
|
1416 |
lemma is_interval_contractible_1:
|
|
1417 |
fixes S :: "real set"
|
|
1418 |
shows "is_interval S \<longleftrightarrow> contractible S"
|
|
1419 |
using contractible_imp_simply_connected convex_imp_contractible is_interval_convex_1
|
|
1420 |
is_interval_simply_connected_1 by auto
|
|
1421 |
|
|
1422 |
lemma contractible_Times:
|
|
1423 |
fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
|
|
1424 |
assumes S: "contractible S" and T: "contractible T"
|
|
1425 |
shows "contractible (S \<times> T)"
|
|
1426 |
proof -
|
|
1427 |
obtain a h where conth: "continuous_on ({0..1} \<times> S) h"
|
|
1428 |
and hsub: "h ` ({0..1} \<times> S) \<subseteq> S"
|
|
1429 |
and [simp]: "\<And>x. x \<in> S \<Longrightarrow> h (0, x) = x"
|
|
1430 |
and [simp]: "\<And>x. x \<in> S \<Longrightarrow> h (1::real, x) = a"
|
|
1431 |
using S by (auto simp: contractible_def homotopic_with)
|
|
1432 |
obtain b k where contk: "continuous_on ({0..1} \<times> T) k"
|
|
1433 |
and ksub: "k ` ({0..1} \<times> T) \<subseteq> T"
|
|
1434 |
and [simp]: "\<And>x. x \<in> T \<Longrightarrow> k (0, x) = x"
|
|
1435 |
and [simp]: "\<And>x. x \<in> T \<Longrightarrow> k (1::real, x) = b"
|
|
1436 |
using T by (auto simp: contractible_def homotopic_with)
|
|
1437 |
show ?thesis
|
|
1438 |
apply (simp add: contractible_def homotopic_with)
|
|
1439 |
apply (rule exI [where x=a])
|
|
1440 |
apply (rule exI [where x=b])
|
|
1441 |
apply (rule exI [where x = "\<lambda>z. (h (fst z, fst(snd z)), k (fst z, snd(snd z)))"])
|
|
1442 |
apply (intro conjI ballI continuous_intros continuous_on_compose2 [OF conth] continuous_on_compose2 [OF contk])
|
|
1443 |
using hsub ksub
|
|
1444 |
apply auto
|
|
1445 |
done
|
|
1446 |
qed
|
|
1447 |
|
|
1448 |
lemma homotopy_dominated_contractibility:
|
|
1449 |
fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
|
|
1450 |
assumes S: "contractible S"
|
|
1451 |
and f: "continuous_on S f" "image f S \<subseteq> T"
|
|
1452 |
and g: "continuous_on T g" "image g T \<subseteq> S"
|
|
1453 |
and hom: "homotopic_with (\<lambda>x. True) T T (f \<circ> g) id"
|
|
1454 |
shows "contractible T"
|
|
1455 |
proof -
|
|
1456 |
obtain b where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. b)"
|
|
1457 |
using nullhomotopic_from_contractible [OF f S] .
|
|
1458 |
then have homg: "homotopic_with (\<lambda>x. True) T T ((\<lambda>x. b) \<circ> g) (f \<circ> g)"
|
|
1459 |
by (rule homotopic_with_compose_continuous_right [OF homotopic_with_symD g])
|
|
1460 |
show ?thesis
|
|
1461 |
apply (simp add: contractible_def)
|
|
1462 |
apply (rule exI [where x = b])
|
|
1463 |
apply (rule homotopic_with_symD)
|
|
1464 |
apply (rule homotopic_with_trans [OF _ hom])
|
|
1465 |
using homg apply (simp add: o_def)
|
|
1466 |
done
|
|
1467 |
qed
|
|
1468 |
|
|
1469 |
|
|
1470 |
subsection\<open>Local versions of topological properties in general\<close>
|
|
1471 |
|
|
1472 |
definition%important locally :: "('a::topological_space set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
|
|
1473 |
where
|
|
1474 |
"locally P S \<equiv>
|
|
1475 |
\<forall>w x. openin (subtopology euclidean S) w \<and> x \<in> w
|
|
1476 |
\<longrightarrow> (\<exists>u v. openin (subtopology euclidean S) u \<and> P v \<and>
|
|
1477 |
x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w)"
|
|
1478 |
|
|
1479 |
lemma locallyI:
|
|
1480 |
assumes "\<And>w x. \<lbrakk>openin (subtopology euclidean S) w; x \<in> w\<rbrakk>
|
|
1481 |
\<Longrightarrow> \<exists>u v. openin (subtopology euclidean S) u \<and> P v \<and>
|
|
1482 |
x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w"
|
|
1483 |
shows "locally P S"
|
|
1484 |
using assms by (force simp: locally_def)
|
|
1485 |
|
|
1486 |
lemma locallyE:
|
|
1487 |
assumes "locally P S" "openin (subtopology euclidean S) w" "x \<in> w"
|
|
1488 |
obtains u v where "openin (subtopology euclidean S) u"
|
|
1489 |
"P v" "x \<in> u" "u \<subseteq> v" "v \<subseteq> w"
|
|
1490 |
using assms unfolding locally_def by meson
|
|
1491 |
|
|
1492 |
lemma locally_mono:
|
|
1493 |
assumes "locally P S" "\<And>t. P t \<Longrightarrow> Q t"
|
|
1494 |
shows "locally Q S"
|
|
1495 |
by (metis assms locally_def)
|
|
1496 |
|
|
1497 |
lemma locally_open_subset:
|
|
1498 |
assumes "locally P S" "openin (subtopology euclidean S) t"
|
|
1499 |
shows "locally P t"
|
|
1500 |
using assms
|
|
1501 |
apply (simp add: locally_def)
|
|
1502 |
apply (erule all_forward)+
|
|
1503 |
apply (rule impI)
|
|
1504 |
apply (erule impCE)
|
|
1505 |
using openin_trans apply blast
|
|
1506 |
apply (erule ex_forward)
|
|
1507 |
by (metis (no_types, hide_lams) Int_absorb1 Int_lower1 Int_subset_iff openin_open openin_subtopology_Int_subset)
|
|
1508 |
|
|
1509 |
lemma locally_diff_closed:
|
|
1510 |
"\<lbrakk>locally P S; closedin (subtopology euclidean S) t\<rbrakk> \<Longrightarrow> locally P (S - t)"
|
|
1511 |
using locally_open_subset closedin_def by fastforce
|
|
1512 |
|
|
1513 |
lemma locally_empty [iff]: "locally P {}"
|
|
1514 |
by (simp add: locally_def openin_subtopology)
|
|
1515 |
|
|
1516 |
lemma locally_singleton [iff]:
|
|
1517 |
fixes a :: "'a::metric_space"
|
|
1518 |
shows "locally P {a} \<longleftrightarrow> P {a}"
|
|
1519 |
apply (simp add: locally_def openin_euclidean_subtopology_iff subset_singleton_iff conj_disj_distribR cong: conj_cong)
|
|
1520 |
using zero_less_one by blast
|
|
1521 |
|
|
1522 |
lemma locally_iff:
|
|
1523 |
"locally P S \<longleftrightarrow>
|
|
1524 |
(\<forall>T x. open T \<and> x \<in> S \<inter> T \<longrightarrow> (\<exists>U. open U \<and> (\<exists>v. P v \<and> x \<in> S \<inter> U \<and> S \<inter> U \<subseteq> v \<and> v \<subseteq> S \<inter> T)))"
|
|
1525 |
apply (simp add: le_inf_iff locally_def openin_open, safe)
|
|
1526 |
apply (metis IntE IntI le_inf_iff)
|
|
1527 |
apply (metis IntI Int_subset_iff)
|
|
1528 |
done
|
|
1529 |
|
|
1530 |
lemma locally_Int:
|
|
1531 |
assumes S: "locally P S" and t: "locally P t"
|
|
1532 |
and P: "\<And>S t. P S \<and> P t \<Longrightarrow> P(S \<inter> t)"
|
|
1533 |
shows "locally P (S \<inter> t)"
|
|
1534 |
using S t unfolding locally_iff
|
|
1535 |
apply clarify
|
|
1536 |
apply (drule_tac x=T in spec)+
|
|
1537 |
apply (drule_tac x=x in spec)+
|
|
1538 |
apply clarsimp
|
|
1539 |
apply (rename_tac U1 U2 V1 V2)
|
|
1540 |
apply (rule_tac x="U1 \<inter> U2" in exI)
|
|
1541 |
apply (simp add: open_Int)
|
|
1542 |
apply (rule_tac x="V1 \<inter> V2" in exI)
|
|
1543 |
apply (auto intro: P)
|
|
1544 |
done
|
|
1545 |
|
|
1546 |
lemma locally_Times:
|
|
1547 |
fixes S :: "('a::metric_space) set" and T :: "('b::metric_space) set"
|
|
1548 |
assumes PS: "locally P S" and QT: "locally Q T" and R: "\<And>S T. P S \<and> Q T \<Longrightarrow> R(S \<times> T)"
|
|
1549 |
shows "locally R (S \<times> T)"
|
|
1550 |
unfolding locally_def
|
|
1551 |
proof (clarify)
|
|
1552 |
fix W x y
|
|
1553 |
assume W: "openin (subtopology euclidean (S \<times> T)) W" and xy: "(x, y) \<in> W"
|
|
1554 |
then obtain U V where "openin (subtopology euclidean S) U" "x \<in> U"
|
|
1555 |
"openin (subtopology euclidean T) V" "y \<in> V" "U \<times> V \<subseteq> W"
|
|
1556 |
using Times_in_interior_subtopology by metis
|
|
1557 |
then obtain U1 U2 V1 V2
|
|
1558 |
where opeS: "openin (subtopology euclidean S) U1 \<and> P U2 \<and> x \<in> U1 \<and> U1 \<subseteq> U2 \<and> U2 \<subseteq> U"
|
|
1559 |
and opeT: "openin (subtopology euclidean T) V1 \<and> Q V2 \<and> y \<in> V1 \<and> V1 \<subseteq> V2 \<and> V2 \<subseteq> V"
|
|
1560 |
by (meson PS QT locallyE)
|
|
1561 |
with \<open>U \<times> V \<subseteq> W\<close> show "\<exists>u v. openin (subtopology euclidean (S \<times> T)) u \<and> R v \<and> (x,y) \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> W"
|
|
1562 |
apply (rule_tac x="U1 \<times> V1" in exI)
|
|
1563 |
apply (rule_tac x="U2 \<times> V2" in exI)
|
|
1564 |
apply (auto simp: openin_Times R)
|
|
1565 |
done
|
|
1566 |
qed
|
|
1567 |
|
|
1568 |
|
|
1569 |
proposition homeomorphism_locally_imp:
|
|
1570 |
fixes S :: "'a::metric_space set" and t :: "'b::t2_space set"
|
|
1571 |
assumes S: "locally P S" and hom: "homeomorphism S t f g"
|
|
1572 |
and Q: "\<And>S S'. \<lbrakk>P S; homeomorphism S S' f g\<rbrakk> \<Longrightarrow> Q S'"
|
|
1573 |
shows "locally Q t"
|
|
1574 |
proof (clarsimp simp: locally_def)
|
|
1575 |
fix W y
|
|
1576 |
assume "y \<in> W" and "openin (subtopology euclidean t) W"
|
|
1577 |
then obtain T where T: "open T" "W = t \<inter> T"
|
|
1578 |
by (force simp: openin_open)
|
|
1579 |
then have "W \<subseteq> t" by auto
|
|
1580 |
have f: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x" "f ` S = t" "continuous_on S f"
|
|
1581 |
and g: "\<And>y. y \<in> t \<Longrightarrow> f(g y) = y" "g ` t = S" "continuous_on t g"
|
|
1582 |
using hom by (auto simp: homeomorphism_def)
|
|
1583 |
have gw: "g ` W = S \<inter> f -` W"
|
|
1584 |
using \<open>W \<subseteq> t\<close>
|
|
1585 |
apply auto
|
|
1586 |
using \<open>g ` t = S\<close> \<open>W \<subseteq> t\<close> apply blast
|
|
1587 |
using g \<open>W \<subseteq> t\<close> apply auto[1]
|
|
1588 |
by (simp add: f rev_image_eqI)
|
|
1589 |
have \<circ>: "openin (subtopology euclidean S) (g ` W)"
|
|
1590 |
proof -
|
|
1591 |
have "continuous_on S f"
|
|
1592 |
using f(3) by blast
|
|
1593 |
then show "openin (subtopology euclidean S) (g ` W)"
|
|
1594 |
by (simp add: gw Collect_conj_eq \<open>openin (subtopology euclidean t) W\<close> continuous_on_open f(2))
|
|
1595 |
qed
|
|
1596 |
then obtain u v
|
|
1597 |
where osu: "openin (subtopology euclidean S) u" and uv: "P v" "g y \<in> u" "u \<subseteq> v" "v \<subseteq> g ` W"
|
|
1598 |
using S [unfolded locally_def, rule_format, of "g ` W" "g y"] \<open>y \<in> W\<close> by force
|
|
1599 |
have "v \<subseteq> S" using uv by (simp add: gw)
|
|
1600 |
have fv: "f ` v = t \<inter> {x. g x \<in> v}"
|
|
1601 |
using \<open>f ` S = t\<close> f \<open>v \<subseteq> S\<close> by auto
|
|
1602 |
have "f ` v \<subseteq> W"
|
|
1603 |
using uv using Int_lower2 gw image_subsetI mem_Collect_eq subset_iff by auto
|
|
1604 |
have contvf: "continuous_on v f"
|
|
1605 |
using \<open>v \<subseteq> S\<close> continuous_on_subset f(3) by blast
|
|
1606 |
have contvg: "continuous_on (f ` v) g"
|
|
1607 |
using \<open>f ` v \<subseteq> W\<close> \<open>W \<subseteq> t\<close> continuous_on_subset [OF g(3)] by blast
|
|
1608 |
have homv: "homeomorphism v (f ` v) f g"
|
|
1609 |
using \<open>v \<subseteq> S\<close> \<open>W \<subseteq> t\<close> f
|
|
1610 |
apply (simp add: homeomorphism_def contvf contvg, auto)
|
|
1611 |
by (metis f(1) rev_image_eqI rev_subsetD)
|
|
1612 |
have 1: "openin (subtopology euclidean t) (t \<inter> g -` u)"
|
|
1613 |
apply (rule continuous_on_open [THEN iffD1, rule_format])
|
|
1614 |
apply (rule \<open>continuous_on t g\<close>)
|
|
1615 |
using \<open>g ` t = S\<close> apply (simp add: osu)
|
|
1616 |
done
|
|
1617 |
have 2: "\<exists>V. Q V \<and> y \<in> (t \<inter> g -` u) \<and> (t \<inter> g -` u) \<subseteq> V \<and> V \<subseteq> W"
|
|
1618 |
apply (rule_tac x="f ` v" in exI)
|
|
1619 |
apply (intro conjI Q [OF \<open>P v\<close> homv])
|
|
1620 |
using \<open>W \<subseteq> t\<close> \<open>y \<in> W\<close> \<open>f ` v \<subseteq> W\<close> uv apply (auto simp: fv)
|
|
1621 |
done
|
|
1622 |
show "\<exists>U. openin (subtopology euclidean t) U \<and> (\<exists>v. Q v \<and> y \<in> U \<and> U \<subseteq> v \<and> v \<subseteq> W)"
|
|
1623 |
by (meson 1 2)
|
|
1624 |
qed
|
|
1625 |
|
|
1626 |
lemma homeomorphism_locally:
|
|
1627 |
fixes f:: "'a::metric_space \<Rightarrow> 'b::metric_space"
|
|
1628 |
assumes hom: "homeomorphism S t f g"
|
|
1629 |
and eq: "\<And>S t. homeomorphism S t f g \<Longrightarrow> (P S \<longleftrightarrow> Q t)"
|
|
1630 |
shows "locally P S \<longleftrightarrow> locally Q t"
|
|
1631 |
apply (rule iffI)
|
|
1632 |
apply (erule homeomorphism_locally_imp [OF _ hom])
|
|
1633 |
apply (simp add: eq)
|
|
1634 |
apply (erule homeomorphism_locally_imp)
|
|
1635 |
using eq homeomorphism_sym homeomorphism_symD [OF hom] apply blast+
|
|
1636 |
done
|
|
1637 |
|
|
1638 |
lemma homeomorphic_locally:
|
|
1639 |
fixes S:: "'a::metric_space set" and T:: "'b::metric_space set"
|
|
1640 |
assumes hom: "S homeomorphic T"
|
|
1641 |
and iff: "\<And>X Y. X homeomorphic Y \<Longrightarrow> (P X \<longleftrightarrow> Q Y)"
|
|
1642 |
shows "locally P S \<longleftrightarrow> locally Q T"
|
|
1643 |
proof -
|
|
1644 |
obtain f g where hom: "homeomorphism S T f g"
|
|
1645 |
using assms by (force simp: homeomorphic_def)
|
|
1646 |
then show ?thesis
|
|
1647 |
using homeomorphic_def local.iff
|
|
1648 |
by (blast intro!: homeomorphism_locally)
|
|
1649 |
qed
|
|
1650 |
|
|
1651 |
lemma homeomorphic_local_compactness:
|
|
1652 |
fixes S:: "'a::metric_space set" and T:: "'b::metric_space set"
|
|
1653 |
shows "S homeomorphic T \<Longrightarrow> locally compact S \<longleftrightarrow> locally compact T"
|
|
1654 |
by (simp add: homeomorphic_compactness homeomorphic_locally)
|
|
1655 |
|
|
1656 |
lemma locally_translation:
|
|
1657 |
fixes P :: "'a :: real_normed_vector set \<Rightarrow> bool"
|
|
1658 |
shows
|
|
1659 |
"(\<And>S. P (image (\<lambda>x. a + x) S) \<longleftrightarrow> P S)
|
|
1660 |
\<Longrightarrow> locally P (image (\<lambda>x. a + x) S) \<longleftrightarrow> locally P S"
|
|
1661 |
apply (rule homeomorphism_locally [OF homeomorphism_translation])
|
|
1662 |
apply (simp add: homeomorphism_def)
|
|
1663 |
by metis
|
|
1664 |
|
|
1665 |
lemma locally_injective_linear_image:
|
|
1666 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
|
|
1667 |
assumes f: "linear f" "inj f" and iff: "\<And>S. P (f ` S) \<longleftrightarrow> Q S"
|
|
1668 |
shows "locally P (f ` S) \<longleftrightarrow> locally Q S"
|
|
1669 |
apply (rule linear_homeomorphism_image [OF f])
|
|
1670 |
apply (rule_tac f=g and g = f in homeomorphism_locally, assumption)
|
|
1671 |
by (metis iff homeomorphism_def)
|
|
1672 |
|
|
1673 |
lemma locally_open_map_image:
|
|
1674 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
|
|
1675 |
assumes P: "locally P S"
|
|
1676 |
and f: "continuous_on S f"
|
|
1677 |
and oo: "\<And>t. openin (subtopology euclidean S) t
|
|
1678 |
\<Longrightarrow> openin (subtopology euclidean (f ` S)) (f ` t)"
|
|
1679 |
and Q: "\<And>t. \<lbrakk>t \<subseteq> S; P t\<rbrakk> \<Longrightarrow> Q(f ` t)"
|
|
1680 |
shows "locally Q (f ` S)"
|
|
1681 |
proof (clarsimp simp add: locally_def)
|
|
1682 |
fix W y
|
|
1683 |
assume oiw: "openin (subtopology euclidean (f ` S)) W" and "y \<in> W"
|
|
1684 |
then have "W \<subseteq> f ` S" by (simp add: openin_euclidean_subtopology_iff)
|
|
1685 |
have oivf: "openin (subtopology euclidean S) (S \<inter> f -` W)"
|
|
1686 |
by (rule continuous_on_open [THEN iffD1, rule_format, OF f oiw])
|
|
1687 |
then obtain x where "x \<in> S" "f x = y"
|
|
1688 |
using \<open>W \<subseteq> f ` S\<close> \<open>y \<in> W\<close> by blast
|
|
1689 |
then obtain U V
|
|
1690 |
where "openin (subtopology euclidean S) U" "P V" "x \<in> U" "U \<subseteq> V" "V \<subseteq> S \<inter> f -` W"
|
|
1691 |
using P [unfolded locally_def, rule_format, of "(S \<inter> f -` W)" x] oivf \<open>y \<in> W\<close>
|
|
1692 |
by auto
|
|
1693 |
then show "\<exists>X. openin (subtopology euclidean (f ` S)) X \<and> (\<exists>Y. Q Y \<and> y \<in> X \<and> X \<subseteq> Y \<and> Y \<subseteq> W)"
|
|
1694 |
apply (rule_tac x="f ` U" in exI)
|
|
1695 |
apply (rule conjI, blast intro!: oo)
|
|
1696 |
apply (rule_tac x="f ` V" in exI)
|
|
1697 |
apply (force simp: \<open>f x = y\<close> rev_image_eqI intro: Q)
|
|
1698 |
done
|
|
1699 |
qed
|
|
1700 |
|
|
1701 |
|
|
1702 |
subsection\<open>An induction principle for connected sets\<close>
|
|
1703 |
|
|
1704 |
proposition connected_induction:
|
|
1705 |
assumes "connected S"
|
|
1706 |
and opD: "\<And>T a. \<lbrakk>openin (subtopology euclidean S) T; a \<in> T\<rbrakk> \<Longrightarrow> \<exists>z. z \<in> T \<and> P z"
|
|
1707 |
and opI: "\<And>a. a \<in> S
|
|
1708 |
\<Longrightarrow> \<exists>T. openin (subtopology euclidean S) T \<and> a \<in> T \<and>
|
|
1709 |
(\<forall>x \<in> T. \<forall>y \<in> T. P x \<and> P y \<and> Q x \<longrightarrow> Q y)"
|
|
1710 |
and etc: "a \<in> S" "b \<in> S" "P a" "P b" "Q a"
|
|
1711 |
shows "Q b"
|
|
1712 |
proof -
|
|
1713 |
have 1: "openin (subtopology euclidean S)
|
|
1714 |
{b. \<exists>T. openin (subtopology euclidean S) T \<and>
|
|
1715 |
b \<in> T \<and> (\<forall>x\<in>T. P x \<longrightarrow> Q x)}"
|
|
1716 |
apply (subst openin_subopen, clarify)
|
|
1717 |
apply (rule_tac x=T in exI, auto)
|
|
1718 |
done
|
|
1719 |
have 2: "openin (subtopology euclidean S)
|
|
1720 |
{b. \<exists>T. openin (subtopology euclidean S) T \<and>
|
|
1721 |
b \<in> T \<and> (\<forall>x\<in>T. P x \<longrightarrow> \<not> Q x)}"
|
|
1722 |
apply (subst openin_subopen, clarify)
|
|
1723 |
apply (rule_tac x=T in exI, auto)
|
|
1724 |
done
|
|
1725 |
show ?thesis
|
|
1726 |
using \<open>connected S\<close>
|
|
1727 |
apply (simp only: connected_openin HOL.not_ex HOL.de_Morgan_conj)
|
|
1728 |
apply (elim disjE allE)
|
|
1729 |
apply (blast intro: 1)
|
|
1730 |
apply (blast intro: 2, simp_all)
|
|
1731 |
apply clarify apply (metis opI)
|
|
1732 |
using opD apply (blast intro: etc elim: dest:)
|
|
1733 |
using opI etc apply meson+
|
|
1734 |
done
|
|
1735 |
qed
|
|
1736 |
|
|
1737 |
lemma connected_equivalence_relation_gen:
|
|
1738 |
assumes "connected S"
|
|
1739 |
and etc: "a \<in> S" "b \<in> S" "P a" "P b"
|
|
1740 |
and trans: "\<And>x y z. \<lbrakk>R x y; R y z\<rbrakk> \<Longrightarrow> R x z"
|
|
1741 |
and opD: "\<And>T a. \<lbrakk>openin (subtopology euclidean S) T; a \<in> T\<rbrakk> \<Longrightarrow> \<exists>z. z \<in> T \<and> P z"
|
|
1742 |
and opI: "\<And>a. a \<in> S
|
|
1743 |
\<Longrightarrow> \<exists>T. openin (subtopology euclidean S) T \<and> a \<in> T \<and>
|
|
1744 |
(\<forall>x \<in> T. \<forall>y \<in> T. P x \<and> P y \<longrightarrow> R x y)"
|
|
1745 |
shows "R a b"
|
|
1746 |
proof -
|
|
1747 |
have "\<And>a b c. \<lbrakk>a \<in> S; P a; b \<in> S; c \<in> S; P b; P c; R a b\<rbrakk> \<Longrightarrow> R a c"
|
|
1748 |
apply (rule connected_induction [OF \<open>connected S\<close> opD], simp_all)
|
|
1749 |
by (meson trans opI)
|
|
1750 |
then show ?thesis by (metis etc opI)
|
|
1751 |
qed
|
|
1752 |
|
|
1753 |
lemma connected_induction_simple:
|
|
1754 |
assumes "connected S"
|
|
1755 |
and etc: "a \<in> S" "b \<in> S" "P a"
|
|
1756 |
and opI: "\<And>a. a \<in> S
|
|
1757 |
\<Longrightarrow> \<exists>T. openin (subtopology euclidean S) T \<and> a \<in> T \<and>
|
|
1758 |
(\<forall>x \<in> T. \<forall>y \<in> T. P x \<longrightarrow> P y)"
|
|
1759 |
shows "P b"
|
|
1760 |
apply (rule connected_induction [OF \<open>connected S\<close> _, where P = "\<lambda>x. True"], blast)
|
|
1761 |
apply (frule opI)
|
|
1762 |
using etc apply simp_all
|
|
1763 |
done
|
|
1764 |
|
|
1765 |
lemma connected_equivalence_relation:
|
|
1766 |
assumes "connected S"
|
|
1767 |
and etc: "a \<in> S" "b \<in> S"
|
|
1768 |
and sym: "\<And>x y. \<lbrakk>R x y; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> R y x"
|
|
1769 |
and trans: "\<And>x y z. \<lbrakk>R x y; R y z; x \<in> S; y \<in> S; z \<in> S\<rbrakk> \<Longrightarrow> R x z"
|
|
1770 |
and opI: "\<And>a. a \<in> S \<Longrightarrow> \<exists>T. openin (subtopology euclidean S) T \<and> a \<in> T \<and> (\<forall>x \<in> T. R a x)"
|
|
1771 |
shows "R a b"
|
|
1772 |
proof -
|
|
1773 |
have "\<And>a b c. \<lbrakk>a \<in> S; b \<in> S; c \<in> S; R a b\<rbrakk> \<Longrightarrow> R a c"
|
|
1774 |
apply (rule connected_induction_simple [OF \<open>connected S\<close>], simp_all)
|
|
1775 |
by (meson local.sym local.trans opI openin_imp_subset subsetCE)
|
|
1776 |
then show ?thesis by (metis etc opI)
|
|
1777 |
qed
|
|
1778 |
|
|
1779 |
lemma locally_constant_imp_constant:
|
|
1780 |
assumes "connected S"
|
|
1781 |
and opI: "\<And>a. a \<in> S
|
|
1782 |
\<Longrightarrow> \<exists>T. openin (subtopology euclidean S) T \<and> a \<in> T \<and> (\<forall>x \<in> T. f x = f a)"
|
|
1783 |
shows "f constant_on S"
|
|
1784 |
proof -
|
|
1785 |
have "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> f x = f y"
|
|
1786 |
apply (rule connected_equivalence_relation [OF \<open>connected S\<close>], simp_all)
|
|
1787 |
by (metis opI)
|
|
1788 |
then show ?thesis
|
|
1789 |
by (metis constant_on_def)
|
|
1790 |
qed
|
|
1791 |
|
|
1792 |
lemma locally_constant:
|
|
1793 |
"connected S \<Longrightarrow> locally (\<lambda>U. f constant_on U) S \<longleftrightarrow> f constant_on S"
|
|
1794 |
apply (simp add: locally_def)
|
|
1795 |
apply (rule iffI)
|
|
1796 |
apply (rule locally_constant_imp_constant, assumption)
|
|
1797 |
apply (metis (mono_tags, hide_lams) constant_on_def constant_on_subset openin_subtopology_self)
|
|
1798 |
by (meson constant_on_subset openin_imp_subset order_refl)
|
|
1799 |
|
|
1800 |
|
|
1801 |
subsection\<open>Basic properties of local compactness\<close>
|
|
1802 |
|
|
1803 |
proposition locally_compact:
|
|
1804 |
fixes s :: "'a :: metric_space set"
|
|
1805 |
shows
|
|
1806 |
"locally compact s \<longleftrightarrow>
|
|
1807 |
(\<forall>x \<in> s. \<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
|
|
1808 |
openin (subtopology euclidean s) u \<and> compact v)"
|
|
1809 |
(is "?lhs = ?rhs")
|
|
1810 |
proof
|
|
1811 |
assume ?lhs
|
|
1812 |
then show ?rhs
|
|
1813 |
apply clarify
|
|
1814 |
apply (erule_tac w = "s \<inter> ball x 1" in locallyE)
|
|
1815 |
by auto
|
|
1816 |
next
|
|
1817 |
assume r [rule_format]: ?rhs
|
|
1818 |
have *: "\<exists>u v.
|
|
1819 |
openin (subtopology euclidean s) u \<and>
|
|
1820 |
compact v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<inter> T"
|
|
1821 |
if "open T" "x \<in> s" "x \<in> T" for x T
|
|
1822 |
proof -
|
|
1823 |
obtain u v where uv: "x \<in> u" "u \<subseteq> v" "v \<subseteq> s" "compact v" "openin (subtopology euclidean s) u"
|
|
1824 |
using r [OF \<open>x \<in> s\<close>] by auto
|
|
1825 |
obtain e where "e>0" and e: "cball x e \<subseteq> T"
|
|
1826 |
using open_contains_cball \<open>open T\<close> \<open>x \<in> T\<close> by blast
|
|
1827 |
show ?thesis
|
|
1828 |
apply (rule_tac x="(s \<inter> ball x e) \<inter> u" in exI)
|
|
1829 |
apply (rule_tac x="cball x e \<inter> v" in exI)
|
|
1830 |
using that \<open>e > 0\<close> e uv
|
|
1831 |
apply auto
|
|
1832 |
done
|
|
1833 |
qed
|
|
1834 |
show ?lhs
|
|
1835 |
apply (rule locallyI)
|
|
1836 |
apply (subst (asm) openin_open)
|
|
1837 |
apply (blast intro: *)
|
|
1838 |
done
|
|
1839 |
qed
|
|
1840 |
|
|
1841 |
lemma locally_compactE:
|
|
1842 |
fixes s :: "'a :: metric_space set"
|
|
1843 |
assumes "locally compact s"
|
|
1844 |
obtains u v where "\<And>x. x \<in> s \<Longrightarrow> x \<in> u x \<and> u x \<subseteq> v x \<and> v x \<subseteq> s \<and>
|
|
1845 |
openin (subtopology euclidean s) (u x) \<and> compact (v x)"
|
|
1846 |
using assms
|
|
1847 |
unfolding locally_compact by metis
|
|
1848 |
|
|
1849 |
lemma locally_compact_alt:
|
|
1850 |
fixes s :: "'a :: heine_borel set"
|
|
1851 |
shows "locally compact s \<longleftrightarrow>
|
|
1852 |
(\<forall>x \<in> s. \<exists>u. x \<in> u \<and>
|
|
1853 |
openin (subtopology euclidean s) u \<and> compact(closure u) \<and> closure u \<subseteq> s)"
|
|
1854 |
apply (simp add: locally_compact)
|
|
1855 |
apply (intro ball_cong ex_cong refl iffI)
|
|
1856 |
apply (metis bounded_subset closure_eq closure_mono compact_eq_bounded_closed dual_order.trans)
|
|
1857 |
by (meson closure_subset compact_closure)
|
|
1858 |
|
|
1859 |
lemma locally_compact_Int_cball:
|
|
1860 |
fixes s :: "'a :: heine_borel set"
|
|
1861 |
shows "locally compact s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>e. 0 < e \<and> closed(cball x e \<inter> s))"
|
|
1862 |
(is "?lhs = ?rhs")
|
|
1863 |
proof
|
|
1864 |
assume ?lhs
|
|
1865 |
then show ?rhs
|
|
1866 |
apply (simp add: locally_compact openin_contains_cball)
|
|
1867 |
apply (clarify | assumption | drule bspec)+
|
|
1868 |
by (metis (no_types, lifting) compact_cball compact_imp_closed compact_Int inf.absorb_iff2 inf.orderE inf_sup_aci(2))
|
|
1869 |
next
|
|
1870 |
assume ?rhs
|
|
1871 |
then show ?lhs
|
|
1872 |
apply (simp add: locally_compact openin_contains_cball)
|
|
1873 |
apply (clarify | assumption | drule bspec)+
|
|
1874 |
apply (rule_tac x="ball x e \<inter> s" in exI, simp)
|
|
1875 |
apply (rule_tac x="cball x e \<inter> s" in exI)
|
|
1876 |
using compact_eq_bounded_closed
|
|
1877 |
apply auto
|
|
1878 |
apply (metis open_ball le_infI1 mem_ball open_contains_cball_eq)
|
|
1879 |
done
|
|
1880 |
qed
|
|
1881 |
|
|
1882 |
lemma locally_compact_compact:
|
|
1883 |
fixes s :: "'a :: heine_borel set"
|
|
1884 |
shows "locally compact s \<longleftrightarrow>
|
|
1885 |
(\<forall>k. k \<subseteq> s \<and> compact k
|
|
1886 |
\<longrightarrow> (\<exists>u v. k \<subseteq> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
|
|
1887 |
openin (subtopology euclidean s) u \<and> compact v))"
|
|
1888 |
(is "?lhs = ?rhs")
|
|
1889 |
proof
|
|
1890 |
assume ?lhs
|
|
1891 |
then obtain u v where
|
|
1892 |
uv: "\<And>x. x \<in> s \<Longrightarrow> x \<in> u x \<and> u x \<subseteq> v x \<and> v x \<subseteq> s \<and>
|
|
1893 |
openin (subtopology euclidean s) (u x) \<and> compact (v x)"
|
|
1894 |
by (metis locally_compactE)
|
|
1895 |
have *: "\<exists>u v. k \<subseteq> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and> openin (subtopology euclidean s) u \<and> compact v"
|
|
1896 |
if "k \<subseteq> s" "compact k" for k
|
|
1897 |
proof -
|
|
1898 |
have "\<And>C. (\<forall>c\<in>C. openin (subtopology euclidean k) c) \<and> k \<subseteq> \<Union>C \<Longrightarrow>
|
|
1899 |
\<exists>D\<subseteq>C. finite D \<and> k \<subseteq> \<Union>D"
|
|
1900 |
using that by (simp add: compact_eq_openin_cover)
|
|
1901 |
moreover have "\<forall>c \<in> (\<lambda>x. k \<inter> u x) ` k. openin (subtopology euclidean k) c"
|
|
1902 |
using that by clarify (metis subsetD inf.absorb_iff2 openin_subset openin_subtopology_Int_subset topspace_euclidean_subtopology uv)
|
|
1903 |
moreover have "k \<subseteq> \<Union>((\<lambda>x. k \<inter> u x) ` k)"
|
|
1904 |
using that by clarsimp (meson subsetCE uv)
|
|
1905 |
ultimately obtain D where "D \<subseteq> (\<lambda>x. k \<inter> u x) ` k" "finite D" "k \<subseteq> \<Union>D"
|
|
1906 |
by metis
|
|
1907 |
then obtain T where T: "T \<subseteq> k" "finite T" "k \<subseteq> \<Union>((\<lambda>x. k \<inter> u x) ` T)"
|
|
1908 |
by (metis finite_subset_image)
|
|
1909 |
have Tuv: "\<Union>(u ` T) \<subseteq> \<Union>(v ` T)"
|
|
1910 |
using T that by (force simp: dest!: uv)
|
|
1911 |
show ?thesis
|
|
1912 |
apply (rule_tac x="\<Union>(u ` T)" in exI)
|
|
1913 |
apply (rule_tac x="\<Union>(v ` T)" in exI)
|
|
1914 |
apply (simp add: Tuv)
|
|
1915 |
using T that
|
|
1916 |
apply (auto simp: dest!: uv)
|
|
1917 |
done
|
|
1918 |
qed
|
|
1919 |
show ?rhs
|
|
1920 |
by (blast intro: *)
|
|
1921 |
next
|
|
1922 |
assume ?rhs
|
|
1923 |
then show ?lhs
|
|
1924 |
apply (clarsimp simp add: locally_compact)
|
|
1925 |
apply (drule_tac x="{x}" in spec, simp)
|
|
1926 |
done
|
|
1927 |
qed
|
|
1928 |
|
|
1929 |
lemma open_imp_locally_compact:
|
|
1930 |
fixes s :: "'a :: heine_borel set"
|
|
1931 |
assumes "open s"
|
|
1932 |
shows "locally compact s"
|
|
1933 |
proof -
|
|
1934 |
have *: "\<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and> openin (subtopology euclidean s) u \<and> compact v"
|
|
1935 |
if "x \<in> s" for x
|
|
1936 |
proof -
|
|
1937 |
obtain e where "e>0" and e: "cball x e \<subseteq> s"
|
|
1938 |
using open_contains_cball assms \<open>x \<in> s\<close> by blast
|
|
1939 |
have ope: "openin (subtopology euclidean s) (ball x e)"
|
|
1940 |
by (meson e open_ball ball_subset_cball dual_order.trans open_subset)
|
|
1941 |
show ?thesis
|
|
1942 |
apply (rule_tac x="ball x e" in exI)
|
|
1943 |
apply (rule_tac x="cball x e" in exI)
|
|
1944 |
using \<open>e > 0\<close> e apply (auto simp: ope)
|
|
1945 |
done
|
|
1946 |
qed
|
|
1947 |
show ?thesis
|
|
1948 |
unfolding locally_compact
|
|
1949 |
by (blast intro: *)
|
|
1950 |
qed
|
|
1951 |
|
|
1952 |
lemma closed_imp_locally_compact:
|
|
1953 |
fixes s :: "'a :: heine_borel set"
|
|
1954 |
assumes "closed s"
|
|
1955 |
shows "locally compact s"
|
|
1956 |
proof -
|
|
1957 |
have *: "\<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
|
|
1958 |
openin (subtopology euclidean s) u \<and> compact v"
|
|
1959 |
if "x \<in> s" for x
|
|
1960 |
proof -
|
|
1961 |
show ?thesis
|
|
1962 |
apply (rule_tac x = "s \<inter> ball x 1" in exI)
|
|
1963 |
apply (rule_tac x = "s \<inter> cball x 1" in exI)
|
|
1964 |
using \<open>x \<in> s\<close> assms apply auto
|
|
1965 |
done
|
|
1966 |
qed
|
|
1967 |
show ?thesis
|
|
1968 |
unfolding locally_compact
|
|
1969 |
by (blast intro: *)
|
|
1970 |
qed
|
|
1971 |
|
|
1972 |
lemma locally_compact_UNIV: "locally compact (UNIV :: 'a :: heine_borel set)"
|
|
1973 |
by (simp add: closed_imp_locally_compact)
|
|
1974 |
|
|
1975 |
lemma locally_compact_Int:
|
|
1976 |
fixes s :: "'a :: t2_space set"
|
|
1977 |
shows "\<lbrakk>locally compact s; locally compact t\<rbrakk> \<Longrightarrow> locally compact (s \<inter> t)"
|
|
1978 |
by (simp add: compact_Int locally_Int)
|
|
1979 |
|
|
1980 |
lemma locally_compact_closedin:
|
|
1981 |
fixes s :: "'a :: heine_borel set"
|
|
1982 |
shows "\<lbrakk>closedin (subtopology euclidean s) t; locally compact s\<rbrakk>
|
|
1983 |
\<Longrightarrow> locally compact t"
|
|
1984 |
unfolding closedin_closed
|
|
1985 |
using closed_imp_locally_compact locally_compact_Int by blast
|
|
1986 |
|
|
1987 |
lemma locally_compact_delete:
|
|
1988 |
fixes s :: "'a :: t1_space set"
|
|
1989 |
shows "locally compact s \<Longrightarrow> locally compact (s - {a})"
|
|
1990 |
by (auto simp: openin_delete locally_open_subset)
|
|
1991 |
|
|
1992 |
lemma locally_closed:
|
|
1993 |
fixes s :: "'a :: heine_borel set"
|
|
1994 |
shows "locally closed s \<longleftrightarrow> locally compact s"
|
|
1995 |
(is "?lhs = ?rhs")
|
|
1996 |
proof
|
|
1997 |
assume ?lhs
|
|
1998 |
then show ?rhs
|
|
1999 |
apply (simp only: locally_def)
|
|
2000 |
apply (erule all_forward imp_forward asm_rl exE)+
|
|
2001 |
apply (rule_tac x = "u \<inter> ball x 1" in exI)
|
|
2002 |
apply (rule_tac x = "v \<inter> cball x 1" in exI)
|
|
2003 |
apply (force intro: openin_trans)
|
|
2004 |
done
|
|
2005 |
next
|
|
2006 |
assume ?rhs then show ?lhs
|
|
2007 |
using compact_eq_bounded_closed locally_mono by blast
|
|
2008 |
qed
|
|
2009 |
|
|
2010 |
lemma locally_compact_openin_Un:
|
|
2011 |
fixes S :: "'a::euclidean_space set"
|
|
2012 |
assumes LCS: "locally compact S" and LCT:"locally compact T"
|
|
2013 |
and opS: "openin (subtopology euclidean (S \<union> T)) S"
|
|
2014 |
and opT: "openin (subtopology euclidean (S \<union> T)) T"
|
|
2015 |
shows "locally compact (S \<union> T)"
|
|
2016 |
proof -
|
|
2017 |
have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> S" for x
|
|
2018 |
proof -
|
|
2019 |
obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
|
|
2020 |
using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
|
|
2021 |
moreover obtain e2 where "e2 > 0" and e2: "cball x e2 \<inter> (S \<union> T) \<subseteq> S"
|
|
2022 |
by (meson \<open>x \<in> S\<close> opS openin_contains_cball)
|
|
2023 |
then have "cball x e2 \<inter> (S \<union> T) = cball x e2 \<inter> S"
|
|
2024 |
by force
|
|
2025 |
ultimately show ?thesis
|
|
2026 |
apply (rule_tac x="min e1 e2" in exI)
|
|
2027 |
apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int)
|
|
2028 |
by (metis closed_Int closed_cball inf_left_commute)
|
|
2029 |
qed
|
|
2030 |
moreover have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> T" for x
|
|
2031 |
proof -
|
|
2032 |
obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> T)"
|
|
2033 |
using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
|
|
2034 |
moreover obtain e2 where "e2 > 0" and e2: "cball x e2 \<inter> (S \<union> T) \<subseteq> T"
|
|
2035 |
by (meson \<open>x \<in> T\<close> opT openin_contains_cball)
|
|
2036 |
then have "cball x e2 \<inter> (S \<union> T) = cball x e2 \<inter> T"
|
|
2037 |
by force
|
|
2038 |
ultimately show ?thesis
|
|
2039 |
apply (rule_tac x="min e1 e2" in exI)
|
|
2040 |
apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int)
|
|
2041 |
by (metis closed_Int closed_cball inf_left_commute)
|
|
2042 |
qed
|
|
2043 |
ultimately show ?thesis
|
|
2044 |
by (force simp: locally_compact_Int_cball)
|
|
2045 |
qed
|
|
2046 |
|
|
2047 |
lemma locally_compact_closedin_Un:
|
|
2048 |
fixes S :: "'a::euclidean_space set"
|
|
2049 |
assumes LCS: "locally compact S" and LCT:"locally compact T"
|
|
2050 |
and clS: "closedin (subtopology euclidean (S \<union> T)) S"
|
|
2051 |
and clT: "closedin (subtopology euclidean (S \<union> T)) T"
|
|
2052 |
shows "locally compact (S \<union> T)"
|
|
2053 |
proof -
|
|
2054 |
have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> S" "x \<in> T" for x
|
|
2055 |
proof -
|
|
2056 |
obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
|
|
2057 |
using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
|
|
2058 |
moreover
|
|
2059 |
obtain e2 where "e2 > 0" and e2: "closed (cball x e2 \<inter> T)"
|
|
2060 |
using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
|
|
2061 |
ultimately show ?thesis
|
|
2062 |
apply (rule_tac x="min e1 e2" in exI)
|
|
2063 |
apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
|
|
2064 |
by (metis closed_Int closed_Un closed_cball inf_left_commute)
|
|
2065 |
qed
|
|
2066 |
moreover
|
|
2067 |
have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if x: "x \<in> S" "x \<notin> T" for x
|
|
2068 |
proof -
|
|
2069 |
obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
|
|
2070 |
using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
|
|
2071 |
moreover
|
|
2072 |
obtain e2 where "e2>0" and "cball x e2 \<inter> (S \<union> T) \<subseteq> S - T"
|
|
2073 |
using clT x by (fastforce simp: openin_contains_cball closedin_def)
|
|
2074 |
then have "closed (cball x e2 \<inter> T)"
|
|
2075 |
proof -
|
|
2076 |
have "{} = T - (T - cball x e2)"
|
|
2077 |
using Diff_subset Int_Diff \<open>cball x e2 \<inter> (S \<union> T) \<subseteq> S - T\<close> by auto
|
|
2078 |
then show ?thesis
|
|
2079 |
by (simp add: Diff_Diff_Int inf_commute)
|
|
2080 |
qed
|
|
2081 |
ultimately show ?thesis
|
|
2082 |
apply (rule_tac x="min e1 e2" in exI)
|
|
2083 |
apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
|
|
2084 |
by (metis closed_Int closed_Un closed_cball inf_left_commute)
|
|
2085 |
qed
|
|
2086 |
moreover
|
|
2087 |
have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if x: "x \<notin> S" "x \<in> T" for x
|
|
2088 |
proof -
|
|
2089 |
obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> T)"
|
|
2090 |
using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
|
|
2091 |
moreover
|
|
2092 |
obtain e2 where "e2>0" and "cball x e2 \<inter> (S \<union> T) \<subseteq> S \<union> T - S"
|
|
2093 |
using clS x by (fastforce simp: openin_contains_cball closedin_def)
|
|
2094 |
then have "closed (cball x e2 \<inter> S)"
|
|
2095 |
by (metis Diff_disjoint Int_empty_right closed_empty inf.left_commute inf.orderE inf_sup_absorb)
|
|
2096 |
ultimately show ?thesis
|
|
2097 |
apply (rule_tac x="min e1 e2" in exI)
|
|
2098 |
apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
|
|
2099 |
by (metis closed_Int closed_Un closed_cball inf_left_commute)
|
|
2100 |
qed
|
|
2101 |
ultimately show ?thesis
|
|
2102 |
by (auto simp: locally_compact_Int_cball)
|
|
2103 |
qed
|
|
2104 |
|
|
2105 |
lemma locally_compact_Times:
|
|
2106 |
fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
|
|
2107 |
shows "\<lbrakk>locally compact S; locally compact T\<rbrakk> \<Longrightarrow> locally compact (S \<times> T)"
|
|
2108 |
by (auto simp: compact_Times locally_Times)
|
|
2109 |
|
|
2110 |
lemma locally_compact_compact_subopen:
|
|
2111 |
fixes S :: "'a :: heine_borel set"
|
|
2112 |
shows
|
|
2113 |
"locally compact S \<longleftrightarrow>
|
|
2114 |
(\<forall>K T. K \<subseteq> S \<and> compact K \<and> open T \<and> K \<subseteq> T
|
|
2115 |
\<longrightarrow> (\<exists>U V. K \<subseteq> U \<and> U \<subseteq> V \<and> U \<subseteq> T \<and> V \<subseteq> S \<and>
|
|
2116 |
openin (subtopology euclidean S) U \<and> compact V))"
|
|
2117 |
(is "?lhs = ?rhs")
|
|
2118 |
proof
|
|
2119 |
assume L: ?lhs
|
|
2120 |
show ?rhs
|
|
2121 |
proof clarify
|
|
2122 |
fix K :: "'a set" and T :: "'a set"
|
|
2123 |
assume "K \<subseteq> S" and "compact K" and "open T" and "K \<subseteq> T"
|
|
2124 |
obtain U V where "K \<subseteq> U" "U \<subseteq> V" "V \<subseteq> S" "compact V"
|
|
2125 |
and ope: "openin (subtopology euclidean S) U"
|
|
2126 |
using L unfolding locally_compact_compact by (meson \<open>K \<subseteq> S\<close> \<open>compact K\<close>)
|
|
2127 |
show "\<exists>U V. K \<subseteq> U \<and> U \<subseteq> V \<and> U \<subseteq> T \<and> V \<subseteq> S \<and>
|
|
2128 |
openin (subtopology euclidean S) U \<and> compact V"
|
|
2129 |
proof (intro exI conjI)
|
|
2130 |
show "K \<subseteq> U \<inter> T"
|
|
2131 |
by (simp add: \<open>K \<subseteq> T\<close> \<open>K \<subseteq> U\<close>)
|
|
2132 |
show "U \<inter> T \<subseteq> closure(U \<inter> T)"
|
|
2133 |
by (rule closure_subset)
|
|
2134 |
show "closure (U \<inter> T) \<subseteq> S"
|
|
2135 |
by (metis \<open>U \<subseteq> V\<close> \<open>V \<subseteq> S\<close> \<open>compact V\<close> closure_closed closure_mono compact_imp_closed inf.cobounded1 subset_trans)
|
|
2136 |
show "openin (subtopology euclidean S) (U \<inter> T)"
|
|
2137 |
by (simp add: \<open>open T\<close> ope openin_Int_open)
|
|
2138 |
show "compact (closure (U \<inter> T))"
|
|
2139 |
by (meson Int_lower1 \<open>U \<subseteq> V\<close> \<open>compact V\<close> bounded_subset compact_closure compact_eq_bounded_closed)
|
|
2140 |
qed auto
|
|
2141 |
qed
|
|
2142 |
next
|
|
2143 |
assume ?rhs then show ?lhs
|
|
2144 |
unfolding locally_compact_compact
|
|
2145 |
by (metis open_openin openin_topspace subtopology_superset top.extremum topspace_euclidean_subtopology)
|
|
2146 |
qed
|
|
2147 |
|
|
2148 |
|
|
2149 |
subsection\<open>Sura-Bura's results about compact components of sets\<close>
|
|
2150 |
|
|
2151 |
proposition Sura_Bura_compact:
|
|
2152 |
fixes S :: "'a::euclidean_space set"
|
|
2153 |
assumes "compact S" and C: "C \<in> components S"
|
|
2154 |
shows "C = \<Inter>{T. C \<subseteq> T \<and> openin (subtopology euclidean S) T \<and>
|
|
2155 |
closedin (subtopology euclidean S) T}"
|
|
2156 |
(is "C = \<Inter>?\<T>")
|
|
2157 |
proof
|
|
2158 |
obtain x where x: "C = connected_component_set S x" and "x \<in> S"
|
|
2159 |
using C by (auto simp: components_def)
|
|
2160 |
have "C \<subseteq> S"
|
|
2161 |
by (simp add: C in_components_subset)
|
|
2162 |
have "\<Inter>?\<T> \<subseteq> connected_component_set S x"
|
|
2163 |
proof (rule connected_component_maximal)
|
|
2164 |
have "x \<in> C"
|
|
2165 |
by (simp add: \<open>x \<in> S\<close> x)
|
|
2166 |
then show "x \<in> \<Inter>?\<T>"
|
|
2167 |
by blast
|
|
2168 |
have clo: "closed (\<Inter>?\<T>)"
|
|
2169 |
by (simp add: \<open>compact S\<close> closed_Inter closedin_compact_eq compact_imp_closed)
|
|
2170 |
have False
|
|
2171 |
if K1: "closedin (subtopology euclidean (\<Inter>?\<T>)) K1" and
|
|
2172 |
K2: "closedin (subtopology euclidean (\<Inter>?\<T>)) K2" and
|
|
2173 |
K12_Int: "K1 \<inter> K2 = {}" and K12_Un: "K1 \<union> K2 = \<Inter>?\<T>" and "K1 \<noteq> {}" "K2 \<noteq> {}"
|
|
2174 |
for K1 K2
|
|
2175 |
proof -
|
|
2176 |
have "closed K1" "closed K2"
|
|
2177 |
using closedin_closed_trans clo K1 K2 by blast+
|
|
2178 |
then obtain V1 V2 where "open V1" "open V2" "K1 \<subseteq> V1" "K2 \<subseteq> V2" and V12: "V1 \<inter> V2 = {}"
|
|
2179 |
using separation_normal \<open>K1 \<inter> K2 = {}\<close> by metis
|
|
2180 |
have SV12_ne: "(S - (V1 \<union> V2)) \<inter> (\<Inter>?\<T>) \<noteq> {}"
|
|
2181 |
proof (rule compact_imp_fip)
|
|
2182 |
show "compact (S - (V1 \<union> V2))"
|
|
2183 |
by (simp add: \<open>open V1\<close> \<open>open V2\<close> \<open>compact S\<close> compact_diff open_Un)
|
|
2184 |
show clo\<T>: "closed T" if "T \<in> ?\<T>" for T
|
|
2185 |
using that \<open>compact S\<close>
|
|
2186 |
by (force intro: closedin_closed_trans simp add: compact_imp_closed)
|
|
2187 |
show "(S - (V1 \<union> V2)) \<inter> \<Inter>\<F> \<noteq> {}" if "finite \<F>" and \<F>: "\<F> \<subseteq> ?\<T>" for \<F>
|
|
2188 |
proof
|
|
2189 |
assume djo: "(S - (V1 \<union> V2)) \<inter> \<Inter>\<F> = {}"
|
|
2190 |
obtain D where opeD: "openin (subtopology euclidean S) D"
|
|
2191 |
and cloD: "closedin (subtopology euclidean S) D"
|
|
2192 |
and "C \<subseteq> D" and DV12: "D \<subseteq> V1 \<union> V2"
|
|
2193 |
proof (cases "\<F> = {}")
|
|
2194 |
case True
|
|
2195 |
with \<open>C \<subseteq> S\<close> djo that show ?thesis
|
|
2196 |
by force
|
|
2197 |
next
|
|
2198 |
case False show ?thesis
|
|
2199 |
proof
|
|
2200 |
show ope: "openin (subtopology euclidean S) (\<Inter>\<F>)"
|
|
2201 |
using openin_Inter \<open>finite \<F>\<close> False \<F> by blast
|
|
2202 |
then show "closedin (subtopology euclidean S) (\<Inter>\<F>)"
|
|
2203 |
by (meson clo\<T> \<F> closed_Inter closed_subset openin_imp_subset subset_eq)
|
|
2204 |
show "C \<subseteq> \<Inter>\<F>"
|
|
2205 |
using \<F> by auto
|
|
2206 |
show "\<Inter>\<F> \<subseteq> V1 \<union> V2"
|
|
2207 |
using ope djo openin_imp_subset by fastforce
|
|
2208 |
qed
|
|
2209 |
qed
|
|
2210 |
have "connected C"
|
|
2211 |
by (simp add: x)
|
|
2212 |
have "closed D"
|
|
2213 |
using \<open>compact S\<close> cloD closedin_closed_trans compact_imp_closed by blast
|
|
2214 |
have cloV1: "closedin (subtopology euclidean D) (D \<inter> closure V1)"
|
|
2215 |
and cloV2: "closedin (subtopology euclidean D) (D \<inter> closure V2)"
|
|
2216 |
by (simp_all add: closedin_closed_Int)
|
|
2217 |
moreover have "D \<inter> closure V1 = D \<inter> V1" "D \<inter> closure V2 = D \<inter> V2"
|
|
2218 |
apply safe
|
|
2219 |
using \<open>D \<subseteq> V1 \<union> V2\<close> \<open>open V1\<close> \<open>open V2\<close> V12
|
|
2220 |
apply (simp_all add: closure_subset [THEN subsetD] closure_iff_nhds_not_empty, blast+)
|
|
2221 |
done
|
|
2222 |
ultimately have cloDV1: "closedin (subtopology euclidean D) (D \<inter> V1)"
|
|
2223 |
and cloDV2: "closedin (subtopology euclidean D) (D \<inter> V2)"
|
|
2224 |
by metis+
|
|
2225 |
then obtain U1 U2 where "closed U1" "closed U2"
|
|
2226 |
and D1: "D \<inter> V1 = D \<inter> U1" and D2: "D \<inter> V2 = D \<inter> U2"
|
|
2227 |
by (auto simp: closedin_closed)
|
|
2228 |
have "D \<inter> U1 \<inter> C \<noteq> {}"
|
|
2229 |
proof
|
|
2230 |
assume "D \<inter> U1 \<inter> C = {}"
|
|
2231 |
then have *: "C \<subseteq> D \<inter> V2"
|
|
2232 |
using D1 DV12 \<open>C \<subseteq> D\<close> by auto
|
|
2233 |
have "\<Inter>?\<T> \<subseteq> D \<inter> V2"
|
|
2234 |
apply (rule Inter_lower)
|
|
2235 |
using * apply simp
|
|
2236 |
by (meson cloDV2 \<open>open V2\<close> cloD closedin_trans le_inf_iff opeD openin_Int_open)
|
|
2237 |
then show False
|
|
2238 |
using K1 V12 \<open>K1 \<noteq> {}\<close> \<open>K1 \<subseteq> V1\<close> closedin_imp_subset by blast
|
|
2239 |
qed
|
|
2240 |
moreover have "D \<inter> U2 \<inter> C \<noteq> {}"
|
|
2241 |
proof
|
|
2242 |
assume "D \<inter> U2 \<inter> C = {}"
|
|
2243 |
then have *: "C \<subseteq> D \<inter> V1"
|
|
2244 |
using D2 DV12 \<open>C \<subseteq> D\<close> by auto
|
|
2245 |
have "\<Inter>?\<T> \<subseteq> D \<inter> V1"
|
|
2246 |
apply (rule Inter_lower)
|
|
2247 |
using * apply simp
|
|
2248 |
by (meson cloDV1 \<open>open V1\<close> cloD closedin_trans le_inf_iff opeD openin_Int_open)
|
|
2249 |
then show False
|
|
2250 |
using K2 V12 \<open>K2 \<noteq> {}\<close> \<open>K2 \<subseteq> V2\<close> closedin_imp_subset by blast
|
|
2251 |
qed
|
|
2252 |
ultimately show False
|
|
2253 |
using \<open>connected C\<close> unfolding connected_closed
|
|
2254 |
apply (simp only: not_ex)
|
|
2255 |
apply (drule_tac x="D \<inter> U1" in spec)
|
|
2256 |
apply (drule_tac x="D \<inter> U2" in spec)
|
|
2257 |
using \<open>C \<subseteq> D\<close> D1 D2 V12 DV12 \<open>closed U1\<close> \<open>closed U2\<close> \<open>closed D\<close>
|
|
2258 |
by blast
|
|
2259 |
qed
|
|
2260 |
qed
|
|
2261 |
show False
|
|
2262 |
by (metis (full_types) DiffE UnE Un_upper2 SV12_ne \<open>K1 \<subseteq> V1\<close> \<open>K2 \<subseteq> V2\<close> disjoint_iff_not_equal subsetCE sup_ge1 K12_Un)
|
|
2263 |
qed
|
|
2264 |
then show "connected (\<Inter>?\<T>)"
|
|
2265 |
by (auto simp: connected_closedin_eq)
|
|
2266 |
show "\<Inter>?\<T> \<subseteq> S"
|
|
2267 |
by (fastforce simp: C in_components_subset)
|
|
2268 |
qed
|
|
2269 |
with x show "\<Inter>?\<T> \<subseteq> C" by simp
|
|
2270 |
qed auto
|
|
2271 |
|
|
2272 |
|
|
2273 |
corollary Sura_Bura_clopen_subset:
|
|
2274 |
fixes S :: "'a::euclidean_space set"
|
|
2275 |
assumes S: "locally compact S" and C: "C \<in> components S" and "compact C"
|
|
2276 |
and U: "open U" "C \<subseteq> U"
|
|
2277 |
obtains K where "openin (subtopology euclidean S) K" "compact K" "C \<subseteq> K" "K \<subseteq> U"
|
|
2278 |
proof (rule ccontr)
|
|
2279 |
assume "\<not> thesis"
|
|
2280 |
with that have neg: "\<nexists>K. openin (subtopology euclidean S) K \<and> compact K \<and> C \<subseteq> K \<and> K \<subseteq> U"
|
|
2281 |
by metis
|
|
2282 |
obtain V K where "C \<subseteq> V" "V \<subseteq> U" "V \<subseteq> K" "K \<subseteq> S" "compact K"
|
|
2283 |
and opeSV: "openin (subtopology euclidean S) V"
|
|
2284 |
using S U \<open>compact C\<close>
|
|
2285 |
apply (simp add: locally_compact_compact_subopen)
|
|
2286 |
by (meson C in_components_subset)
|
|
2287 |
let ?\<T> = "{T. C \<subseteq> T \<and> openin (subtopology euclidean K) T \<and> compact T \<and> T \<subseteq> K}"
|
|
2288 |
have CK: "C \<in> components K"
|
|
2289 |
by (meson C \<open>C \<subseteq> V\<close> \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> components_intermediate_subset subset_trans)
|
|
2290 |
with \<open>compact K\<close>
|
|
2291 |
have "C = \<Inter>{T. C \<subseteq> T \<and> openin (subtopology euclidean K) T \<and> closedin (subtopology euclidean K) T}"
|
|
2292 |
by (simp add: Sura_Bura_compact)
|
|
2293 |
then have Ceq: "C = \<Inter>?\<T>"
|
|
2294 |
by (simp add: closedin_compact_eq \<open>compact K\<close>)
|
|
2295 |
obtain W where "open W" and W: "V = S \<inter> W"
|
|
2296 |
using opeSV by (auto simp: openin_open)
|
|
2297 |
have "-(U \<inter> W) \<inter> \<Inter>?\<T> \<noteq> {}"
|
|
2298 |
proof (rule closed_imp_fip_compact)
|
|
2299 |
show "- (U \<inter> W) \<inter> \<Inter>\<F> \<noteq> {}"
|
|
2300 |
if "finite \<F>" and \<F>: "\<F> \<subseteq> ?\<T>" for \<F>
|
|
2301 |
proof (cases "\<F> = {}")
|
|
2302 |
case True
|
|
2303 |
have False if "U = UNIV" "W = UNIV"
|
|
2304 |
proof -
|
|
2305 |
have "V = S"
|
|
2306 |
by (simp add: W \<open>W = UNIV\<close>)
|
|
2307 |
with neg show False
|
|
2308 |
using \<open>C \<subseteq> V\<close> \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> \<open>V \<subseteq> U\<close> \<open>compact K\<close> by auto
|
|
2309 |
qed
|
|
2310 |
with True show ?thesis
|
|
2311 |
by auto
|
|
2312 |
next
|
|
2313 |
case False
|
|
2314 |
show ?thesis
|
|
2315 |
proof
|
|
2316 |
assume "- (U \<inter> W) \<inter> \<Inter>\<F> = {}"
|
|
2317 |
then have FUW: "\<Inter>\<F> \<subseteq> U \<inter> W"
|
|
2318 |
by blast
|
|
2319 |
have "C \<subseteq> \<Inter>\<F>"
|
|
2320 |
using \<F> by auto
|
|
2321 |
moreover have "compact (\<Inter>\<F>)"
|
|
2322 |
by (metis (no_types, lifting) compact_Inter False mem_Collect_eq subsetCE \<F>)
|
|
2323 |
moreover have "\<Inter>\<F> \<subseteq> K"
|
|
2324 |
using False that(2) by fastforce
|
|
2325 |
moreover have opeKF: "openin (subtopology euclidean K) (\<Inter>\<F>)"
|
|
2326 |
using False \<F> \<open>finite \<F>\<close> by blast
|
|
2327 |
then have opeVF: "openin (subtopology euclidean V) (\<Inter>\<F>)"
|
|
2328 |
using W \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> opeKF \<open>\<Inter>\<F> \<subseteq> K\<close> FUW openin_subset_trans by fastforce
|
|
2329 |
then have "openin (subtopology euclidean S) (\<Inter>\<F>)"
|
|
2330 |
by (metis opeSV openin_trans)
|
|
2331 |
moreover have "\<Inter>\<F> \<subseteq> U"
|
|
2332 |
by (meson \<open>V \<subseteq> U\<close> opeVF dual_order.trans openin_imp_subset)
|
|
2333 |
ultimately show False
|
|
2334 |
using neg by blast
|
|
2335 |
qed
|
|
2336 |
qed
|
|
2337 |
qed (use \<open>open W\<close> \<open>open U\<close> in auto)
|
|
2338 |
with W Ceq \<open>C \<subseteq> V\<close> \<open>C \<subseteq> U\<close> show False
|
|
2339 |
by auto
|
|
2340 |
qed
|
|
2341 |
|
|
2342 |
|
|
2343 |
corollary Sura_Bura_clopen_subset_alt:
|
|
2344 |
fixes S :: "'a::euclidean_space set"
|
|
2345 |
assumes S: "locally compact S" and C: "C \<in> components S" and "compact C"
|
|
2346 |
and opeSU: "openin (subtopology euclidean S) U" and "C \<subseteq> U"
|
|
2347 |
obtains K where "openin (subtopology euclidean S) K" "compact K" "C \<subseteq> K" "K \<subseteq> U"
|
|
2348 |
proof -
|
|
2349 |
obtain V where "open V" "U = S \<inter> V"
|
|
2350 |
using opeSU by (auto simp: openin_open)
|
|
2351 |
with \<open>C \<subseteq> U\<close> have "C \<subseteq> V"
|
|
2352 |
by auto
|
|
2353 |
then show ?thesis
|
|
2354 |
using Sura_Bura_clopen_subset [OF S C \<open>compact C\<close> \<open>open V\<close>]
|
|
2355 |
by (metis \<open>U = S \<inter> V\<close> inf.bounded_iff openin_imp_subset that)
|
|
2356 |
qed
|
|
2357 |
|
|
2358 |
corollary Sura_Bura:
|
|
2359 |
fixes S :: "'a::euclidean_space set"
|
|
2360 |
assumes "locally compact S" "C \<in> components S" "compact C"
|
|
2361 |
shows "C = \<Inter> {K. C \<subseteq> K \<and> compact K \<and> openin (subtopology euclidean S) K}"
|
|
2362 |
(is "C = ?rhs")
|
|
2363 |
proof
|
|
2364 |
show "?rhs \<subseteq> C"
|
|
2365 |
proof (clarsimp, rule ccontr)
|
|
2366 |
fix x
|
|
2367 |
assume *: "\<forall>X. C \<subseteq> X \<and> compact X \<and> openin (subtopology euclidean S) X \<longrightarrow> x \<in> X"
|
|
2368 |
and "x \<notin> C"
|
|
2369 |
obtain U V where "open U" "open V" "{x} \<subseteq> U" "C \<subseteq> V" "U \<inter> V = {}"
|
|
2370 |
using separation_normal [of "{x}" C]
|
|
2371 |
by (metis Int_empty_left \<open>x \<notin> C\<close> \<open>compact C\<close> closed_empty closed_insert compact_imp_closed insert_disjoint(1))
|
|
2372 |
have "x \<notin> V"
|
|
2373 |
using \<open>U \<inter> V = {}\<close> \<open>{x} \<subseteq> U\<close> by blast
|
|
2374 |
then show False
|
|
2375 |
by (meson "*" Sura_Bura_clopen_subset \<open>C \<subseteq> V\<close> \<open>open V\<close> assms(1) assms(2) assms(3) subsetCE)
|
|
2376 |
qed
|
|
2377 |
qed blast
|
|
2378 |
|
|
2379 |
|
|
2380 |
subsection\<open>Special cases of local connectedness and path connectedness\<close>
|
|
2381 |
|
|
2382 |
lemma locally_connected_1:
|
|
2383 |
assumes
|
|
2384 |
"\<And>v x. \<lbrakk>openin (subtopology euclidean S) v; x \<in> v\<rbrakk>
|
|
2385 |
\<Longrightarrow> \<exists>u. openin (subtopology euclidean S) u \<and>
|
|
2386 |
connected u \<and> x \<in> u \<and> u \<subseteq> v"
|
|
2387 |
shows "locally connected S"
|
|
2388 |
apply (clarsimp simp add: locally_def)
|
|
2389 |
apply (drule assms; blast)
|
|
2390 |
done
|
|
2391 |
|
|
2392 |
lemma locally_connected_2:
|
|
2393 |
assumes "locally connected S"
|
|
2394 |
"openin (subtopology euclidean S) t"
|
|
2395 |
"x \<in> t"
|
|
2396 |
shows "openin (subtopology euclidean S) (connected_component_set t x)"
|
|
2397 |
proof -
|
|
2398 |
{ fix y :: 'a
|
|
2399 |
let ?SS = "subtopology euclidean S"
|
|
2400 |
assume 1: "openin ?SS t"
|
|
2401 |
"\<forall>w x. openin ?SS w \<and> x \<in> w \<longrightarrow> (\<exists>u. openin ?SS u \<and> (\<exists>v. connected v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w))"
|
|
2402 |
and "connected_component t x y"
|
|
2403 |
then have "y \<in> t" and y: "y \<in> connected_component_set t x"
|
|
2404 |
using connected_component_subset by blast+
|
|
2405 |
obtain F where
|
|
2406 |
"\<forall>x y. (\<exists>w. openin ?SS w \<and> (\<exists>u. connected u \<and> x \<in> w \<and> w \<subseteq> u \<and> u \<subseteq> y)) = (openin ?SS (F x y) \<and> (\<exists>u. connected u \<and> x \<in> F x y \<and> F x y \<subseteq> u \<and> u \<subseteq> y))"
|
|
2407 |
by moura
|
|
2408 |
then obtain G where
|
|
2409 |
"\<forall>a A. (\<exists>U. openin ?SS U \<and> (\<exists>V. connected V \<and> a \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> A)) = (openin ?SS (F a A) \<and> connected (G a A) \<and> a \<in> F a A \<and> F a A \<subseteq> G a A \<and> G a A \<subseteq> A)"
|
|
2410 |
by moura
|
|
2411 |
then have *: "openin ?SS (F y t) \<and> connected (G y t) \<and> y \<in> F y t \<and> F y t \<subseteq> G y t \<and> G y t \<subseteq> t"
|
|
2412 |
using 1 \<open>y \<in> t\<close> by presburger
|
|
2413 |
have "G y t \<subseteq> connected_component_set t y"
|
|
2414 |
by (metis (no_types) * connected_component_eq_self connected_component_mono contra_subsetD)
|
|
2415 |
then have "\<exists>A. openin ?SS A \<and> y \<in> A \<and> A \<subseteq> connected_component_set t x"
|
|
2416 |
by (metis (no_types) * connected_component_eq dual_order.trans y)
|
|
2417 |
}
|
|
2418 |
then show ?thesis
|
|
2419 |
using assms openin_subopen by (force simp: locally_def)
|
|
2420 |
qed
|
|
2421 |
|
|
2422 |
lemma locally_connected_3:
|
|
2423 |
assumes "\<And>t x. \<lbrakk>openin (subtopology euclidean S) t; x \<in> t\<rbrakk>
|
|
2424 |
\<Longrightarrow> openin (subtopology euclidean S)
|
|
2425 |
(connected_component_set t x)"
|
|
2426 |
"openin (subtopology euclidean S) v" "x \<in> v"
|
|
2427 |
shows "\<exists>u. openin (subtopology euclidean S) u \<and> connected u \<and> x \<in> u \<and> u \<subseteq> v"
|
|
2428 |
using assms connected_component_subset by fastforce
|
|
2429 |
|
|
2430 |
lemma locally_connected:
|
|
2431 |
"locally connected S \<longleftrightarrow>
|
|
2432 |
(\<forall>v x. openin (subtopology euclidean S) v \<and> x \<in> v
|
|
2433 |
\<longrightarrow> (\<exists>u. openin (subtopology euclidean S) u \<and> connected u \<and> x \<in> u \<and> u \<subseteq> v))"
|
|
2434 |
by (metis locally_connected_1 locally_connected_2 locally_connected_3)
|
|
2435 |
|
|
2436 |
lemma locally_connected_open_connected_component:
|
|
2437 |
"locally connected S \<longleftrightarrow>
|
|
2438 |
(\<forall>t x. openin (subtopology euclidean S) t \<and> x \<in> t
|
|
2439 |
\<longrightarrow> openin (subtopology euclidean S) (connected_component_set t x))"
|
|
2440 |
by (metis locally_connected_1 locally_connected_2 locally_connected_3)
|
|
2441 |
|
|
2442 |
lemma locally_path_connected_1:
|
|
2443 |
assumes
|
|
2444 |
"\<And>v x. \<lbrakk>openin (subtopology euclidean S) v; x \<in> v\<rbrakk>
|
|
2445 |
\<Longrightarrow> \<exists>u. openin (subtopology euclidean S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v"
|
|
2446 |
shows "locally path_connected S"
|
|
2447 |
apply (clarsimp simp add: locally_def)
|
|
2448 |
apply (drule assms; blast)
|
|
2449 |
done
|
|
2450 |
|
|
2451 |
lemma locally_path_connected_2:
|
|
2452 |
assumes "locally path_connected S"
|
|
2453 |
"openin (subtopology euclidean S) t"
|
|
2454 |
"x \<in> t"
|
|
2455 |
shows "openin (subtopology euclidean S) (path_component_set t x)"
|
|
2456 |
proof -
|
|
2457 |
{ fix y :: 'a
|
|
2458 |
let ?SS = "subtopology euclidean S"
|
|
2459 |
assume 1: "openin ?SS t"
|
|
2460 |
"\<forall>w x. openin ?SS w \<and> x \<in> w \<longrightarrow> (\<exists>u. openin ?SS u \<and> (\<exists>v. path_connected v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w))"
|
|
2461 |
and "path_component t x y"
|
|
2462 |
then have "y \<in> t" and y: "y \<in> path_component_set t x"
|
|
2463 |
using path_component_mem(2) by blast+
|
|
2464 |
obtain F where
|
|
2465 |
"\<forall>x y. (\<exists>w. openin ?SS w \<and> (\<exists>u. path_connected u \<and> x \<in> w \<and> w \<subseteq> u \<and> u \<subseteq> y)) = (openin ?SS (F x y) \<and> (\<exists>u. path_connected u \<and> x \<in> F x y \<and> F x y \<subseteq> u \<and> u \<subseteq> y))"
|
|
2466 |
by moura
|
|
2467 |
then obtain G where
|
|
2468 |
"\<forall>a A. (\<exists>U. openin ?SS U \<and> (\<exists>V. path_connected V \<and> a \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> A)) = (openin ?SS (F a A) \<and> path_connected (G a A) \<and> a \<in> F a A \<and> F a A \<subseteq> G a A \<and> G a A \<subseteq> A)"
|
|
2469 |
by moura
|
|
2470 |
then have *: "openin ?SS (F y t) \<and> path_connected (G y t) \<and> y \<in> F y t \<and> F y t \<subseteq> G y t \<and> G y t \<subseteq> t"
|
|
2471 |
using 1 \<open>y \<in> t\<close> by presburger
|
|
2472 |
have "G y t \<subseteq> path_component_set t y"
|
69712
|
2473 |
using * path_component_maximal rev_subsetD by blast
|
69620
|
2474 |
then have "\<exists>A. openin ?SS A \<and> y \<in> A \<and> A \<subseteq> path_component_set t x"
|
|
2475 |
by (metis "*" \<open>G y t \<subseteq> path_component_set t y\<close> dual_order.trans path_component_eq y)
|
|
2476 |
}
|
|
2477 |
then show ?thesis
|
|
2478 |
using assms openin_subopen by (force simp: locally_def)
|
|
2479 |
qed
|
|
2480 |
|
|
2481 |
lemma locally_path_connected_3:
|
|
2482 |
assumes "\<And>t x. \<lbrakk>openin (subtopology euclidean S) t; x \<in> t\<rbrakk>
|
|
2483 |
\<Longrightarrow> openin (subtopology euclidean S) (path_component_set t x)"
|
|
2484 |
"openin (subtopology euclidean S) v" "x \<in> v"
|
|
2485 |
shows "\<exists>u. openin (subtopology euclidean S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v"
|
|
2486 |
proof -
|
|
2487 |
have "path_component v x x"
|
|
2488 |
by (meson assms(3) path_component_refl)
|
|
2489 |
then show ?thesis
|
|
2490 |
by (metis assms(1) assms(2) assms(3) mem_Collect_eq path_component_subset path_connected_path_component)
|
|
2491 |
qed
|
|
2492 |
|
|
2493 |
proposition locally_path_connected:
|
|
2494 |
"locally path_connected S \<longleftrightarrow>
|
|
2495 |
(\<forall>v x. openin (subtopology euclidean S) v \<and> x \<in> v
|
|
2496 |
\<longrightarrow> (\<exists>u. openin (subtopology euclidean S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v))"
|
|
2497 |
by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
|
|
2498 |
|
|
2499 |
proposition locally_path_connected_open_path_component:
|
|
2500 |
"locally path_connected S \<longleftrightarrow>
|
|
2501 |
(\<forall>t x. openin (subtopology euclidean S) t \<and> x \<in> t
|
|
2502 |
\<longrightarrow> openin (subtopology euclidean S) (path_component_set t x))"
|
|
2503 |
by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
|
|
2504 |
|
|
2505 |
lemma locally_connected_open_component:
|
|
2506 |
"locally connected S \<longleftrightarrow>
|
|
2507 |
(\<forall>t c. openin (subtopology euclidean S) t \<and> c \<in> components t
|
|
2508 |
\<longrightarrow> openin (subtopology euclidean S) c)"
|
|
2509 |
by (metis components_iff locally_connected_open_connected_component)
|
|
2510 |
|
|
2511 |
proposition locally_connected_im_kleinen:
|
|
2512 |
"locally connected S \<longleftrightarrow>
|
|
2513 |
(\<forall>v x. openin (subtopology euclidean S) v \<and> x \<in> v
|
|
2514 |
\<longrightarrow> (\<exists>u. openin (subtopology euclidean S) u \<and>
|
|
2515 |
x \<in> u \<and> u \<subseteq> v \<and>
|
|
2516 |
(\<forall>y. y \<in> u \<longrightarrow> (\<exists>c. connected c \<and> c \<subseteq> v \<and> x \<in> c \<and> y \<in> c))))"
|
|
2517 |
(is "?lhs = ?rhs")
|
|
2518 |
proof
|
|
2519 |
assume ?lhs
|
|
2520 |
then show ?rhs
|
|
2521 |
by (fastforce simp add: locally_connected)
|
|
2522 |
next
|
|
2523 |
assume ?rhs
|
|
2524 |
have *: "\<exists>T. openin (subtopology euclidean S) T \<and> x \<in> T \<and> T \<subseteq> c"
|
|
2525 |
if "openin (subtopology euclidean S) t" and c: "c \<in> components t" and "x \<in> c" for t c x
|
|
2526 |
proof -
|
|
2527 |
from that \<open>?rhs\<close> [rule_format, of t x]
|
|
2528 |
obtain u where u:
|
|
2529 |
"openin (subtopology euclidean S) u \<and> x \<in> u \<and> u \<subseteq> t \<and>
|
|
2530 |
(\<forall>y. y \<in> u \<longrightarrow> (\<exists>c. connected c \<and> c \<subseteq> t \<and> x \<in> c \<and> y \<in> c))"
|
|
2531 |
using in_components_subset by auto
|
|
2532 |
obtain F :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a" where
|
|
2533 |
"\<forall>x y. (\<exists>z. z \<in> x \<and> y = connected_component_set x z) = (F x y \<in> x \<and> y = connected_component_set x (F x y))"
|
|
2534 |
by moura
|
|
2535 |
then have F: "F t c \<in> t \<and> c = connected_component_set t (F t c)"
|
|
2536 |
by (meson components_iff c)
|
|
2537 |
obtain G :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a" where
|
|
2538 |
G: "\<forall>x y. (\<exists>z. z \<in> y \<and> z \<notin> x) = (G x y \<in> y \<and> G x y \<notin> x)"
|
|
2539 |
by moura
|
|
2540 |
have "G c u \<notin> u \<or> G c u \<in> c"
|
|
2541 |
using F by (metis (full_types) u connected_componentI connected_component_eq mem_Collect_eq that(3))
|
|
2542 |
then show ?thesis
|
|
2543 |
using G u by auto
|
|
2544 |
qed
|
|
2545 |
show ?lhs
|
|
2546 |
apply (clarsimp simp add: locally_connected_open_component)
|
|
2547 |
apply (subst openin_subopen)
|
|
2548 |
apply (blast intro: *)
|
|
2549 |
done
|
|
2550 |
qed
|
|
2551 |
|
|
2552 |
proposition locally_path_connected_im_kleinen:
|
|
2553 |
"locally path_connected S \<longleftrightarrow>
|
|
2554 |
(\<forall>v x. openin (subtopology euclidean S) v \<and> x \<in> v
|
|
2555 |
\<longrightarrow> (\<exists>u. openin (subtopology euclidean S) u \<and>
|
|
2556 |
x \<in> u \<and> u \<subseteq> v \<and>
|
|
2557 |
(\<forall>y. y \<in> u \<longrightarrow> (\<exists>p. path p \<and> path_image p \<subseteq> v \<and>
|
|
2558 |
pathstart p = x \<and> pathfinish p = y))))"
|
|
2559 |
(is "?lhs = ?rhs")
|
|
2560 |
proof
|
|
2561 |
assume ?lhs
|
|
2562 |
then show ?rhs
|
|
2563 |
apply (simp add: locally_path_connected path_connected_def)
|
|
2564 |
apply (erule all_forward ex_forward imp_forward conjE | simp)+
|
|
2565 |
by (meson dual_order.trans)
|
|
2566 |
next
|
|
2567 |
assume ?rhs
|
|
2568 |
have *: "\<exists>T. openin (subtopology euclidean S) T \<and>
|
|
2569 |
x \<in> T \<and> T \<subseteq> path_component_set u z"
|
|
2570 |
if "openin (subtopology euclidean S) u" and "z \<in> u" and c: "path_component u z x" for u z x
|
|
2571 |
proof -
|
|
2572 |
have "x \<in> u"
|
|
2573 |
by (meson c path_component_mem(2))
|
|
2574 |
with that \<open>?rhs\<close> [rule_format, of u x]
|
|
2575 |
obtain U where U:
|
|
2576 |
"openin (subtopology euclidean S) U \<and> x \<in> U \<and> U \<subseteq> u \<and>
|
|
2577 |
(\<forall>y. y \<in> U \<longrightarrow> (\<exists>p. path p \<and> path_image p \<subseteq> u \<and> pathstart p = x \<and> pathfinish p = y))"
|
|
2578 |
by blast
|
|
2579 |
show ?thesis
|
|
2580 |
apply (rule_tac x=U in exI)
|
|
2581 |
apply (auto simp: U)
|
|
2582 |
apply (metis U c path_component_trans path_component_def)
|
|
2583 |
done
|
|
2584 |
qed
|
|
2585 |
show ?lhs
|
|
2586 |
apply (clarsimp simp add: locally_path_connected_open_path_component)
|
|
2587 |
apply (subst openin_subopen)
|
|
2588 |
apply (blast intro: *)
|
|
2589 |
done
|
|
2590 |
qed
|
|
2591 |
|
|
2592 |
lemma locally_path_connected_imp_locally_connected:
|
|
2593 |
"locally path_connected S \<Longrightarrow> locally connected S"
|
|
2594 |
using locally_mono path_connected_imp_connected by blast
|
|
2595 |
|
|
2596 |
lemma locally_connected_components:
|
|
2597 |
"\<lbrakk>locally connected S; c \<in> components S\<rbrakk> \<Longrightarrow> locally connected c"
|
|
2598 |
by (meson locally_connected_open_component locally_open_subset openin_subtopology_self)
|
|
2599 |
|
|
2600 |
lemma locally_path_connected_components:
|
|
2601 |
"\<lbrakk>locally path_connected S; c \<in> components S\<rbrakk> \<Longrightarrow> locally path_connected c"
|
|
2602 |
by (meson locally_connected_open_component locally_open_subset locally_path_connected_imp_locally_connected openin_subtopology_self)
|
|
2603 |
|
|
2604 |
lemma locally_path_connected_connected_component:
|
|
2605 |
"locally path_connected S \<Longrightarrow> locally path_connected (connected_component_set S x)"
|
|
2606 |
by (metis components_iff connected_component_eq_empty locally_empty locally_path_connected_components)
|
|
2607 |
|
|
2608 |
lemma open_imp_locally_path_connected:
|
|
2609 |
fixes S :: "'a :: real_normed_vector set"
|
|
2610 |
shows "open S \<Longrightarrow> locally path_connected S"
|
|
2611 |
apply (rule locally_mono [of convex])
|
|
2612 |
apply (simp_all add: locally_def openin_open_eq convex_imp_path_connected)
|
|
2613 |
apply (meson open_ball centre_in_ball convex_ball openE order_trans)
|
|
2614 |
done
|
|
2615 |
|
|
2616 |
lemma open_imp_locally_connected:
|
|
2617 |
fixes S :: "'a :: real_normed_vector set"
|
|
2618 |
shows "open S \<Longrightarrow> locally connected S"
|
|
2619 |
by (simp add: locally_path_connected_imp_locally_connected open_imp_locally_path_connected)
|
|
2620 |
|
|
2621 |
lemma locally_path_connected_UNIV: "locally path_connected (UNIV::'a :: real_normed_vector set)"
|
|
2622 |
by (simp add: open_imp_locally_path_connected)
|
|
2623 |
|
|
2624 |
lemma locally_connected_UNIV: "locally connected (UNIV::'a :: real_normed_vector set)"
|
|
2625 |
by (simp add: open_imp_locally_connected)
|
|
2626 |
|
|
2627 |
lemma openin_connected_component_locally_connected:
|
|
2628 |
"locally connected S
|
|
2629 |
\<Longrightarrow> openin (subtopology euclidean S) (connected_component_set S x)"
|
|
2630 |
apply (simp add: locally_connected_open_connected_component)
|
|
2631 |
by (metis connected_component_eq_empty connected_component_subset open_empty open_subset openin_subtopology_self)
|
|
2632 |
|
|
2633 |
lemma openin_components_locally_connected:
|
|
2634 |
"\<lbrakk>locally connected S; c \<in> components S\<rbrakk> \<Longrightarrow> openin (subtopology euclidean S) c"
|
|
2635 |
using locally_connected_open_component openin_subtopology_self by blast
|
|
2636 |
|
|
2637 |
lemma openin_path_component_locally_path_connected:
|
|
2638 |
"locally path_connected S
|
|
2639 |
\<Longrightarrow> openin (subtopology euclidean S) (path_component_set S x)"
|
|
2640 |
by (metis (no_types) empty_iff locally_path_connected_2 openin_subopen openin_subtopology_self path_component_eq_empty)
|
|
2641 |
|
|
2642 |
lemma closedin_path_component_locally_path_connected:
|
|
2643 |
"locally path_connected S
|
|
2644 |
\<Longrightarrow> closedin (subtopology euclidean S) (path_component_set S x)"
|
|
2645 |
apply (simp add: closedin_def path_component_subset complement_path_component_Union)
|
|
2646 |
apply (rule openin_Union)
|
|
2647 |
using openin_path_component_locally_path_connected by auto
|
|
2648 |
|
|
2649 |
lemma convex_imp_locally_path_connected:
|
|
2650 |
fixes S :: "'a:: real_normed_vector set"
|
|
2651 |
shows "convex S \<Longrightarrow> locally path_connected S"
|
|
2652 |
apply (clarsimp simp add: locally_path_connected)
|
|
2653 |
apply (subst (asm) openin_open)
|
|
2654 |
apply clarify
|
|
2655 |
apply (erule (1) openE)
|
|
2656 |
apply (rule_tac x = "S \<inter> ball x e" in exI)
|
|
2657 |
apply (force simp: convex_Int convex_imp_path_connected)
|
|
2658 |
done
|
|
2659 |
|
|
2660 |
lemma convex_imp_locally_connected:
|
|
2661 |
fixes S :: "'a:: real_normed_vector set"
|
|
2662 |
shows "convex S \<Longrightarrow> locally connected S"
|
|
2663 |
by (simp add: locally_path_connected_imp_locally_connected convex_imp_locally_path_connected)
|
|
2664 |
|
|
2665 |
|
|
2666 |
subsection\<open>Relations between components and path components\<close>
|
|
2667 |
|
|
2668 |
lemma path_component_eq_connected_component:
|
|
2669 |
assumes "locally path_connected S"
|
|
2670 |
shows "(path_component S x = connected_component S x)"
|
|
2671 |
proof (cases "x \<in> S")
|
|
2672 |
case True
|
|
2673 |
have "openin (subtopology euclidean (connected_component_set S x)) (path_component_set S x)"
|
|
2674 |
apply (rule openin_subset_trans [of S])
|
|
2675 |
apply (intro conjI openin_path_component_locally_path_connected [OF assms])
|
|
2676 |
using path_component_subset_connected_component apply (auto simp: connected_component_subset)
|
|
2677 |
done
|
|
2678 |
moreover have "closedin (subtopology euclidean (connected_component_set S x)) (path_component_set S x)"
|
|
2679 |
apply (rule closedin_subset_trans [of S])
|
|
2680 |
apply (intro conjI closedin_path_component_locally_path_connected [OF assms])
|
|
2681 |
using path_component_subset_connected_component apply (auto simp: connected_component_subset)
|
|
2682 |
done
|
|
2683 |
ultimately have *: "path_component_set S x = connected_component_set S x"
|
|
2684 |
by (metis connected_connected_component connected_clopen True path_component_eq_empty)
|
|
2685 |
then show ?thesis
|
|
2686 |
by blast
|
|
2687 |
next
|
|
2688 |
case False then show ?thesis
|
|
2689 |
by (metis Collect_empty_eq_bot connected_component_eq_empty path_component_eq_empty)
|
|
2690 |
qed
|
|
2691 |
|
|
2692 |
lemma path_component_eq_connected_component_set:
|
|
2693 |
"locally path_connected S \<Longrightarrow> (path_component_set S x = connected_component_set S x)"
|
|
2694 |
by (simp add: path_component_eq_connected_component)
|
|
2695 |
|
|
2696 |
lemma locally_path_connected_path_component:
|
|
2697 |
"locally path_connected S \<Longrightarrow> locally path_connected (path_component_set S x)"
|
|
2698 |
using locally_path_connected_connected_component path_component_eq_connected_component by fastforce
|
|
2699 |
|
|
2700 |
lemma open_path_connected_component:
|
|
2701 |
fixes S :: "'a :: real_normed_vector set"
|
|
2702 |
shows "open S \<Longrightarrow> path_component S x = connected_component S x"
|
|
2703 |
by (simp add: path_component_eq_connected_component open_imp_locally_path_connected)
|
|
2704 |
|
|
2705 |
lemma open_path_connected_component_set:
|
|
2706 |
fixes S :: "'a :: real_normed_vector set"
|
|
2707 |
shows "open S \<Longrightarrow> path_component_set S x = connected_component_set S x"
|
|
2708 |
by (simp add: open_path_connected_component)
|
|
2709 |
|
|
2710 |
proposition locally_connected_quotient_image:
|
|
2711 |
assumes lcS: "locally connected S"
|
|
2712 |
and oo: "\<And>T. T \<subseteq> f ` S
|
|
2713 |
\<Longrightarrow> openin (subtopology euclidean S) (S \<inter> f -` T) \<longleftrightarrow>
|
|
2714 |
openin (subtopology euclidean (f ` S)) T"
|
|
2715 |
shows "locally connected (f ` S)"
|
|
2716 |
proof (clarsimp simp: locally_connected_open_component)
|
|
2717 |
fix U C
|
|
2718 |
assume opefSU: "openin (subtopology euclidean (f ` S)) U" and "C \<in> components U"
|
|
2719 |
then have "C \<subseteq> U" "U \<subseteq> f ` S"
|
|
2720 |
by (meson in_components_subset openin_imp_subset)+
|
|
2721 |
then have "openin (subtopology euclidean (f ` S)) C \<longleftrightarrow>
|
|
2722 |
openin (subtopology euclidean S) (S \<inter> f -` C)"
|
|
2723 |
by (auto simp: oo)
|
|
2724 |
moreover have "openin (subtopology euclidean S) (S \<inter> f -` C)"
|
|
2725 |
proof (subst openin_subopen, clarify)
|
|
2726 |
fix x
|
|
2727 |
assume "x \<in> S" "f x \<in> C"
|
|
2728 |
show "\<exists>T. openin (subtopology euclidean S) T \<and> x \<in> T \<and> T \<subseteq> (S \<inter> f -` C)"
|
|
2729 |
proof (intro conjI exI)
|
|
2730 |
show "openin (subtopology euclidean S) (connected_component_set (S \<inter> f -` U) x)"
|
|
2731 |
proof (rule ccontr)
|
|
2732 |
assume **: "\<not> openin (subtopology euclidean S) (connected_component_set (S \<inter> f -` U) x)"
|
|
2733 |
then have "x \<notin> (S \<inter> f -` U)"
|
|
2734 |
using \<open>U \<subseteq> f ` S\<close> opefSU lcS locally_connected_2 oo by blast
|
|
2735 |
with ** show False
|
|
2736 |
by (metis (no_types) connected_component_eq_empty empty_iff openin_subopen)
|
|
2737 |
qed
|
|
2738 |
next
|
|
2739 |
show "x \<in> connected_component_set (S \<inter> f -` U) x"
|
|
2740 |
using \<open>C \<subseteq> U\<close> \<open>f x \<in> C\<close> \<open>x \<in> S\<close> by auto
|
|
2741 |
next
|
|
2742 |
have contf: "continuous_on S f"
|
|
2743 |
by (simp add: continuous_on_open oo openin_imp_subset)
|
|
2744 |
then have "continuous_on (connected_component_set (S \<inter> f -` U) x) f"
|
|
2745 |
apply (rule continuous_on_subset)
|
|
2746 |
using connected_component_subset apply blast
|
|
2747 |
done
|
|
2748 |
then have "connected (f ` connected_component_set (S \<inter> f -` U) x)"
|
|
2749 |
by (rule connected_continuous_image [OF _ connected_connected_component])
|
|
2750 |
moreover have "f ` connected_component_set (S \<inter> f -` U) x \<subseteq> U"
|
|
2751 |
using connected_component_in by blast
|
|
2752 |
moreover have "C \<inter> f ` connected_component_set (S \<inter> f -` U) x \<noteq> {}"
|
|
2753 |
using \<open>C \<subseteq> U\<close> \<open>f x \<in> C\<close> \<open>x \<in> S\<close> by fastforce
|
|
2754 |
ultimately have fC: "f ` (connected_component_set (S \<inter> f -` U) x) \<subseteq> C"
|
|
2755 |
by (rule components_maximal [OF \<open>C \<in> components U\<close>])
|
|
2756 |
have cUC: "connected_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` C)"
|
|
2757 |
using connected_component_subset fC by blast
|
|
2758 |
have "connected_component_set (S \<inter> f -` U) x \<subseteq> connected_component_set (S \<inter> f -` C) x"
|
|
2759 |
proof -
|
|
2760 |
{ assume "x \<in> connected_component_set (S \<inter> f -` U) x"
|
|
2761 |
then have ?thesis
|
|
2762 |
using cUC connected_component_idemp connected_component_mono by blast }
|
|
2763 |
then show ?thesis
|
|
2764 |
using connected_component_eq_empty by auto
|
|
2765 |
qed
|
|
2766 |
also have "\<dots> \<subseteq> (S \<inter> f -` C)"
|
|
2767 |
by (rule connected_component_subset)
|
|
2768 |
finally show "connected_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` C)" .
|
|
2769 |
qed
|
|
2770 |
qed
|
|
2771 |
ultimately show "openin (subtopology euclidean (f ` S)) C"
|
|
2772 |
by metis
|
|
2773 |
qed
|
|
2774 |
|
|
2775 |
text\<open>The proof resembles that above but is not identical!\<close>
|
|
2776 |
proposition locally_path_connected_quotient_image:
|
|
2777 |
assumes lcS: "locally path_connected S"
|
|
2778 |
and oo: "\<And>T. T \<subseteq> f ` S
|
|
2779 |
\<Longrightarrow> openin (subtopology euclidean S) (S \<inter> f -` T) \<longleftrightarrow> openin (subtopology euclidean (f ` S)) T"
|
|
2780 |
shows "locally path_connected (f ` S)"
|
|
2781 |
proof (clarsimp simp: locally_path_connected_open_path_component)
|
|
2782 |
fix U y
|
|
2783 |
assume opefSU: "openin (subtopology euclidean (f ` S)) U" and "y \<in> U"
|
|
2784 |
then have "path_component_set U y \<subseteq> U" "U \<subseteq> f ` S"
|
|
2785 |
by (meson path_component_subset openin_imp_subset)+
|
|
2786 |
then have "openin (subtopology euclidean (f ` S)) (path_component_set U y) \<longleftrightarrow>
|
|
2787 |
openin (subtopology euclidean S) (S \<inter> f -` path_component_set U y)"
|
|
2788 |
proof -
|
|
2789 |
have "path_component_set U y \<subseteq> f ` S"
|
|
2790 |
using \<open>U \<subseteq> f ` S\<close> \<open>path_component_set U y \<subseteq> U\<close> by blast
|
|
2791 |
then show ?thesis
|
|
2792 |
using oo by blast
|
|
2793 |
qed
|
|
2794 |
moreover have "openin (subtopology euclidean S) (S \<inter> f -` path_component_set U y)"
|
|
2795 |
proof (subst openin_subopen, clarify)
|
|
2796 |
fix x
|
|
2797 |
assume "x \<in> S" and Uyfx: "path_component U y (f x)"
|
|
2798 |
then have "f x \<in> U"
|
|
2799 |
using path_component_mem by blast
|
|
2800 |
show "\<exists>T. openin (subtopology euclidean S) T \<and> x \<in> T \<and> T \<subseteq> (S \<inter> f -` path_component_set U y)"
|
|
2801 |
proof (intro conjI exI)
|
|
2802 |
show "openin (subtopology euclidean S) (path_component_set (S \<inter> f -` U) x)"
|
|
2803 |
proof (rule ccontr)
|
|
2804 |
assume **: "\<not> openin (subtopology euclidean S) (path_component_set (S \<inter> f -` U) x)"
|
|
2805 |
then have "x \<notin> (S \<inter> f -` U)"
|
|
2806 |
by (metis (no_types, lifting) \<open>U \<subseteq> f ` S\<close> opefSU lcS oo locally_path_connected_open_path_component)
|
|
2807 |
then show False
|
|
2808 |
using ** \<open>path_component_set U y \<subseteq> U\<close> \<open>x \<in> S\<close> \<open>path_component U y (f x)\<close> by blast
|
|
2809 |
qed
|
|
2810 |
next
|
|
2811 |
show "x \<in> path_component_set (S \<inter> f -` U) x"
|
|
2812 |
by (simp add: \<open>f x \<in> U\<close> \<open>x \<in> S\<close> path_component_refl)
|
|
2813 |
next
|
|
2814 |
have contf: "continuous_on S f"
|
|
2815 |
by (simp add: continuous_on_open oo openin_imp_subset)
|
|
2816 |
then have "continuous_on (path_component_set (S \<inter> f -` U) x) f"
|
|
2817 |
apply (rule continuous_on_subset)
|
|
2818 |
using path_component_subset apply blast
|
|
2819 |
done
|
|
2820 |
then have "path_connected (f ` path_component_set (S \<inter> f -` U) x)"
|
|
2821 |
by (simp add: path_connected_continuous_image)
|
|
2822 |
moreover have "f ` path_component_set (S \<inter> f -` U) x \<subseteq> U"
|
|
2823 |
using path_component_mem by fastforce
|
|
2824 |
moreover have "f x \<in> f ` path_component_set (S \<inter> f -` U) x"
|
|
2825 |
by (force simp: \<open>x \<in> S\<close> \<open>f x \<in> U\<close> path_component_refl_eq)
|
|
2826 |
ultimately have "f ` (path_component_set (S \<inter> f -` U) x) \<subseteq> path_component_set U (f x)"
|
|
2827 |
by (meson path_component_maximal)
|
|
2828 |
also have "\<dots> \<subseteq> path_component_set U y"
|
|
2829 |
by (simp add: Uyfx path_component_maximal path_component_subset path_component_sym)
|
|
2830 |
finally have fC: "f ` (path_component_set (S \<inter> f -` U) x) \<subseteq> path_component_set U y" .
|
|
2831 |
have cUC: "path_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` path_component_set U y)"
|
|
2832 |
using path_component_subset fC by blast
|
|
2833 |
have "path_component_set (S \<inter> f -` U) x \<subseteq> path_component_set (S \<inter> f -` path_component_set U y) x"
|
|
2834 |
proof -
|
|
2835 |
have "\<And>a. path_component_set (path_component_set (S \<inter> f -` U) x) a \<subseteq> path_component_set (S \<inter> f -` path_component_set U y) a"
|
|
2836 |
using cUC path_component_mono by blast
|
|
2837 |
then show ?thesis
|
|
2838 |
using path_component_path_component by blast
|
|
2839 |
qed
|
|
2840 |
also have "\<dots> \<subseteq> (S \<inter> f -` path_component_set U y)"
|
|
2841 |
by (rule path_component_subset)
|
|
2842 |
finally show "path_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` path_component_set U y)" .
|
|
2843 |
qed
|
|
2844 |
qed
|
|
2845 |
ultimately show "openin (subtopology euclidean (f ` S)) (path_component_set U y)"
|
|
2846 |
by metis
|
|
2847 |
qed
|
|
2848 |
|
|
2849 |
subsection%unimportant\<open>Components, continuity, openin, closedin\<close>
|
|
2850 |
|
|
2851 |
lemma continuous_on_components_gen:
|
|
2852 |
fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
|
|
2853 |
assumes "\<And>c. c \<in> components S \<Longrightarrow>
|
|
2854 |
openin (subtopology euclidean S) c \<and> continuous_on c f"
|
|
2855 |
shows "continuous_on S f"
|
|
2856 |
proof (clarsimp simp: continuous_openin_preimage_eq)
|
|
2857 |
fix t :: "'b set"
|
|
2858 |
assume "open t"
|
|
2859 |
have *: "S \<inter> f -` t = (\<Union>c \<in> components S. c \<inter> f -` t)"
|
|
2860 |
by auto
|
|
2861 |
show "openin (subtopology euclidean S) (S \<inter> f -` t)"
|
|
2862 |
unfolding * using \<open>open t\<close> assms continuous_openin_preimage_gen openin_trans openin_Union by blast
|
|
2863 |
qed
|
|
2864 |
|
|
2865 |
lemma continuous_on_components:
|
|
2866 |
fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
|
|
2867 |
assumes "locally connected S "
|
|
2868 |
"\<And>c. c \<in> components S \<Longrightarrow> continuous_on c f"
|
|
2869 |
shows "continuous_on S f"
|
|
2870 |
apply (rule continuous_on_components_gen)
|
|
2871 |
apply (auto simp: assms intro: openin_components_locally_connected)
|
|
2872 |
done
|
|
2873 |
|
|
2874 |
lemma continuous_on_components_eq:
|
|
2875 |
"locally connected S
|
|
2876 |
\<Longrightarrow> (continuous_on S f \<longleftrightarrow> (\<forall>c \<in> components S. continuous_on c f))"
|
|
2877 |
by (meson continuous_on_components continuous_on_subset in_components_subset)
|
|
2878 |
|
|
2879 |
lemma continuous_on_components_open:
|
|
2880 |
fixes S :: "'a::real_normed_vector set"
|
|
2881 |
assumes "open S "
|
|
2882 |
"\<And>c. c \<in> components S \<Longrightarrow> continuous_on c f"
|
|
2883 |
shows "continuous_on S f"
|
|
2884 |
using continuous_on_components open_imp_locally_connected assms by blast
|
|
2885 |
|
|
2886 |
lemma continuous_on_components_open_eq:
|
|
2887 |
fixes S :: "'a::real_normed_vector set"
|
|
2888 |
shows "open S \<Longrightarrow> (continuous_on S f \<longleftrightarrow> (\<forall>c \<in> components S. continuous_on c f))"
|
|
2889 |
using continuous_on_subset in_components_subset
|
|
2890 |
by (blast intro: continuous_on_components_open)
|
|
2891 |
|
|
2892 |
lemma closedin_union_complement_components:
|
|
2893 |
assumes u: "locally connected u"
|
|
2894 |
and S: "closedin (subtopology euclidean u) S"
|
|
2895 |
and cuS: "c \<subseteq> components(u - S)"
|
|
2896 |
shows "closedin (subtopology euclidean u) (S \<union> \<Union>c)"
|
|
2897 |
proof -
|
|
2898 |
have di: "(\<And>S t. S \<in> c \<and> t \<in> c' \<Longrightarrow> disjnt S t) \<Longrightarrow> disjnt (\<Union> c) (\<Union> c')" for c'
|
|
2899 |
by (simp add: disjnt_def) blast
|
|
2900 |
have "S \<subseteq> u"
|
|
2901 |
using S closedin_imp_subset by blast
|
|
2902 |
moreover have "u - S = \<Union>c \<union> \<Union>(components (u - S) - c)"
|
|
2903 |
by (metis Diff_partition Union_components Union_Un_distrib assms(3))
|
|
2904 |
moreover have "disjnt (\<Union>c) (\<Union>(components (u - S) - c))"
|
|
2905 |
apply (rule di)
|
|
2906 |
by (metis DiffD1 DiffD2 assms(3) components_nonoverlap disjnt_def subsetCE)
|
|
2907 |
ultimately have eq: "S \<union> \<Union>c = u - (\<Union>(components(u - S) - c))"
|
|
2908 |
by (auto simp: disjnt_def)
|
|
2909 |
have *: "openin (subtopology euclidean u) (\<Union>(components (u - S) - c))"
|
|
2910 |
apply (rule openin_Union)
|
|
2911 |
apply (rule openin_trans [of "u - S"])
|
|
2912 |
apply (simp add: u S locally_diff_closed openin_components_locally_connected)
|
|
2913 |
apply (simp add: openin_diff S)
|
|
2914 |
done
|
|
2915 |
have "openin (subtopology euclidean u) (u - (u - \<Union>(components (u - S) - c)))"
|
|
2916 |
apply (rule openin_diff, simp)
|
|
2917 |
apply (metis closedin_diff closedin_topspace topspace_euclidean_subtopology *)
|
|
2918 |
done
|
|
2919 |
then show ?thesis
|
|
2920 |
by (force simp: eq closedin_def)
|
|
2921 |
qed
|
|
2922 |
|
|
2923 |
lemma closed_union_complement_components:
|
|
2924 |
fixes S :: "'a::real_normed_vector set"
|
|
2925 |
assumes S: "closed S" and c: "c \<subseteq> components(- S)"
|
|
2926 |
shows "closed(S \<union> \<Union> c)"
|
|
2927 |
proof -
|
|
2928 |
have "closedin (subtopology euclidean UNIV) (S \<union> \<Union>c)"
|
|
2929 |
apply (rule closedin_union_complement_components [OF locally_connected_UNIV])
|
|
2930 |
using S c apply (simp_all add: Compl_eq_Diff_UNIV)
|
|
2931 |
done
|
|
2932 |
then show ?thesis by simp
|
|
2933 |
qed
|
|
2934 |
|
|
2935 |
lemma closedin_Un_complement_component:
|
|
2936 |
fixes S :: "'a::real_normed_vector set"
|
|
2937 |
assumes u: "locally connected u"
|
|
2938 |
and S: "closedin (subtopology euclidean u) S"
|
|
2939 |
and c: " c \<in> components(u - S)"
|
|
2940 |
shows "closedin (subtopology euclidean u) (S \<union> c)"
|
|
2941 |
proof -
|
|
2942 |
have "closedin (subtopology euclidean u) (S \<union> \<Union>{c})"
|
|
2943 |
using c by (blast intro: closedin_union_complement_components [OF u S])
|
|
2944 |
then show ?thesis
|
|
2945 |
by simp
|
|
2946 |
qed
|
|
2947 |
|
|
2948 |
lemma closed_Un_complement_component:
|
|
2949 |
fixes S :: "'a::real_normed_vector set"
|
|
2950 |
assumes S: "closed S" and c: " c \<in> components(-S)"
|
|
2951 |
shows "closed (S \<union> c)"
|
|
2952 |
by (metis Compl_eq_Diff_UNIV S c closed_closedin closedin_Un_complement_component
|
|
2953 |
locally_connected_UNIV subtopology_UNIV)
|
|
2954 |
|
|
2955 |
|
|
2956 |
subsection\<open>Existence of isometry between subspaces of same dimension\<close>
|
|
2957 |
|
|
2958 |
lemma isometry_subset_subspace:
|
|
2959 |
fixes S :: "'a::euclidean_space set"
|
|
2960 |
and T :: "'b::euclidean_space set"
|
|
2961 |
assumes S: "subspace S"
|
|
2962 |
and T: "subspace T"
|
|
2963 |
and d: "dim S \<le> dim T"
|
|
2964 |
obtains f where "linear f" "f ` S \<subseteq> T" "\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
|
|
2965 |
proof -
|
|
2966 |
obtain B where "B \<subseteq> S" and Borth: "pairwise orthogonal B"
|
|
2967 |
and B1: "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
|
|
2968 |
and "independent B" "finite B" "card B = dim S" "span B = S"
|
|
2969 |
by (metis orthonormal_basis_subspace [OF S] independent_finite)
|
|
2970 |
obtain C where "C \<subseteq> T" and Corth: "pairwise orthogonal C"
|
|
2971 |
and C1:"\<And>x. x \<in> C \<Longrightarrow> norm x = 1"
|
|
2972 |
and "independent C" "finite C" "card C = dim T" "span C = T"
|
|
2973 |
by (metis orthonormal_basis_subspace [OF T] independent_finite)
|
|
2974 |
obtain fb where "fb ` B \<subseteq> C" "inj_on fb B"
|
|
2975 |
by (metis \<open>card B = dim S\<close> \<open>card C = dim T\<close> \<open>finite B\<close> \<open>finite C\<close> card_le_inj d)
|
|
2976 |
then have pairwise_orth_fb: "pairwise (\<lambda>v j. orthogonal (fb v) (fb j)) B"
|
|
2977 |
using Corth
|
|
2978 |
apply (auto simp: pairwise_def orthogonal_clauses)
|
|
2979 |
by (meson subsetD image_eqI inj_on_def)
|
|
2980 |
obtain f where "linear f" and ffb: "\<And>x. x \<in> B \<Longrightarrow> f x = fb x"
|
|
2981 |
using linear_independent_extend \<open>independent B\<close> by fastforce
|
|
2982 |
have "span (f ` B) \<subseteq> span C"
|
|
2983 |
by (metis \<open>fb ` B \<subseteq> C\<close> ffb image_cong span_mono)
|
|
2984 |
then have "f ` S \<subseteq> T"
|
|
2985 |
unfolding \<open>span B = S\<close> \<open>span C = T\<close> span_linear_image[OF \<open>linear f\<close>] .
|
|
2986 |
have [simp]: "\<And>x. x \<in> B \<Longrightarrow> norm (fb x) = norm x"
|
|
2987 |
using B1 C1 \<open>fb ` B \<subseteq> C\<close> by auto
|
|
2988 |
have "norm (f x) = norm x" if "x \<in> S" for x
|
|
2989 |
proof -
|
|
2990 |
interpret linear f by fact
|
|
2991 |
obtain a where x: "x = (\<Sum>v \<in> B. a v *\<^sub>R v)"
|
|
2992 |
using \<open>finite B\<close> \<open>span B = S\<close> \<open>x \<in> S\<close> span_finite by fastforce
|
|
2993 |
have "norm (f x)^2 = norm (\<Sum>v\<in>B. a v *\<^sub>R fb v)^2" by (simp add: sum scale ffb x)
|
|
2994 |
also have "\<dots> = (\<Sum>v\<in>B. norm ((a v *\<^sub>R fb v))^2)"
|
|
2995 |
apply (rule norm_sum_Pythagorean [OF \<open>finite B\<close>])
|
|
2996 |
apply (rule pairwise_ortho_scaleR [OF pairwise_orth_fb])
|
|
2997 |
done
|
|
2998 |
also have "\<dots> = norm x ^2"
|
|
2999 |
by (simp add: x pairwise_ortho_scaleR Borth norm_sum_Pythagorean [OF \<open>finite B\<close>])
|
|
3000 |
finally show ?thesis
|
|
3001 |
by (simp add: norm_eq_sqrt_inner)
|
|
3002 |
qed
|
|
3003 |
then show ?thesis
|
|
3004 |
by (rule that [OF \<open>linear f\<close> \<open>f ` S \<subseteq> T\<close>])
|
|
3005 |
qed
|
|
3006 |
|
|
3007 |
proposition isometries_subspaces:
|
|
3008 |
fixes S :: "'a::euclidean_space set"
|
|
3009 |
and T :: "'b::euclidean_space set"
|
|
3010 |
assumes S: "subspace S"
|
|
3011 |
and T: "subspace T"
|
|
3012 |
and d: "dim S = dim T"
|
|
3013 |
obtains f g where "linear f" "linear g" "f ` S = T" "g ` T = S"
|
|
3014 |
"\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
|
|
3015 |
"\<And>x. x \<in> T \<Longrightarrow> norm(g x) = norm x"
|
|
3016 |
"\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
|
|
3017 |
"\<And>x. x \<in> T \<Longrightarrow> f(g x) = x"
|
|
3018 |
proof -
|
|
3019 |
obtain B where "B \<subseteq> S" and Borth: "pairwise orthogonal B"
|
|
3020 |
and B1: "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
|
|
3021 |
and "independent B" "finite B" "card B = dim S" "span B = S"
|
|
3022 |
by (metis orthonormal_basis_subspace [OF S] independent_finite)
|
|
3023 |
obtain C where "C \<subseteq> T" and Corth: "pairwise orthogonal C"
|
|
3024 |
and C1:"\<And>x. x \<in> C \<Longrightarrow> norm x = 1"
|
|
3025 |
and "independent C" "finite C" "card C = dim T" "span C = T"
|
|
3026 |
by (metis orthonormal_basis_subspace [OF T] independent_finite)
|
|
3027 |
obtain fb where "bij_betw fb B C"
|
|
3028 |
by (metis \<open>finite B\<close> \<open>finite C\<close> bij_betw_iff_card \<open>card B = dim S\<close> \<open>card C = dim T\<close> d)
|
|
3029 |
then have pairwise_orth_fb: "pairwise (\<lambda>v j. orthogonal (fb v) (fb j)) B"
|
|
3030 |
using Corth
|
|
3031 |
apply (auto simp: pairwise_def orthogonal_clauses bij_betw_def)
|
|
3032 |
by (meson subsetD image_eqI inj_on_def)
|
|
3033 |
obtain f where "linear f" and ffb: "\<And>x. x \<in> B \<Longrightarrow> f x = fb x"
|
|
3034 |
using linear_independent_extend \<open>independent B\<close> by fastforce
|
|
3035 |
interpret f: linear f by fact
|
|
3036 |
define gb where "gb \<equiv> inv_into B fb"
|
|
3037 |
then have pairwise_orth_gb: "pairwise (\<lambda>v j. orthogonal (gb v) (gb j)) C"
|
|
3038 |
using Borth
|
|
3039 |
apply (auto simp: pairwise_def orthogonal_clauses bij_betw_def)
|
|
3040 |
by (metis \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on bij_betw_inv_into_right inv_into_into)
|
|
3041 |
obtain g where "linear g" and ggb: "\<And>x. x \<in> C \<Longrightarrow> g x = gb x"
|
|
3042 |
using linear_independent_extend \<open>independent C\<close> by fastforce
|
|
3043 |
interpret g: linear g by fact
|
|
3044 |
have "span (f ` B) \<subseteq> span C"
|
|
3045 |
by (metis \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on eq_iff ffb image_cong)
|
|
3046 |
then have "f ` S \<subseteq> T"
|
|
3047 |
unfolding \<open>span B = S\<close> \<open>span C = T\<close>
|
|
3048 |
span_linear_image[OF \<open>linear f\<close>] .
|
|
3049 |
have [simp]: "\<And>x. x \<in> B \<Longrightarrow> norm (fb x) = norm x"
|
|
3050 |
using B1 C1 \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on by fastforce
|
|
3051 |
have f [simp]: "norm (f x) = norm x" "g (f x) = x" if "x \<in> S" for x
|
|
3052 |
proof -
|
|
3053 |
obtain a where x: "x = (\<Sum>v \<in> B. a v *\<^sub>R v)"
|
|
3054 |
using \<open>finite B\<close> \<open>span B = S\<close> \<open>x \<in> S\<close> span_finite by fastforce
|
|
3055 |
have "f x = (\<Sum>v \<in> B. f (a v *\<^sub>R v))"
|
|
3056 |
using linear_sum [OF \<open>linear f\<close>] x by auto
|
|
3057 |
also have "\<dots> = (\<Sum>v \<in> B. a v *\<^sub>R f v)"
|
|
3058 |
by (simp add: f.sum f.scale)
|
|
3059 |
also have "\<dots> = (\<Sum>v \<in> B. a v *\<^sub>R fb v)"
|
|
3060 |
by (simp add: ffb cong: sum.cong)
|
|
3061 |
finally have *: "f x = (\<Sum>v\<in>B. a v *\<^sub>R fb v)" .
|
|
3062 |
then have "(norm (f x))\<^sup>2 = (norm (\<Sum>v\<in>B. a v *\<^sub>R fb v))\<^sup>2" by simp
|
|
3063 |
also have "\<dots> = (\<Sum>v\<in>B. norm ((a v *\<^sub>R fb v))^2)"
|
|
3064 |
apply (rule norm_sum_Pythagorean [OF \<open>finite B\<close>])
|
|
3065 |
apply (rule pairwise_ortho_scaleR [OF pairwise_orth_fb])
|
|
3066 |
done
|
|
3067 |
also have "\<dots> = (norm x)\<^sup>2"
|
|
3068 |
by (simp add: x pairwise_ortho_scaleR Borth norm_sum_Pythagorean [OF \<open>finite B\<close>])
|
|
3069 |
finally show "norm (f x) = norm x"
|
|
3070 |
by (simp add: norm_eq_sqrt_inner)
|
|
3071 |
have "g (f x) = g (\<Sum>v\<in>B. a v *\<^sub>R fb v)" by (simp add: *)
|
|
3072 |
also have "\<dots> = (\<Sum>v\<in>B. g (a v *\<^sub>R fb v))"
|
|
3073 |
by (simp add: g.sum g.scale)
|
|
3074 |
also have "\<dots> = (\<Sum>v\<in>B. a v *\<^sub>R g (fb v))"
|
|
3075 |
by (simp add: g.scale)
|
|
3076 |
also have "\<dots> = (\<Sum>v\<in>B. a v *\<^sub>R v)"
|
|
3077 |
apply (rule sum.cong [OF refl])
|
|
3078 |
using \<open>bij_betw fb B C\<close> gb_def bij_betwE bij_betw_inv_into_left gb_def ggb by fastforce
|
|
3079 |
also have "\<dots> = x"
|
|
3080 |
using x by blast
|
|
3081 |
finally show "g (f x) = x" .
|
|
3082 |
qed
|
|
3083 |
have [simp]: "\<And>x. x \<in> C \<Longrightarrow> norm (gb x) = norm x"
|
|
3084 |
by (metis B1 C1 \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on gb_def inv_into_into)
|
|
3085 |
have g [simp]: "f (g x) = x" if "x \<in> T" for x
|
|
3086 |
proof -
|
|
3087 |
obtain a where x: "x = (\<Sum>v \<in> C. a v *\<^sub>R v)"
|
|
3088 |
using \<open>finite C\<close> \<open>span C = T\<close> \<open>x \<in> T\<close> span_finite by fastforce
|
|
3089 |
have "g x = (\<Sum>v \<in> C. g (a v *\<^sub>R v))"
|
|
3090 |
by (simp add: x g.sum)
|
|
3091 |
also have "\<dots> = (\<Sum>v \<in> C. a v *\<^sub>R g v)"
|
|
3092 |
by (simp add: g.scale)
|
|
3093 |
also have "\<dots> = (\<Sum>v \<in> C. a v *\<^sub>R gb v)"
|
|
3094 |
by (simp add: ggb cong: sum.cong)
|
|
3095 |
finally have "f (g x) = f (\<Sum>v\<in>C. a v *\<^sub>R gb v)" by simp
|
|
3096 |
also have "\<dots> = (\<Sum>v\<in>C. f (a v *\<^sub>R gb v))"
|
|
3097 |
by (simp add: f.scale f.sum)
|
|
3098 |
also have "\<dots> = (\<Sum>v\<in>C. a v *\<^sub>R f (gb v))"
|
|
3099 |
by (simp add: f.scale f.sum)
|
|
3100 |
also have "\<dots> = (\<Sum>v\<in>C. a v *\<^sub>R v)"
|
|
3101 |
using \<open>bij_betw fb B C\<close>
|
|
3102 |
by (simp add: bij_betw_def gb_def bij_betw_inv_into_right ffb inv_into_into)
|
|
3103 |
also have "\<dots> = x"
|
|
3104 |
using x by blast
|
|
3105 |
finally show "f (g x) = x" .
|
|
3106 |
qed
|
|
3107 |
have gim: "g ` T = S"
|
|
3108 |
by (metis (full_types) S T \<open>f ` S \<subseteq> T\<close> d dim_eq_span dim_image_le f(2) g.linear_axioms
|
|
3109 |
image_iff linear_subspace_image span_eq_iff subset_iff)
|
|
3110 |
have fim: "f ` S = T"
|
|
3111 |
using \<open>g ` T = S\<close> image_iff by fastforce
|
|
3112 |
have [simp]: "norm (g x) = norm x" if "x \<in> T" for x
|
|
3113 |
using fim that by auto
|
|
3114 |
show ?thesis
|
|
3115 |
apply (rule that [OF \<open>linear f\<close> \<open>linear g\<close>])
|
|
3116 |
apply (simp_all add: fim gim)
|
|
3117 |
done
|
|
3118 |
qed
|
|
3119 |
|
|
3120 |
corollary isometry_subspaces:
|
|
3121 |
fixes S :: "'a::euclidean_space set"
|
|
3122 |
and T :: "'b::euclidean_space set"
|
|
3123 |
assumes S: "subspace S"
|
|
3124 |
and T: "subspace T"
|
|
3125 |
and d: "dim S = dim T"
|
|
3126 |
obtains f where "linear f" "f ` S = T" "\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
|
|
3127 |
using isometries_subspaces [OF assms]
|
|
3128 |
by metis
|
|
3129 |
|
|
3130 |
corollary isomorphisms_UNIV_UNIV:
|
|
3131 |
assumes "DIM('M) = DIM('N)"
|
|
3132 |
obtains f::"'M::euclidean_space \<Rightarrow>'N::euclidean_space" and g
|
|
3133 |
where "linear f" "linear g"
|
|
3134 |
"\<And>x. norm(f x) = norm x" "\<And>y. norm(g y) = norm y"
|
|
3135 |
"\<And>x. g (f x) = x" "\<And>y. f(g y) = y"
|
|
3136 |
using assms by (auto intro: isometries_subspaces [of "UNIV::'M set" "UNIV::'N set"])
|
|
3137 |
|
|
3138 |
lemma homeomorphic_subspaces:
|
|
3139 |
fixes S :: "'a::euclidean_space set"
|
|
3140 |
and T :: "'b::euclidean_space set"
|
|
3141 |
assumes S: "subspace S"
|
|
3142 |
and T: "subspace T"
|
|
3143 |
and d: "dim S = dim T"
|
|
3144 |
shows "S homeomorphic T"
|
|
3145 |
proof -
|
|
3146 |
obtain f g where "linear f" "linear g" "f ` S = T" "g ` T = S"
|
|
3147 |
"\<And>x. x \<in> S \<Longrightarrow> g(f x) = x" "\<And>x. x \<in> T \<Longrightarrow> f(g x) = x"
|
|
3148 |
by (blast intro: isometries_subspaces [OF assms])
|
|
3149 |
then show ?thesis
|
|
3150 |
apply (simp add: homeomorphic_def homeomorphism_def)
|
|
3151 |
apply (rule_tac x=f in exI)
|
|
3152 |
apply (rule_tac x=g in exI)
|
|
3153 |
apply (auto simp: linear_continuous_on linear_conv_bounded_linear)
|
|
3154 |
done
|
|
3155 |
qed
|
|
3156 |
|
|
3157 |
lemma homeomorphic_affine_sets:
|
|
3158 |
assumes "affine S" "affine T" "aff_dim S = aff_dim T"
|
|
3159 |
shows "S homeomorphic T"
|
|
3160 |
proof (cases "S = {} \<or> T = {}")
|
|
3161 |
case True with assms aff_dim_empty homeomorphic_empty show ?thesis
|
|
3162 |
by metis
|
|
3163 |
next
|
|
3164 |
case False
|
|
3165 |
then obtain a b where ab: "a \<in> S" "b \<in> T" by auto
|
|
3166 |
then have ss: "subspace ((+) (- a) ` S)" "subspace ((+) (- b) ` T)"
|
|
3167 |
using affine_diffs_subspace assms by blast+
|
|
3168 |
have dd: "dim ((+) (- a) ` S) = dim ((+) (- b) ` T)"
|
|
3169 |
using assms ab by (simp add: aff_dim_eq_dim [OF hull_inc] image_def)
|
|
3170 |
have "S homeomorphic ((+) (- a) ` S)"
|
|
3171 |
by (simp add: homeomorphic_translation)
|
|
3172 |
also have "\<dots> homeomorphic ((+) (- b) ` T)"
|
|
3173 |
by (rule homeomorphic_subspaces [OF ss dd])
|
|
3174 |
also have "\<dots> homeomorphic T"
|
|
3175 |
using homeomorphic_sym homeomorphic_translation by auto
|
|
3176 |
finally show ?thesis .
|
|
3177 |
qed
|
|
3178 |
|
|
3179 |
|
|
3180 |
subsection\<open>Retracts, in a general sense, preserve (co)homotopic triviality)\<close>
|
|
3181 |
|
|
3182 |
locale%important Retracts =
|
|
3183 |
fixes s h t k
|
|
3184 |
assumes conth: "continuous_on s h"
|
|
3185 |
and imh: "h ` s = t"
|
|
3186 |
and contk: "continuous_on t k"
|
|
3187 |
and imk: "k ` t \<subseteq> s"
|
|
3188 |
and idhk: "\<And>y. y \<in> t \<Longrightarrow> h(k y) = y"
|
|
3189 |
|
|
3190 |
begin
|
|
3191 |
|
|
3192 |
lemma homotopically_trivial_retraction_gen:
|
|
3193 |
assumes P: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> t; Q f\<rbrakk> \<Longrightarrow> P(k \<circ> f)"
|
|
3194 |
and Q: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk> \<Longrightarrow> Q(h \<circ> f)"
|
|
3195 |
and Qeq: "\<And>h k. (\<And>x. x \<in> u \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
|
|
3196 |
and hom: "\<And>f g. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f;
|
|
3197 |
continuous_on u g; g ` u \<subseteq> s; P g\<rbrakk>
|
|
3198 |
\<Longrightarrow> homotopic_with P u s f g"
|
|
3199 |
and contf: "continuous_on u f" and imf: "f ` u \<subseteq> t" and Qf: "Q f"
|
|
3200 |
and contg: "continuous_on u g" and img: "g ` u \<subseteq> t" and Qg: "Q g"
|
|
3201 |
shows "homotopic_with Q u t f g"
|
|
3202 |
proof -
|
|
3203 |
have feq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> f)) x = f x" using idhk imf by auto
|
|
3204 |
have geq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> g)) x = g x" using idhk img by auto
|
|
3205 |
have "continuous_on u (k \<circ> f)"
|
|
3206 |
using contf continuous_on_compose continuous_on_subset contk imf by blast
|
|
3207 |
moreover have "(k \<circ> f) ` u \<subseteq> s"
|
|
3208 |
using imf imk by fastforce
|
|
3209 |
moreover have "P (k \<circ> f)"
|
|
3210 |
by (simp add: P Qf contf imf)
|
|
3211 |
moreover have "continuous_on u (k \<circ> g)"
|
|
3212 |
using contg continuous_on_compose continuous_on_subset contk img by blast
|
|
3213 |
moreover have "(k \<circ> g) ` u \<subseteq> s"
|
|
3214 |
using img imk by fastforce
|
|
3215 |
moreover have "P (k \<circ> g)"
|
|
3216 |
by (simp add: P Qg contg img)
|
|
3217 |
ultimately have "homotopic_with P u s (k \<circ> f) (k \<circ> g)"
|
|
3218 |
by (rule hom)
|
|
3219 |
then have "homotopic_with Q u t (h \<circ> (k \<circ> f)) (h \<circ> (k \<circ> g))"
|
|
3220 |
apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
|
|
3221 |
using Q by (auto simp: conth imh)
|
|
3222 |
then show ?thesis
|
|
3223 |
apply (rule homotopic_with_eq)
|
|
3224 |
apply (metis feq)
|
|
3225 |
apply (metis geq)
|
|
3226 |
apply (metis Qeq)
|
|
3227 |
done
|
|
3228 |
qed
|
|
3229 |
|
|
3230 |
lemma homotopically_trivial_retraction_null_gen:
|
|
3231 |
assumes P: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> t; Q f\<rbrakk> \<Longrightarrow> P(k \<circ> f)"
|
|
3232 |
and Q: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk> \<Longrightarrow> Q(h \<circ> f)"
|
|
3233 |
and Qeq: "\<And>h k. (\<And>x. x \<in> u \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
|
|
3234 |
and hom: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk>
|
|
3235 |
\<Longrightarrow> \<exists>c. homotopic_with P u s f (\<lambda>x. c)"
|
|
3236 |
and contf: "continuous_on u f" and imf:"f ` u \<subseteq> t" and Qf: "Q f"
|
|
3237 |
obtains c where "homotopic_with Q u t f (\<lambda>x. c)"
|
|
3238 |
proof -
|
|
3239 |
have feq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> f)) x = f x" using idhk imf by auto
|
|
3240 |
have "continuous_on u (k \<circ> f)"
|
|
3241 |
using contf continuous_on_compose continuous_on_subset contk imf by blast
|
|
3242 |
moreover have "(k \<circ> f) ` u \<subseteq> s"
|
|
3243 |
using imf imk by fastforce
|
|
3244 |
moreover have "P (k \<circ> f)"
|
|
3245 |
by (simp add: P Qf contf imf)
|
|
3246 |
ultimately obtain c where "homotopic_with P u s (k \<circ> f) (\<lambda>x. c)"
|
|
3247 |
by (metis hom)
|
|
3248 |
then have "homotopic_with Q u t (h \<circ> (k \<circ> f)) (h \<circ> (\<lambda>x. c))"
|
|
3249 |
apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
|
|
3250 |
using Q by (auto simp: conth imh)
|
|
3251 |
then show ?thesis
|
|
3252 |
apply (rule_tac c = "h c" in that)
|
|
3253 |
apply (erule homotopic_with_eq)
|
|
3254 |
apply (metis feq, simp)
|
|
3255 |
apply (metis Qeq)
|
|
3256 |
done
|
|
3257 |
qed
|
|
3258 |
|
|
3259 |
lemma cohomotopically_trivial_retraction_gen:
|
|
3260 |
assumes P: "\<And>f. \<lbrakk>continuous_on t f; f ` t \<subseteq> u; Q f\<rbrakk> \<Longrightarrow> P(f \<circ> h)"
|
|
3261 |
and Q: "\<And>f. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk> \<Longrightarrow> Q(f \<circ> k)"
|
|
3262 |
and Qeq: "\<And>h k. (\<And>x. x \<in> t \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
|
|
3263 |
and hom: "\<And>f g. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f;
|
|
3264 |
continuous_on s g; g ` s \<subseteq> u; P g\<rbrakk>
|
|
3265 |
\<Longrightarrow> homotopic_with P s u f g"
|
|
3266 |
and contf: "continuous_on t f" and imf: "f ` t \<subseteq> u" and Qf: "Q f"
|
|
3267 |
and contg: "continuous_on t g" and img: "g ` t \<subseteq> u" and Qg: "Q g"
|
|
3268 |
shows "homotopic_with Q t u f g"
|
|
3269 |
proof -
|
|
3270 |
have feq: "\<And>x. x \<in> t \<Longrightarrow> (f \<circ> h \<circ> k) x = f x" using idhk imf by auto
|
|
3271 |
have geq: "\<And>x. x \<in> t \<Longrightarrow> (g \<circ> h \<circ> k) x = g x" using idhk img by auto
|
|
3272 |
have "continuous_on s (f \<circ> h)"
|
|
3273 |
using contf conth continuous_on_compose imh by blast
|
|
3274 |
moreover have "(f \<circ> h) ` s \<subseteq> u"
|
|
3275 |
using imf imh by fastforce
|
|
3276 |
moreover have "P (f \<circ> h)"
|
|
3277 |
by (simp add: P Qf contf imf)
|
|
3278 |
moreover have "continuous_on s (g \<circ> h)"
|
|
3279 |
using contg continuous_on_compose continuous_on_subset conth imh by blast
|
|
3280 |
moreover have "(g \<circ> h) ` s \<subseteq> u"
|
|
3281 |
using img imh by fastforce
|
|
3282 |
moreover have "P (g \<circ> h)"
|
|
3283 |
by (simp add: P Qg contg img)
|
|
3284 |
ultimately have "homotopic_with P s u (f \<circ> h) (g \<circ> h)"
|
|
3285 |
by (rule hom)
|
|
3286 |
then have "homotopic_with Q t u (f \<circ> h \<circ> k) (g \<circ> h \<circ> k)"
|
|
3287 |
apply (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
|
|
3288 |
using Q by (auto simp: contk imk)
|
|
3289 |
then show ?thesis
|
|
3290 |
apply (rule homotopic_with_eq)
|
|
3291 |
apply (metis feq)
|
|
3292 |
apply (metis geq)
|
|
3293 |
apply (metis Qeq)
|
|
3294 |
done
|
|
3295 |
qed
|
|
3296 |
|
|
3297 |
lemma cohomotopically_trivial_retraction_null_gen:
|
|
3298 |
assumes P: "\<And>f. \<lbrakk>continuous_on t f; f ` t \<subseteq> u; Q f\<rbrakk> \<Longrightarrow> P(f \<circ> h)"
|
|
3299 |
and Q: "\<And>f. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk> \<Longrightarrow> Q(f \<circ> k)"
|
|
3300 |
and Qeq: "\<And>h k. (\<And>x. x \<in> t \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
|
|
3301 |
and hom: "\<And>f g. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk>
|
|
3302 |
\<Longrightarrow> \<exists>c. homotopic_with P s u f (\<lambda>x. c)"
|
|
3303 |
and contf: "continuous_on t f" and imf: "f ` t \<subseteq> u" and Qf: "Q f"
|
|
3304 |
obtains c where "homotopic_with Q t u f (\<lambda>x. c)"
|
|
3305 |
proof -
|
|
3306 |
have feq: "\<And>x. x \<in> t \<Longrightarrow> (f \<circ> h \<circ> k) x = f x" using idhk imf by auto
|
|
3307 |
have "continuous_on s (f \<circ> h)"
|
|
3308 |
using contf conth continuous_on_compose imh by blast
|
|
3309 |
moreover have "(f \<circ> h) ` s \<subseteq> u"
|
|
3310 |
using imf imh by fastforce
|
|
3311 |
moreover have "P (f \<circ> h)"
|
|
3312 |
by (simp add: P Qf contf imf)
|
|
3313 |
ultimately obtain c where "homotopic_with P s u (f \<circ> h) (\<lambda>x. c)"
|
|
3314 |
by (metis hom)
|
|
3315 |
then have "homotopic_with Q t u (f \<circ> h \<circ> k) ((\<lambda>x. c) \<circ> k)"
|
|
3316 |
apply (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
|
|
3317 |
using Q by (auto simp: contk imk)
|
|
3318 |
then show ?thesis
|
|
3319 |
apply (rule_tac c = c in that)
|
|
3320 |
apply (erule homotopic_with_eq)
|
|
3321 |
apply (metis feq, simp)
|
|
3322 |
apply (metis Qeq)
|
|
3323 |
done
|
|
3324 |
qed
|
|
3325 |
|
|
3326 |
end
|
|
3327 |
|
|
3328 |
lemma simply_connected_retraction_gen:
|
|
3329 |
shows "\<lbrakk>simply_connected S; continuous_on S h; h ` S = T;
|
|
3330 |
continuous_on T k; k ` T \<subseteq> S; \<And>y. y \<in> T \<Longrightarrow> h(k y) = y\<rbrakk>
|
|
3331 |
\<Longrightarrow> simply_connected T"
|
|
3332 |
apply (simp add: simply_connected_def path_def path_image_def homotopic_loops_def, clarify)
|
|
3333 |
apply (rule Retracts.homotopically_trivial_retraction_gen
|
|
3334 |
[of S h _ k _ "\<lambda>p. pathfinish p = pathstart p" "\<lambda>p. pathfinish p = pathstart p"])
|
|
3335 |
apply (simp_all add: Retracts_def pathfinish_def pathstart_def)
|
|
3336 |
done
|
|
3337 |
|
|
3338 |
lemma homeomorphic_simply_connected:
|
|
3339 |
"\<lbrakk>S homeomorphic T; simply_connected S\<rbrakk> \<Longrightarrow> simply_connected T"
|
|
3340 |
by (auto simp: homeomorphic_def homeomorphism_def intro: simply_connected_retraction_gen)
|
|
3341 |
|
|
3342 |
lemma homeomorphic_simply_connected_eq:
|
|
3343 |
"S homeomorphic T \<Longrightarrow> (simply_connected S \<longleftrightarrow> simply_connected T)"
|
|
3344 |
by (metis homeomorphic_simply_connected homeomorphic_sym)
|
|
3345 |
|
|
3346 |
|
|
3347 |
subsection\<open>Homotopy equivalence\<close>
|
|
3348 |
|
|
3349 |
definition%important homotopy_eqv :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
|
|
3350 |
(infix "homotopy'_eqv" 50)
|
|
3351 |
where "S homotopy_eqv T \<equiv>
|
|
3352 |
\<exists>f g. continuous_on S f \<and> f ` S \<subseteq> T \<and>
|
|
3353 |
continuous_on T g \<and> g ` T \<subseteq> S \<and>
|
|
3354 |
homotopic_with (\<lambda>x. True) S S (g \<circ> f) id \<and>
|
|
3355 |
homotopic_with (\<lambda>x. True) T T (f \<circ> g) id"
|
|
3356 |
|
|
3357 |
lemma homeomorphic_imp_homotopy_eqv: "S homeomorphic T \<Longrightarrow> S homotopy_eqv T"
|
|
3358 |
unfolding homeomorphic_def homotopy_eqv_def homeomorphism_def
|
|
3359 |
by (fastforce intro!: homotopic_with_equal continuous_on_compose)
|
|
3360 |
|
|
3361 |
lemma homotopy_eqv_refl: "S homotopy_eqv S"
|
|
3362 |
by (rule homeomorphic_imp_homotopy_eqv homeomorphic_refl)+
|
|
3363 |
|
|
3364 |
lemma homotopy_eqv_sym: "S homotopy_eqv T \<longleftrightarrow> T homotopy_eqv S"
|
|
3365 |
by (auto simp: homotopy_eqv_def)
|
|
3366 |
|
|
3367 |
lemma homotopy_eqv_trans [trans]:
|
|
3368 |
fixes S :: "'a::real_normed_vector set" and U :: "'c::real_normed_vector set"
|
|
3369 |
assumes ST: "S homotopy_eqv T" and TU: "T homotopy_eqv U"
|
|
3370 |
shows "S homotopy_eqv U"
|
|
3371 |
proof -
|
|
3372 |
obtain f1 g1 where f1: "continuous_on S f1" "f1 ` S \<subseteq> T"
|
|
3373 |
and g1: "continuous_on T g1" "g1 ` T \<subseteq> S"
|
|
3374 |
and hom1: "homotopic_with (\<lambda>x. True) S S (g1 \<circ> f1) id"
|
|
3375 |
"homotopic_with (\<lambda>x. True) T T (f1 \<circ> g1) id"
|
|
3376 |
using ST by (auto simp: homotopy_eqv_def)
|
|
3377 |
obtain f2 g2 where f2: "continuous_on T f2" "f2 ` T \<subseteq> U"
|
|
3378 |
and g2: "continuous_on U g2" "g2 ` U \<subseteq> T"
|
|
3379 |
and hom2: "homotopic_with (\<lambda>x. True) T T (g2 \<circ> f2) id"
|
|
3380 |
"homotopic_with (\<lambda>x. True) U U (f2 \<circ> g2) id"
|
|
3381 |
using TU by (auto simp: homotopy_eqv_def)
|
|
3382 |
have "homotopic_with (\<lambda>f. True) S T (g2 \<circ> f2 \<circ> f1) (id \<circ> f1)"
|
|
3383 |
by (rule homotopic_with_compose_continuous_right hom2 f1)+
|
|
3384 |
then have "homotopic_with (\<lambda>f. True) S T (g2 \<circ> (f2 \<circ> f1)) (id \<circ> f1)"
|
|
3385 |
by (simp add: o_assoc)
|
|
3386 |
then have "homotopic_with (\<lambda>x. True) S S
|
|
3387 |
(g1 \<circ> (g2 \<circ> (f2 \<circ> f1))) (g1 \<circ> (id \<circ> f1))"
|
|
3388 |
by (simp add: g1 homotopic_with_compose_continuous_left)
|
|
3389 |
moreover have "homotopic_with (\<lambda>x. True) S S (g1 \<circ> id \<circ> f1) id"
|
|
3390 |
using hom1 by simp
|
|
3391 |
ultimately have SS: "homotopic_with (\<lambda>x. True) S S (g1 \<circ> g2 \<circ> (f2 \<circ> f1)) id"
|
|
3392 |
apply (simp add: o_assoc)
|
|
3393 |
apply (blast intro: homotopic_with_trans)
|
|
3394 |
done
|
|
3395 |
have "homotopic_with (\<lambda>f. True) U T (f1 \<circ> g1 \<circ> g2) (id \<circ> g2)"
|
|
3396 |
by (rule homotopic_with_compose_continuous_right hom1 g2)+
|
|
3397 |
then have "homotopic_with (\<lambda>f. True) U T (f1 \<circ> (g1 \<circ> g2)) (id \<circ> g2)"
|
|
3398 |
by (simp add: o_assoc)
|
|
3399 |
then have "homotopic_with (\<lambda>x. True) U U
|
|
3400 |
(f2 \<circ> (f1 \<circ> (g1 \<circ> g2))) (f2 \<circ> (id \<circ> g2))"
|
|
3401 |
by (simp add: f2 homotopic_with_compose_continuous_left)
|
|
3402 |
moreover have "homotopic_with (\<lambda>x. True) U U (f2 \<circ> id \<circ> g2) id"
|
|
3403 |
using hom2 by simp
|
|
3404 |
ultimately have UU: "homotopic_with (\<lambda>x. True) U U (f2 \<circ> f1 \<circ> (g1 \<circ> g2)) id"
|
|
3405 |
apply (simp add: o_assoc)
|
|
3406 |
apply (blast intro: homotopic_with_trans)
|
|
3407 |
done
|
|
3408 |
show ?thesis
|
|
3409 |
unfolding homotopy_eqv_def
|
|
3410 |
apply (rule_tac x = "f2 \<circ> f1" in exI)
|
|
3411 |
apply (rule_tac x = "g1 \<circ> g2" in exI)
|
|
3412 |
apply (intro conjI continuous_on_compose SS UU)
|
|
3413 |
using f1 f2 g1 g2 apply (force simp: elim!: continuous_on_subset)+
|
|
3414 |
done
|
|
3415 |
qed
|
|
3416 |
|
|
3417 |
lemma homotopy_eqv_inj_linear_image:
|
|
3418 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
|
|
3419 |
assumes "linear f" "inj f"
|
|
3420 |
shows "(f ` S) homotopy_eqv S"
|
|
3421 |
apply (rule homeomorphic_imp_homotopy_eqv)
|
|
3422 |
using assms homeomorphic_sym linear_homeomorphic_image by auto
|
|
3423 |
|
|
3424 |
lemma homotopy_eqv_translation:
|
|
3425 |
fixes S :: "'a::real_normed_vector set"
|
|
3426 |
shows "(+) a ` S homotopy_eqv S"
|
|
3427 |
apply (rule homeomorphic_imp_homotopy_eqv)
|
|
3428 |
using homeomorphic_translation homeomorphic_sym by blast
|
|
3429 |
|
|
3430 |
lemma homotopy_eqv_homotopic_triviality_imp:
|
|
3431 |
fixes S :: "'a::real_normed_vector set"
|
|
3432 |
and T :: "'b::real_normed_vector set"
|
|
3433 |
and U :: "'c::real_normed_vector set"
|
|
3434 |
assumes "S homotopy_eqv T"
|
|
3435 |
and f: "continuous_on U f" "f ` U \<subseteq> T"
|
|
3436 |
and g: "continuous_on U g" "g ` U \<subseteq> T"
|
|
3437 |
and homUS: "\<And>f g. \<lbrakk>continuous_on U f; f ` U \<subseteq> S;
|
|
3438 |
continuous_on U g; g ` U \<subseteq> S\<rbrakk>
|
|
3439 |
\<Longrightarrow> homotopic_with (\<lambda>x. True) U S f g"
|
|
3440 |
shows "homotopic_with (\<lambda>x. True) U T f g"
|
|
3441 |
proof -
|
|
3442 |
obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
|
|
3443 |
and k: "continuous_on T k" "k ` T \<subseteq> S"
|
|
3444 |
and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
|
|
3445 |
"homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
|
|
3446 |
using assms by (auto simp: homotopy_eqv_def)
|
|
3447 |
have "homotopic_with (\<lambda>f. True) U S (k \<circ> f) (k \<circ> g)"
|
|
3448 |
apply (rule homUS)
|
|
3449 |
using f g k
|
|
3450 |
apply (safe intro!: continuous_on_compose h k f elim!: continuous_on_subset)
|
|
3451 |
apply (force simp: o_def)+
|
|
3452 |
done
|
|
3453 |
then have "homotopic_with (\<lambda>x. True) U T (h \<circ> (k \<circ> f)) (h \<circ> (k \<circ> g))"
|
|
3454 |
apply (rule homotopic_with_compose_continuous_left)
|
|
3455 |
apply (simp_all add: h)
|
|
3456 |
done
|
|
3457 |
moreover have "homotopic_with (\<lambda>x. True) U T (h \<circ> k \<circ> f) (id \<circ> f)"
|
|
3458 |
apply (rule homotopic_with_compose_continuous_right [where X=T and Y=T])
|
|
3459 |
apply (auto simp: hom f)
|
|
3460 |
done
|
|
3461 |
moreover have "homotopic_with (\<lambda>x. True) U T (h \<circ> k \<circ> g) (id \<circ> g)"
|
|
3462 |
apply (rule homotopic_with_compose_continuous_right [where X=T and Y=T])
|
|
3463 |
apply (auto simp: hom g)
|
|
3464 |
done
|
|
3465 |
ultimately show "homotopic_with (\<lambda>x. True) U T f g"
|
|
3466 |
apply (simp add: o_assoc)
|
|
3467 |
using homotopic_with_trans homotopic_with_sym by blast
|
|
3468 |
qed
|
|
3469 |
|
|
3470 |
lemma homotopy_eqv_homotopic_triviality:
|
|
3471 |
fixes S :: "'a::real_normed_vector set"
|
|
3472 |
and T :: "'b::real_normed_vector set"
|
|
3473 |
and U :: "'c::real_normed_vector set"
|
|
3474 |
assumes "S homotopy_eqv T"
|
|
3475 |
shows "(\<forall>f g. continuous_on U f \<and> f ` U \<subseteq> S \<and>
|
|
3476 |
continuous_on U g \<and> g ` U \<subseteq> S
|
|
3477 |
\<longrightarrow> homotopic_with (\<lambda>x. True) U S f g) \<longleftrightarrow>
|
|
3478 |
(\<forall>f g. continuous_on U f \<and> f ` U \<subseteq> T \<and>
|
|
3479 |
continuous_on U g \<and> g ` U \<subseteq> T
|
|
3480 |
\<longrightarrow> homotopic_with (\<lambda>x. True) U T f g)"
|
|
3481 |
apply (rule iffI)
|
|
3482 |
apply (metis assms homotopy_eqv_homotopic_triviality_imp)
|
|
3483 |
by (metis (no_types) assms homotopy_eqv_homotopic_triviality_imp homotopy_eqv_sym)
|
|
3484 |
|
|
3485 |
lemma homotopy_eqv_cohomotopic_triviality_null_imp:
|
|
3486 |
fixes S :: "'a::real_normed_vector set"
|
|
3487 |
and T :: "'b::real_normed_vector set"
|
|
3488 |
and U :: "'c::real_normed_vector set"
|
|
3489 |
assumes "S homotopy_eqv T"
|
|
3490 |
and f: "continuous_on T f" "f ` T \<subseteq> U"
|
|
3491 |
and homSU: "\<And>f. \<lbrakk>continuous_on S f; f ` S \<subseteq> U\<rbrakk>
|
|
3492 |
\<Longrightarrow> \<exists>c. homotopic_with (\<lambda>x. True) S U f (\<lambda>x. c)"
|
|
3493 |
obtains c where "homotopic_with (\<lambda>x. True) T U f (\<lambda>x. c)"
|
|
3494 |
proof -
|
|
3495 |
obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
|
|
3496 |
and k: "continuous_on T k" "k ` T \<subseteq> S"
|
|
3497 |
and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
|
|
3498 |
"homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
|
|
3499 |
using assms by (auto simp: homotopy_eqv_def)
|
|
3500 |
obtain c where "homotopic_with (\<lambda>x. True) S U (f \<circ> h) (\<lambda>x. c)"
|
|
3501 |
apply (rule exE [OF homSU [of "f \<circ> h"]])
|
|
3502 |
apply (intro continuous_on_compose h)
|
|
3503 |
using h f apply (force elim!: continuous_on_subset)+
|
|
3504 |
done
|
|
3505 |
then have "homotopic_with (\<lambda>x. True) T U ((f \<circ> h) \<circ> k) ((\<lambda>x. c) \<circ> k)"
|
|
3506 |
apply (rule homotopic_with_compose_continuous_right [where X=S])
|
|
3507 |
using k by auto
|
|
3508 |
moreover have "homotopic_with (\<lambda>x. True) T U (f \<circ> id) (f \<circ> (h \<circ> k))"
|
|
3509 |
apply (rule homotopic_with_compose_continuous_left [where Y=T])
|
|
3510 |
apply (simp add: hom homotopic_with_symD)
|
|
3511 |
using f apply auto
|
|
3512 |
done
|
|
3513 |
ultimately show ?thesis
|
|
3514 |
apply (rule_tac c=c in that)
|
|
3515 |
apply (simp add: o_def)
|
|
3516 |
using homotopic_with_trans by blast
|
|
3517 |
qed
|
|
3518 |
|
|
3519 |
lemma homotopy_eqv_cohomotopic_triviality_null:
|
|
3520 |
fixes S :: "'a::real_normed_vector set"
|
|
3521 |
and T :: "'b::real_normed_vector set"
|
|
3522 |
and U :: "'c::real_normed_vector set"
|
|
3523 |
assumes "S homotopy_eqv T"
|
|
3524 |
shows "(\<forall>f. continuous_on S f \<and> f ` S \<subseteq> U
|
|
3525 |
\<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S U f (\<lambda>x. c))) \<longleftrightarrow>
|
|
3526 |
(\<forall>f. continuous_on T f \<and> f ` T \<subseteq> U
|
|
3527 |
\<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) T U f (\<lambda>x. c)))"
|
|
3528 |
apply (rule iffI)
|
|
3529 |
apply (metis assms homotopy_eqv_cohomotopic_triviality_null_imp)
|
|
3530 |
by (metis assms homotopy_eqv_cohomotopic_triviality_null_imp homotopy_eqv_sym)
|
|
3531 |
|
|
3532 |
lemma homotopy_eqv_homotopic_triviality_null_imp:
|
|
3533 |
fixes S :: "'a::real_normed_vector set"
|
|
3534 |
and T :: "'b::real_normed_vector set"
|
|
3535 |
and U :: "'c::real_normed_vector set"
|
|
3536 |
assumes "S homotopy_eqv T"
|
|
3537 |
and f: "continuous_on U f" "f ` U \<subseteq> T"
|
|
3538 |
and homSU: "\<And>f. \<lbrakk>continuous_on U f; f ` U \<subseteq> S\<rbrakk>
|
|
3539 |
\<Longrightarrow> \<exists>c. homotopic_with (\<lambda>x. True) U S f (\<lambda>x. c)"
|
|
3540 |
shows "\<exists>c. homotopic_with (\<lambda>x. True) U T f (\<lambda>x. c)"
|
|
3541 |
proof -
|
|
3542 |
obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
|
|
3543 |
and k: "continuous_on T k" "k ` T \<subseteq> S"
|
|
3544 |
and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
|
|
3545 |
"homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
|
|
3546 |
using assms by (auto simp: homotopy_eqv_def)
|
|
3547 |
obtain c::'a where "homotopic_with (\<lambda>x. True) U S (k \<circ> f) (\<lambda>x. c)"
|
|
3548 |
apply (rule exE [OF homSU [of "k \<circ> f"]])
|
|
3549 |
apply (intro continuous_on_compose h)
|
|
3550 |
using k f apply (force elim!: continuous_on_subset)+
|
|
3551 |
done
|
|
3552 |
then have "homotopic_with (\<lambda>x. True) U T (h \<circ> (k \<circ> f)) (h \<circ> (\<lambda>x. c))"
|
|
3553 |
apply (rule homotopic_with_compose_continuous_left [where Y=S])
|
|
3554 |
using h by auto
|
|
3555 |
moreover have "homotopic_with (\<lambda>x. True) U T (id \<circ> f) ((h \<circ> k) \<circ> f)"
|
|
3556 |
apply (rule homotopic_with_compose_continuous_right [where X=T])
|
|
3557 |
apply (simp add: hom homotopic_with_symD)
|
|
3558 |
using f apply auto
|
|
3559 |
done
|
|
3560 |
ultimately show ?thesis
|
|
3561 |
using homotopic_with_trans by (fastforce simp add: o_def)
|
|
3562 |
qed
|
|
3563 |
|
|
3564 |
lemma homotopy_eqv_homotopic_triviality_null:
|
|
3565 |
fixes S :: "'a::real_normed_vector set"
|
|
3566 |
and T :: "'b::real_normed_vector set"
|
|
3567 |
and U :: "'c::real_normed_vector set"
|
|
3568 |
assumes "S homotopy_eqv T"
|
|
3569 |
shows "(\<forall>f. continuous_on U f \<and> f ` U \<subseteq> S
|
|
3570 |
\<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) U S f (\<lambda>x. c))) \<longleftrightarrow>
|
|
3571 |
(\<forall>f. continuous_on U f \<and> f ` U \<subseteq> T
|
|
3572 |
\<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) U T f (\<lambda>x. c)))"
|
|
3573 |
apply (rule iffI)
|
|
3574 |
apply (metis assms homotopy_eqv_homotopic_triviality_null_imp)
|
|
3575 |
by (metis assms homotopy_eqv_homotopic_triviality_null_imp homotopy_eqv_sym)
|
|
3576 |
|
|
3577 |
lemma homotopy_eqv_contractible_sets:
|
|
3578 |
fixes S :: "'a::real_normed_vector set"
|
|
3579 |
and T :: "'b::real_normed_vector set"
|
|
3580 |
assumes "contractible S" "contractible T" "S = {} \<longleftrightarrow> T = {}"
|
|
3581 |
shows "S homotopy_eqv T"
|
|
3582 |
proof (cases "S = {}")
|
|
3583 |
case True with assms show ?thesis
|
|
3584 |
by (simp add: homeomorphic_imp_homotopy_eqv)
|
|
3585 |
next
|
|
3586 |
case False
|
|
3587 |
with assms obtain a b where "a \<in> S" "b \<in> T"
|
|
3588 |
by auto
|
|
3589 |
then show ?thesis
|
|
3590 |
unfolding homotopy_eqv_def
|
|
3591 |
apply (rule_tac x="\<lambda>x. b" in exI)
|
|
3592 |
apply (rule_tac x="\<lambda>x. a" in exI)
|
|
3593 |
apply (intro assms conjI continuous_on_id' homotopic_into_contractible)
|
|
3594 |
apply (auto simp: o_def continuous_on_const)
|
|
3595 |
done
|
|
3596 |
qed
|
|
3597 |
|
|
3598 |
lemma homotopy_eqv_empty1 [simp]:
|
|
3599 |
fixes S :: "'a::real_normed_vector set"
|
|
3600 |
shows "S homotopy_eqv ({}::'b::real_normed_vector set) \<longleftrightarrow> S = {}"
|
|
3601 |
apply (rule iffI)
|
|
3602 |
using homotopy_eqv_def apply fastforce
|
|
3603 |
by (simp add: homotopy_eqv_contractible_sets)
|
|
3604 |
|
|
3605 |
lemma homotopy_eqv_empty2 [simp]:
|
|
3606 |
fixes S :: "'a::real_normed_vector set"
|
|
3607 |
shows "({}::'b::real_normed_vector set) homotopy_eqv S \<longleftrightarrow> S = {}"
|
|
3608 |
by (metis homotopy_eqv_empty1 homotopy_eqv_sym)
|
|
3609 |
|
|
3610 |
lemma homotopy_eqv_contractibility:
|
|
3611 |
fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
|
|
3612 |
shows "S homotopy_eqv T \<Longrightarrow> (contractible S \<longleftrightarrow> contractible T)"
|
|
3613 |
unfolding homotopy_eqv_def
|
|
3614 |
by (blast intro: homotopy_dominated_contractibility)
|
|
3615 |
|
|
3616 |
lemma homotopy_eqv_sing:
|
|
3617 |
fixes S :: "'a::real_normed_vector set" and a :: "'b::real_normed_vector"
|
|
3618 |
shows "S homotopy_eqv {a} \<longleftrightarrow> S \<noteq> {} \<and> contractible S"
|
|
3619 |
proof (cases "S = {}")
|
|
3620 |
case True then show ?thesis
|
|
3621 |
by simp
|
|
3622 |
next
|
|
3623 |
case False then show ?thesis
|
|
3624 |
by (metis contractible_sing empty_not_insert homotopy_eqv_contractibility homotopy_eqv_contractible_sets)
|
|
3625 |
qed
|
|
3626 |
|
|
3627 |
lemma homeomorphic_contractible_eq:
|
|
3628 |
fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
|
|
3629 |
shows "S homeomorphic T \<Longrightarrow> (contractible S \<longleftrightarrow> contractible T)"
|
|
3630 |
by (simp add: homeomorphic_imp_homotopy_eqv homotopy_eqv_contractibility)
|
|
3631 |
|
|
3632 |
lemma homeomorphic_contractible:
|
|
3633 |
fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
|
|
3634 |
shows "\<lbrakk>contractible S; S homeomorphic T\<rbrakk> \<Longrightarrow> contractible T"
|
|
3635 |
by (metis homeomorphic_contractible_eq)
|
|
3636 |
|
|
3637 |
|
|
3638 |
subsection%unimportant\<open>Misc other results\<close>
|
|
3639 |
|
|
3640 |
lemma bounded_connected_Compl_real:
|
|
3641 |
fixes S :: "real set"
|
|
3642 |
assumes "bounded S" and conn: "connected(- S)"
|
|
3643 |
shows "S = {}"
|
|
3644 |
proof -
|
|
3645 |
obtain a b where "S \<subseteq> box a b"
|
|
3646 |
by (meson assms bounded_subset_box_symmetric)
|
|
3647 |
then have "a \<notin> S" "b \<notin> S"
|
|
3648 |
by auto
|
|
3649 |
then have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> x \<in> - S"
|
|
3650 |
by (meson Compl_iff conn connected_iff_interval)
|
|
3651 |
then show ?thesis
|
|
3652 |
using \<open>S \<subseteq> box a b\<close> by auto
|
|
3653 |
qed
|
|
3654 |
|
|
3655 |
lemma bounded_connected_Compl_1:
|
|
3656 |
fixes S :: "'a::{euclidean_space} set"
|
|
3657 |
assumes "bounded S" and conn: "connected(- S)" and 1: "DIM('a) = 1"
|
|
3658 |
shows "S = {}"
|
|
3659 |
proof -
|
|
3660 |
have "DIM('a) = DIM(real)"
|
|
3661 |
by (simp add: "1")
|
|
3662 |
then obtain f::"'a \<Rightarrow> real" and g
|
|
3663 |
where "linear f" "\<And>x. norm(f x) = norm x" "\<And>x. g(f x) = x" "\<And>y. f(g y) = y"
|
|
3664 |
by (rule isomorphisms_UNIV_UNIV) blast
|
|
3665 |
with \<open>bounded S\<close> have "bounded (f ` S)"
|
|
3666 |
using bounded_linear_image linear_linear by blast
|
|
3667 |
have "connected (f ` (-S))"
|
|
3668 |
using connected_linear_image assms \<open>linear f\<close> by blast
|
|
3669 |
moreover have "f ` (-S) = - (f ` S)"
|
|
3670 |
apply (rule bij_image_Compl_eq)
|
|
3671 |
apply (auto simp: bij_def)
|
|
3672 |
apply (metis \<open>\<And>x. g (f x) = x\<close> injI)
|
|
3673 |
by (metis UNIV_I \<open>\<And>y. f (g y) = y\<close> image_iff)
|
|
3674 |
finally have "connected (- (f ` S))"
|
|
3675 |
by simp
|
|
3676 |
then have "f ` S = {}"
|
|
3677 |
using \<open>bounded (f ` S)\<close> bounded_connected_Compl_real by blast
|
|
3678 |
then show ?thesis
|
|
3679 |
by blast
|
|
3680 |
qed
|
|
3681 |
|
|
3682 |
|
|
3683 |
subsection%unimportant\<open>Some Uncountable Sets\<close>
|
|
3684 |
|
|
3685 |
lemma uncountable_closed_segment:
|
|
3686 |
fixes a :: "'a::real_normed_vector"
|
|
3687 |
assumes "a \<noteq> b" shows "uncountable (closed_segment a b)"
|
|
3688 |
unfolding path_image_linepath [symmetric] path_image_def
|
|
3689 |
using inj_on_linepath [OF assms] uncountable_closed_interval [of 0 1]
|
|
3690 |
countable_image_inj_on by auto
|
|
3691 |
|
|
3692 |
lemma uncountable_open_segment:
|
|
3693 |
fixes a :: "'a::real_normed_vector"
|
|
3694 |
assumes "a \<noteq> b" shows "uncountable (open_segment a b)"
|
|
3695 |
by (simp add: assms open_segment_def uncountable_closed_segment uncountable_minus_countable)
|
|
3696 |
|
|
3697 |
lemma uncountable_convex:
|
|
3698 |
fixes a :: "'a::real_normed_vector"
|
|
3699 |
assumes "convex S" "a \<in> S" "b \<in> S" "a \<noteq> b"
|
|
3700 |
shows "uncountable S"
|
|
3701 |
proof -
|
|
3702 |
have "uncountable (closed_segment a b)"
|
|
3703 |
by (simp add: uncountable_closed_segment assms)
|
|
3704 |
then show ?thesis
|
|
3705 |
by (meson assms convex_contains_segment countable_subset)
|
|
3706 |
qed
|
|
3707 |
|
|
3708 |
lemma uncountable_ball:
|
|
3709 |
fixes a :: "'a::euclidean_space"
|
|
3710 |
assumes "r > 0"
|
|
3711 |
shows "uncountable (ball a r)"
|
|
3712 |
proof -
|
|
3713 |
have "uncountable (open_segment a (a + r *\<^sub>R (SOME i. i \<in> Basis)))"
|
|
3714 |
by (metis Basis_zero SOME_Basis add_cancel_right_right assms less_le scale_eq_0_iff uncountable_open_segment)
|
|
3715 |
moreover have "open_segment a (a + r *\<^sub>R (SOME i. i \<in> Basis)) \<subseteq> ball a r"
|
|
3716 |
using assms by (auto simp: in_segment algebra_simps dist_norm SOME_Basis)
|
|
3717 |
ultimately show ?thesis
|
|
3718 |
by (metis countable_subset)
|
|
3719 |
qed
|
|
3720 |
|
|
3721 |
lemma ball_minus_countable_nonempty:
|
|
3722 |
assumes "countable (A :: 'a :: euclidean_space set)" "r > 0"
|
|
3723 |
shows "ball z r - A \<noteq> {}"
|
|
3724 |
proof
|
|
3725 |
assume *: "ball z r - A = {}"
|
|
3726 |
have "uncountable (ball z r - A)"
|
|
3727 |
by (intro uncountable_minus_countable assms uncountable_ball)
|
|
3728 |
thus False by (subst (asm) *) auto
|
|
3729 |
qed
|
|
3730 |
|
|
3731 |
lemma uncountable_cball:
|
|
3732 |
fixes a :: "'a::euclidean_space"
|
|
3733 |
assumes "r > 0"
|
|
3734 |
shows "uncountable (cball a r)"
|
|
3735 |
using assms countable_subset uncountable_ball by auto
|
|
3736 |
|
|
3737 |
lemma pairwise_disjnt_countable:
|
|
3738 |
fixes \<N> :: "nat set set"
|
|
3739 |
assumes "pairwise disjnt \<N>"
|
|
3740 |
shows "countable \<N>"
|
|
3741 |
proof -
|
|
3742 |
have "inj_on (\<lambda>X. SOME n. n \<in> X) (\<N> - {{}})"
|
|
3743 |
apply (clarsimp simp add: inj_on_def)
|
|
3744 |
by (metis assms disjnt_insert2 insert_absorb pairwise_def subsetI subset_empty tfl_some)
|
|
3745 |
then show ?thesis
|
|
3746 |
by (metis countable_Diff_eq countable_def)
|
|
3747 |
qed
|
|
3748 |
|
|
3749 |
lemma pairwise_disjnt_countable_Union:
|
|
3750 |
assumes "countable (\<Union>\<N>)" and pwd: "pairwise disjnt \<N>"
|
|
3751 |
shows "countable \<N>"
|
|
3752 |
proof -
|
|
3753 |
obtain f :: "_ \<Rightarrow> nat" where f: "inj_on f (\<Union>\<N>)"
|
|
3754 |
using assms by blast
|
|
3755 |
then have "pairwise disjnt (\<Union> X \<in> \<N>. {f ` X})"
|
|
3756 |
using assms by (force simp: pairwise_def disjnt_inj_on_iff [OF f])
|
|
3757 |
then have "countable (\<Union> X \<in> \<N>. {f ` X})"
|
|
3758 |
using pairwise_disjnt_countable by blast
|
|
3759 |
then show ?thesis
|
|
3760 |
by (meson pwd countable_image_inj_on disjoint_image f inj_on_image pairwise_disjnt_countable)
|
|
3761 |
qed
|
|
3762 |
|
|
3763 |
lemma connected_uncountable:
|
|
3764 |
fixes S :: "'a::metric_space set"
|
|
3765 |
assumes "connected S" "a \<in> S" "b \<in> S" "a \<noteq> b" shows "uncountable S"
|
|
3766 |
proof -
|
|
3767 |
have "continuous_on S (dist a)"
|
|
3768 |
by (intro continuous_intros)
|
|
3769 |
then have "connected (dist a ` S)"
|
|
3770 |
by (metis connected_continuous_image \<open>connected S\<close>)
|
|
3771 |
then have "closed_segment 0 (dist a b) \<subseteq> (dist a ` S)"
|
|
3772 |
by (simp add: assms closed_segment_subset is_interval_connected_1 is_interval_convex)
|
|
3773 |
then have "uncountable (dist a ` S)"
|
|
3774 |
by (metis \<open>a \<noteq> b\<close> countable_subset dist_eq_0_iff uncountable_closed_segment)
|
|
3775 |
then show ?thesis
|
|
3776 |
by blast
|
|
3777 |
qed
|
|
3778 |
|
|
3779 |
lemma path_connected_uncountable:
|
|
3780 |
fixes S :: "'a::metric_space set"
|
|
3781 |
assumes "path_connected S" "a \<in> S" "b \<in> S" "a \<noteq> b" shows "uncountable S"
|
|
3782 |
using path_connected_imp_connected assms connected_uncountable by metis
|
|
3783 |
|
|
3784 |
lemma connected_finite_iff_sing:
|
|
3785 |
fixes S :: "'a::metric_space set"
|
|
3786 |
assumes "connected S"
|
|
3787 |
shows "finite S \<longleftrightarrow> S = {} \<or> (\<exists>a. S = {a})" (is "_ = ?rhs")
|
|
3788 |
proof -
|
|
3789 |
have "uncountable S" if "\<not> ?rhs"
|
|
3790 |
using connected_uncountable assms that by blast
|
|
3791 |
then show ?thesis
|
|
3792 |
using uncountable_infinite by auto
|
|
3793 |
qed
|
|
3794 |
|
|
3795 |
lemma connected_card_eq_iff_nontrivial:
|
|
3796 |
fixes S :: "'a::metric_space set"
|
|
3797 |
shows "connected S \<Longrightarrow> uncountable S \<longleftrightarrow> \<not>(\<exists>a. S \<subseteq> {a})"
|
|
3798 |
apply (auto simp: countable_finite finite_subset)
|
|
3799 |
by (metis connected_uncountable is_singletonI' is_singleton_the_elem subset_singleton_iff)
|
|
3800 |
|
|
3801 |
lemma simple_path_image_uncountable:
|
|
3802 |
fixes g :: "real \<Rightarrow> 'a::metric_space"
|
|
3803 |
assumes "simple_path g"
|
|
3804 |
shows "uncountable (path_image g)"
|
|
3805 |
proof -
|
|
3806 |
have "g 0 \<in> path_image g" "g (1/2) \<in> path_image g"
|
|
3807 |
by (simp_all add: path_defs)
|
|
3808 |
moreover have "g 0 \<noteq> g (1/2)"
|
|
3809 |
using assms by (fastforce simp add: simple_path_def)
|
|
3810 |
ultimately show ?thesis
|
|
3811 |
apply (simp add: assms connected_card_eq_iff_nontrivial connected_simple_path_image)
|
|
3812 |
by blast
|
|
3813 |
qed
|
|
3814 |
|
|
3815 |
lemma arc_image_uncountable:
|
|
3816 |
fixes g :: "real \<Rightarrow> 'a::metric_space"
|
|
3817 |
assumes "arc g"
|
|
3818 |
shows "uncountable (path_image g)"
|
|
3819 |
by (simp add: arc_imp_simple_path assms simple_path_image_uncountable)
|
|
3820 |
|
|
3821 |
|
|
3822 |
subsection%unimportant\<open> Some simple positive connection theorems\<close>
|
|
3823 |
|
|
3824 |
proposition path_connected_convex_diff_countable:
|
|
3825 |
fixes U :: "'a::euclidean_space set"
|
|
3826 |
assumes "convex U" "\<not> collinear U" "countable S"
|
|
3827 |
shows "path_connected(U - S)"
|
|
3828 |
proof (clarsimp simp add: path_connected_def)
|
|
3829 |
fix a b
|
|
3830 |
assume "a \<in> U" "a \<notin> S" "b \<in> U" "b \<notin> S"
|
|
3831 |
let ?m = "midpoint a b"
|
|
3832 |
show "\<exists>g. path g \<and> path_image g \<subseteq> U - S \<and> pathstart g = a \<and> pathfinish g = b"
|
|
3833 |
proof (cases "a = b")
|
|
3834 |
case True
|
|
3835 |
then show ?thesis
|
|
3836 |
by (metis DiffI \<open>a \<in> U\<close> \<open>a \<notin> S\<close> path_component_def path_component_refl)
|
|
3837 |
next
|
|
3838 |
case False
|
|
3839 |
then have "a \<noteq> ?m" "b \<noteq> ?m"
|
|
3840 |
using midpoint_eq_endpoint by fastforce+
|
|
3841 |
have "?m \<in> U"
|
|
3842 |
using \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>convex U\<close> convex_contains_segment by force
|
|
3843 |
obtain c where "c \<in> U" and nc_abc: "\<not> collinear {a,b,c}"
|
|
3844 |
by (metis False \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>\<not> collinear U\<close> collinear_triples insert_absorb)
|
|
3845 |
have ncoll_mca: "\<not> collinear {?m,c,a}"
|
|
3846 |
by (metis (full_types) \<open>a \<noteq> ?m\<close> collinear_3_trans collinear_midpoint insert_commute nc_abc)
|
|
3847 |
have ncoll_mcb: "\<not> collinear {?m,c,b}"
|
|
3848 |
by (metis (full_types) \<open>b \<noteq> ?m\<close> collinear_3_trans collinear_midpoint insert_commute nc_abc)
|
|
3849 |
have "c \<noteq> ?m"
|
|
3850 |
by (metis collinear_midpoint insert_commute nc_abc)
|
|
3851 |
then have "closed_segment ?m c \<subseteq> U"
|
|
3852 |
by (simp add: \<open>c \<in> U\<close> \<open>?m \<in> U\<close> \<open>convex U\<close> closed_segment_subset)
|
|
3853 |
then obtain z where z: "z \<in> closed_segment ?m c"
|
|
3854 |
and disjS: "(closed_segment a z \<union> closed_segment z b) \<inter> S = {}"
|
|
3855 |
proof -
|
|
3856 |
have False if "closed_segment ?m c \<subseteq> {z. (closed_segment a z \<union> closed_segment z b) \<inter> S \<noteq> {}}"
|
|
3857 |
proof -
|
|
3858 |
have closb: "closed_segment ?m c \<subseteq>
|
|
3859 |
{z \<in> closed_segment ?m c. closed_segment a z \<inter> S \<noteq> {}} \<union> {z \<in> closed_segment ?m c. closed_segment z b \<inter> S \<noteq> {}}"
|
|
3860 |
using that by blast
|
|
3861 |
have *: "countable {z \<in> closed_segment ?m c. closed_segment z u \<inter> S \<noteq> {}}"
|
|
3862 |
if "u \<in> U" "u \<notin> S" and ncoll: "\<not> collinear {?m, c, u}" for u
|
|
3863 |
proof -
|
|
3864 |
have **: False if x1: "x1 \<in> closed_segment ?m c" and x2: "x2 \<in> closed_segment ?m c"
|
|
3865 |
and "x1 \<noteq> x2" "x1 \<noteq> u"
|
|
3866 |
and w: "w \<in> closed_segment x1 u" "w \<in> closed_segment x2 u"
|
|
3867 |
and "w \<in> S" for x1 x2 w
|
|
3868 |
proof -
|
|
3869 |
have "x1 \<in> affine hull {?m,c}" "x2 \<in> affine hull {?m,c}"
|
|
3870 |
using segment_as_ball x1 x2 by auto
|
|
3871 |
then have coll_x1: "collinear {x1, ?m, c}" and coll_x2: "collinear {?m, c, x2}"
|
|
3872 |
by (simp_all add: affine_hull_3_imp_collinear) (metis affine_hull_3_imp_collinear insert_commute)
|
|
3873 |
have "\<not> collinear {x1, u, x2}"
|
|
3874 |
proof
|
|
3875 |
assume "collinear {x1, u, x2}"
|
|
3876 |
then have "collinear {?m, c, u}"
|
|
3877 |
by (metis (full_types) \<open>c \<noteq> ?m\<close> coll_x1 coll_x2 collinear_3_trans insert_commute ncoll \<open>x1 \<noteq> x2\<close>)
|
|
3878 |
with ncoll show False ..
|
|
3879 |
qed
|
|
3880 |
then have "closed_segment x1 u \<inter> closed_segment u x2 = {u}"
|
|
3881 |
by (blast intro!: Int_closed_segment)
|
|
3882 |
then have "w = u"
|
|
3883 |
using closed_segment_commute w by auto
|
|
3884 |
show ?thesis
|
|
3885 |
using \<open>u \<notin> S\<close> \<open>w = u\<close> that(7) by auto
|
|
3886 |
qed
|
|
3887 |
then have disj: "disjoint ((\<Union>z\<in>closed_segment ?m c. {closed_segment z u \<inter> S}))"
|
|
3888 |
by (fastforce simp: pairwise_def disjnt_def)
|
|
3889 |
have cou: "countable ((\<Union>z \<in> closed_segment ?m c. {closed_segment z u \<inter> S}) - {{}})"
|
|
3890 |
apply (rule pairwise_disjnt_countable_Union [OF _ pairwise_subset [OF disj]])
|
|
3891 |
apply (rule countable_subset [OF _ \<open>countable S\<close>], auto)
|
|
3892 |
done
|
|
3893 |
define f where "f \<equiv> \<lambda>X. (THE z. z \<in> closed_segment ?m c \<and> X = closed_segment z u \<inter> S)"
|
|
3894 |
show ?thesis
|
|
3895 |
proof (rule countable_subset [OF _ countable_image [OF cou, where f=f]], clarify)
|
|
3896 |
fix x
|
|
3897 |
assume x: "x \<in> closed_segment ?m c" "closed_segment x u \<inter> S \<noteq> {}"
|
|
3898 |
show "x \<in> f ` ((\<Union>z\<in>closed_segment ?m c. {closed_segment z u \<inter> S}) - {{}})"
|
|
3899 |
proof (rule_tac x="closed_segment x u \<inter> S" in image_eqI)
|
|
3900 |
show "x = f (closed_segment x u \<inter> S)"
|
|
3901 |
unfolding f_def
|
|
3902 |
apply (rule the_equality [symmetric])
|
|
3903 |
using x apply (auto simp: dest: **)
|
|
3904 |
done
|
|
3905 |
qed (use x in auto)
|
|
3906 |
qed
|
|
3907 |
qed
|
|
3908 |
have "uncountable (closed_segment ?m c)"
|
|
3909 |
by (metis \<open>c \<noteq> ?m\<close> uncountable_closed_segment)
|
|
3910 |
then show False
|
|
3911 |
using closb * [OF \<open>a \<in> U\<close> \<open>a \<notin> S\<close> ncoll_mca] * [OF \<open>b \<in> U\<close> \<open>b \<notin> S\<close> ncoll_mcb]
|
|
3912 |
apply (simp add: closed_segment_commute)
|
|
3913 |
by (simp add: countable_subset)
|
|
3914 |
qed
|
|
3915 |
then show ?thesis
|
|
3916 |
by (force intro: that)
|
|
3917 |
qed
|
|
3918 |
show ?thesis
|
|
3919 |
proof (intro exI conjI)
|
|
3920 |
have "path_image (linepath a z +++ linepath z b) \<subseteq> U"
|
|
3921 |
by (metis \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>closed_segment ?m c \<subseteq> U\<close> z \<open>convex U\<close> closed_segment_subset contra_subsetD path_image_linepath subset_path_image_join)
|
|
3922 |
with disjS show "path_image (linepath a z +++ linepath z b) \<subseteq> U - S"
|
|
3923 |
by (force simp: path_image_join)
|
|
3924 |
qed auto
|
|
3925 |
qed
|
|
3926 |
qed
|
|
3927 |
|
|
3928 |
|
|
3929 |
corollary connected_convex_diff_countable:
|
|
3930 |
fixes U :: "'a::euclidean_space set"
|
|
3931 |
assumes "convex U" "\<not> collinear U" "countable S"
|
|
3932 |
shows "connected(U - S)"
|
|
3933 |
by (simp add: assms path_connected_convex_diff_countable path_connected_imp_connected)
|
|
3934 |
|
|
3935 |
lemma path_connected_punctured_convex:
|
|
3936 |
assumes "convex S" and aff: "aff_dim S \<noteq> 1"
|
|
3937 |
shows "path_connected(S - {a})"
|
|
3938 |
proof -
|
|
3939 |
consider "aff_dim S = -1" | "aff_dim S = 0" | "aff_dim S \<ge> 2"
|
|
3940 |
using assms aff_dim_geq [of S] by linarith
|
|
3941 |
then show ?thesis
|
|
3942 |
proof cases
|
|
3943 |
assume "aff_dim S = -1"
|
|
3944 |
then show ?thesis
|
|
3945 |
by (metis aff_dim_empty empty_Diff path_connected_empty)
|
|
3946 |
next
|
|
3947 |
assume "aff_dim S = 0"
|
|
3948 |
then show ?thesis
|
|
3949 |
by (metis aff_dim_eq_0 Diff_cancel Diff_empty Diff_insert0 convex_empty convex_imp_path_connected path_connected_singleton singletonD)
|
|
3950 |
next
|
|
3951 |
assume ge2: "aff_dim S \<ge> 2"
|
|
3952 |
then have "\<not> collinear S"
|
|
3953 |
proof (clarsimp simp add: collinear_affine_hull)
|
|
3954 |
fix u v
|
|
3955 |
assume "S \<subseteq> affine hull {u, v}"
|
|
3956 |
then have "aff_dim S \<le> aff_dim {u, v}"
|
|
3957 |
by (metis (no_types) aff_dim_affine_hull aff_dim_subset)
|
|
3958 |
with ge2 show False
|
|
3959 |
by (metis (no_types) aff_dim_2 antisym aff not_numeral_le_zero one_le_numeral order_trans)
|
|
3960 |
qed
|
|
3961 |
then show ?thesis
|
|
3962 |
apply (rule path_connected_convex_diff_countable [OF \<open>convex S\<close>])
|
|
3963 |
by simp
|
|
3964 |
qed
|
|
3965 |
qed
|
|
3966 |
|
|
3967 |
lemma connected_punctured_convex:
|
|
3968 |
shows "\<lbrakk>convex S; aff_dim S \<noteq> 1\<rbrakk> \<Longrightarrow> connected(S - {a})"
|
|
3969 |
using path_connected_imp_connected path_connected_punctured_convex by blast
|
|
3970 |
|
|
3971 |
lemma path_connected_complement_countable:
|
|
3972 |
fixes S :: "'a::euclidean_space set"
|
|
3973 |
assumes "2 \<le> DIM('a)" "countable S"
|
|
3974 |
shows "path_connected(- S)"
|
|
3975 |
proof -
|
|
3976 |
have "path_connected(UNIV - S)"
|
|
3977 |
apply (rule path_connected_convex_diff_countable)
|
|
3978 |
using assms by (auto simp: collinear_aff_dim [of "UNIV :: 'a set"])
|
|
3979 |
then show ?thesis
|
|
3980 |
by (simp add: Compl_eq_Diff_UNIV)
|
|
3981 |
qed
|
|
3982 |
|
|
3983 |
proposition path_connected_openin_diff_countable:
|
|
3984 |
fixes S :: "'a::euclidean_space set"
|
|
3985 |
assumes "connected S" and ope: "openin (subtopology euclidean (affine hull S)) S"
|
|
3986 |
and "\<not> collinear S" "countable T"
|
|
3987 |
shows "path_connected(S - T)"
|
|
3988 |
proof (clarsimp simp add: path_connected_component)
|
|
3989 |
fix x y
|
|
3990 |
assume xy: "x \<in> S" "x \<notin> T" "y \<in> S" "y \<notin> T"
|
|
3991 |
show "path_component (S - T) x y"
|
|
3992 |
proof (rule connected_equivalence_relation_gen [OF \<open>connected S\<close>, where P = "\<lambda>x. x \<notin> T"])
|
|
3993 |
show "\<exists>z. z \<in> U \<and> z \<notin> T" if opeU: "openin (subtopology euclidean S) U" and "x \<in> U" for U x
|
|
3994 |
proof -
|
|
3995 |
have "openin (subtopology euclidean (affine hull S)) U"
|
|
3996 |
using opeU ope openin_trans by blast
|
|
3997 |
with \<open>x \<in> U\<close> obtain r where Usub: "U \<subseteq> affine hull S" and "r > 0"
|
|
3998 |
and subU: "ball x r \<inter> affine hull S \<subseteq> U"
|
|
3999 |
by (auto simp: openin_contains_ball)
|
|
4000 |
with \<open>x \<in> U\<close> have x: "x \<in> ball x r \<inter> affine hull S"
|
|
4001 |
by auto
|
|
4002 |
have "\<not> S \<subseteq> {x}"
|
|
4003 |
using \<open>\<not> collinear S\<close> collinear_subset by blast
|
|
4004 |
then obtain x' where "x' \<noteq> x" "x' \<in> S"
|
|
4005 |
by blast
|
|
4006 |
obtain y where y: "y \<noteq> x" "y \<in> ball x r \<inter> affine hull S"
|
|
4007 |
proof
|
|
4008 |
show "x + (r / 2 / norm(x' - x)) *\<^sub>R (x' - x) \<noteq> x"
|
|
4009 |
using \<open>x' \<noteq> x\<close> \<open>r > 0\<close> by auto
|
|
4010 |
show "x + (r / 2 / norm (x' - x)) *\<^sub>R (x' - x) \<in> ball x r \<inter> affine hull S"
|
|
4011 |
using \<open>x' \<noteq> x\<close> \<open>r > 0\<close> \<open>x' \<in> S\<close> x
|
|
4012 |
by (simp add: dist_norm mem_affine_3_minus hull_inc)
|
|
4013 |
qed
|
|
4014 |
have "convex (ball x r \<inter> affine hull S)"
|
|
4015 |
by (simp add: affine_imp_convex convex_Int)
|
|
4016 |
with x y subU have "uncountable U"
|
|
4017 |
by (meson countable_subset uncountable_convex)
|
|
4018 |
then have "\<not> U \<subseteq> T"
|
|
4019 |
using \<open>countable T\<close> countable_subset by blast
|
|
4020 |
then show ?thesis by blast
|
|
4021 |
qed
|
|
4022 |
show "\<exists>U. openin (subtopology euclidean S) U \<and> x \<in> U \<and>
|
|
4023 |
(\<forall>x\<in>U. \<forall>y\<in>U. x \<notin> T \<and> y \<notin> T \<longrightarrow> path_component (S - T) x y)"
|
|
4024 |
if "x \<in> S" for x
|
|
4025 |
proof -
|
|
4026 |
obtain r where Ssub: "S \<subseteq> affine hull S" and "r > 0"
|
|
4027 |
and subS: "ball x r \<inter> affine hull S \<subseteq> S"
|
|
4028 |
using ope \<open>x \<in> S\<close> by (auto simp: openin_contains_ball)
|
|
4029 |
then have conv: "convex (ball x r \<inter> affine hull S)"
|
|
4030 |
by (simp add: affine_imp_convex convex_Int)
|
|
4031 |
have "\<not> aff_dim (affine hull S) \<le> 1"
|
|
4032 |
using \<open>\<not> collinear S\<close> collinear_aff_dim by auto
|
|
4033 |
then have "\<not> collinear (ball x r \<inter> affine hull S)"
|
|
4034 |
apply (simp add: collinear_aff_dim)
|
|
4035 |
by (metis (no_types, hide_lams) aff_dim_convex_Int_open IntI open_ball \<open>0 < r\<close> aff_dim_affine_hull affine_affine_hull affine_imp_convex centre_in_ball empty_iff hull_subset inf_commute subsetCE that)
|
|
4036 |
then have *: "path_connected ((ball x r \<inter> affine hull S) - T)"
|
|
4037 |
by (rule path_connected_convex_diff_countable [OF conv _ \<open>countable T\<close>])
|
|
4038 |
have ST: "ball x r \<inter> affine hull S - T \<subseteq> S - T"
|
|
4039 |
using subS by auto
|
|
4040 |
show ?thesis
|
|
4041 |
proof (intro exI conjI)
|
|
4042 |
show "x \<in> ball x r \<inter> affine hull S"
|
|
4043 |
using \<open>x \<in> S\<close> \<open>r > 0\<close> by (simp add: hull_inc)
|
|
4044 |
have "openin (subtopology euclidean (affine hull S)) (ball x r \<inter> affine hull S)"
|
|
4045 |
by (subst inf.commute) (simp add: openin_Int_open)
|
|
4046 |
then show "openin (subtopology euclidean S) (ball x r \<inter> affine hull S)"
|
|
4047 |
by (rule openin_subset_trans [OF _ subS Ssub])
|
|
4048 |
qed (use * path_component_trans in \<open>auto simp: path_connected_component path_component_of_subset [OF ST]\<close>)
|
|
4049 |
qed
|
|
4050 |
qed (use xy path_component_trans in auto)
|
|
4051 |
qed
|
|
4052 |
|
|
4053 |
corollary connected_openin_diff_countable:
|
|
4054 |
fixes S :: "'a::euclidean_space set"
|
|
4055 |
assumes "connected S" and ope: "openin (subtopology euclidean (affine hull S)) S"
|
|
4056 |
and "\<not> collinear S" "countable T"
|
|
4057 |
shows "connected(S - T)"
|
|
4058 |
by (metis path_connected_imp_connected path_connected_openin_diff_countable [OF assms])
|
|
4059 |
|
|
4060 |
corollary path_connected_open_diff_countable:
|
|
4061 |
fixes S :: "'a::euclidean_space set"
|
|
4062 |
assumes "2 \<le> DIM('a)" "open S" "connected S" "countable T"
|
|
4063 |
shows "path_connected(S - T)"
|
|
4064 |
proof (cases "S = {}")
|
|
4065 |
case True
|
|
4066 |
then show ?thesis
|
|
4067 |
by (simp add: path_connected_empty)
|
|
4068 |
next
|
|
4069 |
case False
|
|
4070 |
show ?thesis
|
|
4071 |
proof (rule path_connected_openin_diff_countable)
|
|
4072 |
show "openin (subtopology euclidean (affine hull S)) S"
|
|
4073 |
by (simp add: assms hull_subset open_subset)
|
|
4074 |
show "\<not> collinear S"
|
|
4075 |
using assms False by (simp add: collinear_aff_dim aff_dim_open)
|
|
4076 |
qed (simp_all add: assms)
|
|
4077 |
qed
|
|
4078 |
|
|
4079 |
corollary connected_open_diff_countable:
|
|
4080 |
fixes S :: "'a::euclidean_space set"
|
|
4081 |
assumes "2 \<le> DIM('a)" "open S" "connected S" "countable T"
|
|
4082 |
shows "connected(S - T)"
|
|
4083 |
by (simp add: assms path_connected_imp_connected path_connected_open_diff_countable)
|
|
4084 |
|
|
4085 |
|
|
4086 |
|
|
4087 |
subsection%unimportant \<open>Self-homeomorphisms shuffling points about\<close>
|
|
4088 |
|
|
4089 |
subsubsection%unimportant\<open>The theorem \<open>homeomorphism_moving_points_exists\<close>\<close>
|
|
4090 |
|
|
4091 |
lemma homeomorphism_moving_point_1:
|
|
4092 |
fixes a :: "'a::euclidean_space"
|
|
4093 |
assumes "affine T" "a \<in> T" and u: "u \<in> ball a r \<inter> T"
|
|
4094 |
obtains f g where "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
|
|
4095 |
"f a = u" "\<And>x. x \<in> sphere a r \<Longrightarrow> f x = x"
|
|
4096 |
proof -
|
|
4097 |
have nou: "norm (u - a) < r" and "u \<in> T"
|
|
4098 |
using u by (auto simp: dist_norm norm_minus_commute)
|
|
4099 |
then have "0 < r"
|
|
4100 |
by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
|
|
4101 |
define f where "f \<equiv> \<lambda>x. (1 - norm(x - a) / r) *\<^sub>R (u - a) + x"
|
|
4102 |
have *: "False" if eq: "x + (norm y / r) *\<^sub>R u = y + (norm x / r) *\<^sub>R u"
|
|
4103 |
and nou: "norm u < r" and yx: "norm y < norm x" for x y and u::'a
|
|
4104 |
proof -
|
|
4105 |
have "x = y + (norm x / r - (norm y / r)) *\<^sub>R u"
|
|
4106 |
using eq by (simp add: algebra_simps)
|
|
4107 |
then have "norm x = norm (y + ((norm x - norm y) / r) *\<^sub>R u)"
|
|
4108 |
by (metis diff_divide_distrib)
|
|
4109 |
also have "\<dots> \<le> norm y + norm(((norm x - norm y) / r) *\<^sub>R u)"
|
|
4110 |
using norm_triangle_ineq by blast
|
|
4111 |
also have "\<dots> = norm y + (norm x - norm y) * (norm u / r)"
|
|
4112 |
using yx \<open>r > 0\<close>
|
|
4113 |
by (simp add: divide_simps)
|
|
4114 |
also have "\<dots> < norm y + (norm x - norm y) * 1"
|
|
4115 |
apply (subst add_less_cancel_left)
|
|
4116 |
apply (rule mult_strict_left_mono)
|
|
4117 |
using nou \<open>0 < r\<close> yx
|
|
4118 |
apply (simp_all add: field_simps)
|
|
4119 |
done
|
|
4120 |
also have "\<dots> = norm x"
|
|
4121 |
by simp
|
|
4122 |
finally show False by simp
|
|
4123 |
qed
|
|
4124 |
have "inj f"
|
|
4125 |
unfolding f_def
|
|
4126 |
proof (clarsimp simp: inj_on_def)
|
|
4127 |
fix x y
|
|
4128 |
assume "(1 - norm (x - a) / r) *\<^sub>R (u - a) + x =
|
|
4129 |
(1 - norm (y - a) / r) *\<^sub>R (u - a) + y"
|
|
4130 |
then have eq: "(x - a) + (norm (y - a) / r) *\<^sub>R (u - a) = (y - a) + (norm (x - a) / r) *\<^sub>R (u - a)"
|
|
4131 |
by (auto simp: algebra_simps)
|
|
4132 |
show "x=y"
|
|
4133 |
proof (cases "norm (x - a) = norm (y - a)")
|
|
4134 |
case True
|
|
4135 |
then show ?thesis
|
|
4136 |
using eq by auto
|
|
4137 |
next
|
|
4138 |
case False
|
|
4139 |
then consider "norm (x - a) < norm (y - a)" | "norm (x - a) > norm (y - a)"
|
|
4140 |
by linarith
|
|
4141 |
then have "False"
|
|
4142 |
proof cases
|
|
4143 |
case 1 show False
|
|
4144 |
using * [OF _ nou 1] eq by simp
|
|
4145 |
next
|
|
4146 |
case 2 with * [OF eq nou] show False
|
|
4147 |
by auto
|
|
4148 |
qed
|
|
4149 |
then show "x=y" ..
|
|
4150 |
qed
|
|
4151 |
qed
|
|
4152 |
then have inj_onf: "inj_on f (cball a r \<inter> T)"
|
|
4153 |
using inj_on_Int by fastforce
|
|
4154 |
have contf: "continuous_on (cball a r \<inter> T) f"
|
|
4155 |
unfolding f_def using \<open>0 < r\<close> by (intro continuous_intros) blast
|
|
4156 |
have fim: "f ` (cball a r \<inter> T) = cball a r \<inter> T"
|
|
4157 |
proof
|
|
4158 |
have *: "norm (y + (1 - norm y / r) *\<^sub>R u) \<le> r" if "norm y \<le> r" "norm u < r" for y u::'a
|
|
4159 |
proof -
|
|
4160 |
have "norm (y + (1 - norm y / r) *\<^sub>R u) \<le> norm y + norm((1 - norm y / r) *\<^sub>R u)"
|
|
4161 |
using norm_triangle_ineq by blast
|
|
4162 |
also have "\<dots> = norm y + abs(1 - norm y / r) * norm u"
|
|
4163 |
by simp
|
|
4164 |
also have "\<dots> \<le> r"
|
|
4165 |
proof -
|
|
4166 |
have "(r - norm u) * (r - norm y) \<ge> 0"
|
|
4167 |
using that by auto
|
|
4168 |
then have "r * norm u + r * norm y \<le> r * r + norm u * norm y"
|
|
4169 |
by (simp add: algebra_simps)
|
|
4170 |
then show ?thesis
|
|
4171 |
using that \<open>0 < r\<close> by (simp add: abs_if field_simps)
|
|
4172 |
qed
|
|
4173 |
finally show ?thesis .
|
|
4174 |
qed
|
|
4175 |
have "f ` (cball a r) \<subseteq> cball a r"
|
|
4176 |
apply (clarsimp simp add: dist_norm norm_minus_commute f_def)
|
|
4177 |
using * by (metis diff_add_eq diff_diff_add diff_diff_eq2 norm_minus_commute nou)
|
|
4178 |
moreover have "f ` T \<subseteq> T"
|
|
4179 |
unfolding f_def using \<open>affine T\<close> \<open>a \<in> T\<close> \<open>u \<in> T\<close>
|
|
4180 |
by (force simp: add.commute mem_affine_3_minus)
|
|
4181 |
ultimately show "f ` (cball a r \<inter> T) \<subseteq> cball a r \<inter> T"
|
|
4182 |
by blast
|
|
4183 |
next
|
|
4184 |
show "cball a r \<inter> T \<subseteq> f ` (cball a r \<inter> T)"
|
|
4185 |
proof (clarsimp simp add: dist_norm norm_minus_commute)
|
|
4186 |
fix x
|
|
4187 |
assume x: "norm (x - a) \<le> r" and "x \<in> T"
|
|
4188 |
have "\<exists>v \<in> {0..1}. ((1 - v) * r - norm ((x - a) - v *\<^sub>R (u - a))) \<bullet> 1 = 0"
|
|
4189 |
by (rule ivt_decreasing_component_on_1) (auto simp: x continuous_intros)
|
|
4190 |
then obtain v where "0\<le>v" "v\<le>1" and v: "(1 - v) * r = norm ((x - a) - v *\<^sub>R (u - a))"
|
|
4191 |
by auto
|
|
4192 |
show "x \<in> f ` (cball a r \<inter> T)"
|
|
4193 |
proof (rule image_eqI)
|
|
4194 |
show "x = f (x - v *\<^sub>R (u - a))"
|
|
4195 |
using \<open>r > 0\<close> v by (simp add: f_def field_simps)
|
|
4196 |
have "x - v *\<^sub>R (u - a) \<in> cball a r"
|
|
4197 |
using \<open>r > 0\<close> v \<open>0 \<le> v\<close>
|
|
4198 |
apply (simp add: field_simps dist_norm norm_minus_commute)
|
|
4199 |
by (metis le_add_same_cancel2 order.order_iff_strict zero_le_mult_iff)
|
|
4200 |
moreover have "x - v *\<^sub>R (u - a) \<in> T"
|
|
4201 |
by (simp add: f_def \<open>affine T\<close> \<open>u \<in> T\<close> \<open>x \<in> T\<close> assms mem_affine_3_minus2)
|
|
4202 |
ultimately show "x - v *\<^sub>R (u - a) \<in> cball a r \<inter> T"
|
|
4203 |
by blast
|
|
4204 |
qed
|
|
4205 |
qed
|
|
4206 |
qed
|
|
4207 |
have "\<exists>g. homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
|
|
4208 |
apply (rule homeomorphism_compact [OF _ contf fim inj_onf])
|
|
4209 |
apply (simp add: affine_closed compact_Int_closed \<open>affine T\<close>)
|
|
4210 |
done
|
|
4211 |
then show ?thesis
|
|
4212 |
apply (rule exE)
|
|
4213 |
apply (erule_tac f=f in that)
|
|
4214 |
using \<open>r > 0\<close>
|
|
4215 |
apply (simp_all add: f_def dist_norm norm_minus_commute)
|
|
4216 |
done
|
|
4217 |
qed
|
|
4218 |
|
|
4219 |
corollary%unimportant homeomorphism_moving_point_2:
|
|
4220 |
fixes a :: "'a::euclidean_space"
|
|
4221 |
assumes "affine T" "a \<in> T" and u: "u \<in> ball a r \<inter> T" and v: "v \<in> ball a r \<inter> T"
|
|
4222 |
obtains f g where "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
|
|
4223 |
"f u = v" "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> f x = x"
|
|
4224 |
proof -
|
|
4225 |
have "0 < r"
|
|
4226 |
by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
|
|
4227 |
obtain f1 g1 where hom1: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f1 g1"
|
|
4228 |
and "f1 a = u" and f1: "\<And>x. x \<in> sphere a r \<Longrightarrow> f1 x = x"
|
|
4229 |
using homeomorphism_moving_point_1 [OF \<open>affine T\<close> \<open>a \<in> T\<close> u] by blast
|
|
4230 |
obtain f2 g2 where hom2: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f2 g2"
|
|
4231 |
and "f2 a = v" and f2: "\<And>x. x \<in> sphere a r \<Longrightarrow> f2 x = x"
|
|
4232 |
using homeomorphism_moving_point_1 [OF \<open>affine T\<close> \<open>a \<in> T\<close> v] by blast
|
|
4233 |
show ?thesis
|
|
4234 |
proof
|
|
4235 |
show "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) (f2 \<circ> g1) (f1 \<circ> g2)"
|
|
4236 |
by (metis homeomorphism_compose homeomorphism_symD hom1 hom2)
|
|
4237 |
have "g1 u = a"
|
|
4238 |
using \<open>0 < r\<close> \<open>f1 a = u\<close> assms hom1 homeomorphism_apply1 by fastforce
|
|
4239 |
then show "(f2 \<circ> g1) u = v"
|
|
4240 |
by (simp add: \<open>f2 a = v\<close>)
|
|
4241 |
show "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> (f2 \<circ> g1) x = x"
|
|
4242 |
using f1 f2 hom1 homeomorphism_apply1 by fastforce
|
|
4243 |
qed
|
|
4244 |
qed
|
|
4245 |
|
|
4246 |
|
|
4247 |
corollary%unimportant homeomorphism_moving_point_3:
|
|
4248 |
fixes a :: "'a::euclidean_space"
|
|
4249 |
assumes "affine T" "a \<in> T" and ST: "ball a r \<inter> T \<subseteq> S" "S \<subseteq> T"
|
|
4250 |
and u: "u \<in> ball a r \<inter> T" and v: "v \<in> ball a r \<inter> T"
|
|
4251 |
obtains f g where "homeomorphism S S f g"
|
|
4252 |
"f u = v" "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> ball a r \<inter> T"
|
|
4253 |
proof -
|
|
4254 |
obtain f g where hom: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
|
|
4255 |
and "f u = v" and fid: "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> f x = x"
|
|
4256 |
using homeomorphism_moving_point_2 [OF \<open>affine T\<close> \<open>a \<in> T\<close> u v] by blast
|
|
4257 |
have gid: "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> g x = x"
|
|
4258 |
using fid hom homeomorphism_apply1 by fastforce
|
|
4259 |
define ff where "ff \<equiv> \<lambda>x. if x \<in> ball a r \<inter> T then f x else x"
|
|
4260 |
define gg where "gg \<equiv> \<lambda>x. if x \<in> ball a r \<inter> T then g x else x"
|
|
4261 |
show ?thesis
|
|
4262 |
proof
|
|
4263 |
show "homeomorphism S S ff gg"
|
|
4264 |
proof (rule homeomorphismI)
|
|
4265 |
have "continuous_on ((cball a r \<inter> T) \<union> (T - ball a r)) ff"
|
|
4266 |
apply (simp add: ff_def)
|
|
4267 |
apply (rule continuous_on_cases)
|
|
4268 |
using homeomorphism_cont1 [OF hom]
|
|
4269 |
apply (auto simp: affine_closed \<open>affine T\<close> continuous_on_id fid)
|
|
4270 |
done
|
|
4271 |
then show "continuous_on S ff"
|
|
4272 |
apply (rule continuous_on_subset)
|
|
4273 |
using ST by auto
|
|
4274 |
have "continuous_on ((cball a r \<inter> T) \<union> (T - ball a r)) gg"
|
|
4275 |
apply (simp add: gg_def)
|
|
4276 |
apply (rule continuous_on_cases)
|
|
4277 |
using homeomorphism_cont2 [OF hom]
|
|
4278 |
apply (auto simp: affine_closed \<open>affine T\<close> continuous_on_id gid)
|
|
4279 |
done
|
|
4280 |
then show "continuous_on S gg"
|
|
4281 |
apply (rule continuous_on_subset)
|
|
4282 |
using ST by auto
|
|
4283 |
show "ff ` S \<subseteq> S"
|
|
4284 |
proof (clarsimp simp add: ff_def)
|
|
4285 |
fix x
|
|
4286 |
assume "x \<in> S" and x: "dist a x < r" and "x \<in> T"
|
|
4287 |
then have "f x \<in> cball a r \<inter> T"
|
|
4288 |
using homeomorphism_image1 [OF hom] by force
|
|
4289 |
then show "f x \<in> S"
|
|
4290 |
using ST(1) \<open>x \<in> T\<close> gid hom homeomorphism_def x by fastforce
|
|
4291 |
qed
|
|
4292 |
show "gg ` S \<subseteq> S"
|
|
4293 |
proof (clarsimp simp add: gg_def)
|
|
4294 |
fix x
|
|
4295 |
assume "x \<in> S" and x: "dist a x < r" and "x \<in> T"
|
|
4296 |
then have "g x \<in> cball a r \<inter> T"
|
|
4297 |
using homeomorphism_image2 [OF hom] by force
|
|
4298 |
then have "g x \<in> ball a r"
|
|
4299 |
using homeomorphism_apply2 [OF hom]
|
|
4300 |
by (metis Diff_Diff_Int Diff_iff \<open>x \<in> T\<close> cball_def fid le_less mem_Collect_eq mem_ball mem_sphere x)
|
|
4301 |
then show "g x \<in> S"
|
|
4302 |
using ST(1) \<open>g x \<in> cball a r \<inter> T\<close> by force
|
|
4303 |
qed
|
|
4304 |
show "\<And>x. x \<in> S \<Longrightarrow> gg (ff x) = x"
|
|
4305 |
apply (simp add: ff_def gg_def)
|
|
4306 |
using homeomorphism_apply1 [OF hom] homeomorphism_image1 [OF hom]
|
|
4307 |
apply auto
|
|
4308 |
apply (metis Int_iff homeomorphism_apply1 [OF hom] fid image_eqI less_eq_real_def mem_cball mem_sphere)
|
|
4309 |
done
|
|
4310 |
show "\<And>x. x \<in> S \<Longrightarrow> ff (gg x) = x"
|
|
4311 |
apply (simp add: ff_def gg_def)
|
|
4312 |
using homeomorphism_apply2 [OF hom] homeomorphism_image2 [OF hom]
|
|
4313 |
apply auto
|
|
4314 |
apply (metis Int_iff fid image_eqI less_eq_real_def mem_cball mem_sphere)
|
|
4315 |
done
|
|
4316 |
qed
|
|
4317 |
show "ff u = v"
|
|
4318 |
using u by (auto simp: ff_def \<open>f u = v\<close>)
|
|
4319 |
show "{x. \<not> (ff x = x \<and> gg x = x)} \<subseteq> ball a r \<inter> T"
|
|
4320 |
by (auto simp: ff_def gg_def)
|
|
4321 |
qed
|
|
4322 |
qed
|
|
4323 |
|
|
4324 |
|
|
4325 |
proposition%unimportant homeomorphism_moving_point:
|
|
4326 |
fixes a :: "'a::euclidean_space"
|
|
4327 |
assumes ope: "openin (subtopology euclidean (affine hull S)) S"
|
|
4328 |
and "S \<subseteq> T"
|
|
4329 |
and TS: "T \<subseteq> affine hull S"
|
|
4330 |
and S: "connected S" "a \<in> S" "b \<in> S"
|
|
4331 |
obtains f g where "homeomorphism T T f g" "f a = b"
|
|
4332 |
"{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
|
|
4333 |
"bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4334 |
proof -
|
|
4335 |
have 1: "\<exists>h k. homeomorphism T T h k \<and> h (f d) = d \<and>
|
|
4336 |
{x. \<not> (h x = x \<and> k x = x)} \<subseteq> S \<and> bounded {x. \<not> (h x = x \<and> k x = x)}"
|
|
4337 |
if "d \<in> S" "f d \<in> S" and homfg: "homeomorphism T T f g"
|
|
4338 |
and S: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
|
|
4339 |
and bo: "bounded {x. \<not> (f x = x \<and> g x = x)}" for d f g
|
|
4340 |
proof (intro exI conjI)
|
|
4341 |
show homgf: "homeomorphism T T g f"
|
|
4342 |
by (metis homeomorphism_symD homfg)
|
|
4343 |
then show "g (f d) = d"
|
|
4344 |
by (meson \<open>S \<subseteq> T\<close> homeomorphism_def subsetD \<open>d \<in> S\<close>)
|
|
4345 |
show "{x. \<not> (g x = x \<and> f x = x)} \<subseteq> S"
|
|
4346 |
using S by blast
|
|
4347 |
show "bounded {x. \<not> (g x = x \<and> f x = x)}"
|
|
4348 |
using bo by (simp add: conj_commute)
|
|
4349 |
qed
|
|
4350 |
have 2: "\<exists>f g. homeomorphism T T f g \<and> f x = f2 (f1 x) \<and>
|
|
4351 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4352 |
if "x \<in> S" "f1 x \<in> S" "f2 (f1 x) \<in> S"
|
|
4353 |
and hom: "homeomorphism T T f1 g1" "homeomorphism T T f2 g2"
|
|
4354 |
and sub: "{x. \<not> (f1 x = x \<and> g1 x = x)} \<subseteq> S" "{x. \<not> (f2 x = x \<and> g2 x = x)} \<subseteq> S"
|
|
4355 |
and bo: "bounded {x. \<not> (f1 x = x \<and> g1 x = x)}" "bounded {x. \<not> (f2 x = x \<and> g2 x = x)}"
|
|
4356 |
for x f1 f2 g1 g2
|
|
4357 |
proof (intro exI conjI)
|
|
4358 |
show homgf: "homeomorphism T T (f2 \<circ> f1) (g1 \<circ> g2)"
|
|
4359 |
by (metis homeomorphism_compose hom)
|
|
4360 |
then show "(f2 \<circ> f1) x = f2 (f1 x)"
|
|
4361 |
by force
|
|
4362 |
show "{x. \<not> ((f2 \<circ> f1) x = x \<and> (g1 \<circ> g2) x = x)} \<subseteq> S"
|
|
4363 |
using sub by force
|
|
4364 |
have "bounded ({x. \<not>(f1 x = x \<and> g1 x = x)} \<union> {x. \<not>(f2 x = x \<and> g2 x = x)})"
|
|
4365 |
using bo by simp
|
|
4366 |
then show "bounded {x. \<not> ((f2 \<circ> f1) x = x \<and> (g1 \<circ> g2) x = x)}"
|
|
4367 |
by (rule bounded_subset) auto
|
|
4368 |
qed
|
|
4369 |
have 3: "\<exists>U. openin (subtopology euclidean S) U \<and>
|
|
4370 |
d \<in> U \<and>
|
|
4371 |
(\<forall>x\<in>U.
|
|
4372 |
\<exists>f g. homeomorphism T T f g \<and> f d = x \<and>
|
|
4373 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and>
|
|
4374 |
bounded {x. \<not> (f x = x \<and> g x = x)})"
|
|
4375 |
if "d \<in> S" for d
|
|
4376 |
proof -
|
|
4377 |
obtain r where "r > 0" and r: "ball d r \<inter> affine hull S \<subseteq> S"
|
|
4378 |
by (metis \<open>d \<in> S\<close> ope openin_contains_ball)
|
|
4379 |
have *: "\<exists>f g. homeomorphism T T f g \<and> f d = e \<and>
|
|
4380 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and>
|
|
4381 |
bounded {x. \<not> (f x = x \<and> g x = x)}" if "e \<in> S" "e \<in> ball d r" for e
|
|
4382 |
apply (rule homeomorphism_moving_point_3 [of "affine hull S" d r T d e])
|
|
4383 |
using r \<open>S \<subseteq> T\<close> TS that
|
|
4384 |
apply (auto simp: \<open>d \<in> S\<close> \<open>0 < r\<close> hull_inc)
|
|
4385 |
using bounded_subset by blast
|
|
4386 |
show ?thesis
|
|
4387 |
apply (rule_tac x="S \<inter> ball d r" in exI)
|
|
4388 |
apply (intro conjI)
|
|
4389 |
apply (simp add: openin_open_Int)
|
|
4390 |
apply (simp add: \<open>0 < r\<close> that)
|
|
4391 |
apply (blast intro: *)
|
|
4392 |
done
|
|
4393 |
qed
|
|
4394 |
have "\<exists>f g. homeomorphism T T f g \<and> f a = b \<and>
|
|
4395 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4396 |
apply (rule connected_equivalence_relation [OF S], safe)
|
|
4397 |
apply (blast intro: 1 2 3)+
|
|
4398 |
done
|
|
4399 |
then show ?thesis
|
|
4400 |
using that by auto
|
|
4401 |
qed
|
|
4402 |
|
|
4403 |
|
|
4404 |
lemma homeomorphism_moving_points_exists_gen:
|
|
4405 |
assumes K: "finite K" "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
|
|
4406 |
"pairwise (\<lambda>i j. (x i \<noteq> x j) \<and> (y i \<noteq> y j)) K"
|
|
4407 |
and "2 \<le> aff_dim S"
|
|
4408 |
and ope: "openin (subtopology euclidean (affine hull S)) S"
|
|
4409 |
and "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
|
|
4410 |
shows "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(x i) = y i) \<and>
|
|
4411 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4412 |
using assms
|
|
4413 |
proof (induction K)
|
|
4414 |
case empty
|
|
4415 |
then show ?case
|
|
4416 |
by (force simp: homeomorphism_ident)
|
|
4417 |
next
|
|
4418 |
case (insert i K)
|
|
4419 |
then have xney: "\<And>j. \<lbrakk>j \<in> K; j \<noteq> i\<rbrakk> \<Longrightarrow> x i \<noteq> x j \<and> y i \<noteq> y j"
|
|
4420 |
and pw: "pairwise (\<lambda>i j. x i \<noteq> x j \<and> y i \<noteq> y j) K"
|
|
4421 |
and "x i \<in> S" "y i \<in> S"
|
|
4422 |
and xyS: "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
|
|
4423 |
by (simp_all add: pairwise_insert)
|
|
4424 |
obtain f g where homfg: "homeomorphism T T f g" and feq: "\<And>i. i \<in> K \<Longrightarrow> f(x i) = y i"
|
|
4425 |
and fg_sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
|
|
4426 |
and bo_fg: "bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4427 |
using insert.IH [OF xyS pw] insert.prems by (blast intro: that)
|
|
4428 |
then have "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(x i) = y i) \<and>
|
|
4429 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4430 |
using insert by blast
|
|
4431 |
have aff_eq: "affine hull (S - y ` K) = affine hull S"
|
|
4432 |
apply (rule affine_hull_Diff)
|
|
4433 |
apply (auto simp: insert)
|
|
4434 |
using \<open>y i \<in> S\<close> insert.hyps(2) xney xyS by fastforce
|
|
4435 |
have f_in_S: "f x \<in> S" if "x \<in> S" for x
|
|
4436 |
using homfg fg_sub homeomorphism_apply1 \<open>S \<subseteq> T\<close>
|
|
4437 |
proof -
|
|
4438 |
have "(f (f x) \<noteq> f x \<or> g (f x) \<noteq> f x) \<or> f x \<in> S"
|
|
4439 |
by (metis \<open>S \<subseteq> T\<close> homfg subsetD homeomorphism_apply1 that)
|
|
4440 |
then show ?thesis
|
|
4441 |
using fg_sub by force
|
|
4442 |
qed
|
|
4443 |
obtain h k where homhk: "homeomorphism T T h k" and heq: "h (f (x i)) = y i"
|
|
4444 |
and hk_sub: "{x. \<not> (h x = x \<and> k x = x)} \<subseteq> S - y ` K"
|
|
4445 |
and bo_hk: "bounded {x. \<not> (h x = x \<and> k x = x)}"
|
|
4446 |
proof (rule homeomorphism_moving_point [of "S - y`K" T "f(x i)" "y i"])
|
|
4447 |
show "openin (subtopology euclidean (affine hull (S - y ` K))) (S - y ` K)"
|
|
4448 |
by (simp add: aff_eq openin_diff finite_imp_closedin image_subset_iff hull_inc insert xyS)
|
|
4449 |
show "S - y ` K \<subseteq> T"
|
|
4450 |
using \<open>S \<subseteq> T\<close> by auto
|
|
4451 |
show "T \<subseteq> affine hull (S - y ` K)"
|
|
4452 |
using insert by (simp add: aff_eq)
|
|
4453 |
show "connected (S - y ` K)"
|
|
4454 |
proof (rule connected_openin_diff_countable [OF \<open>connected S\<close> ope])
|
|
4455 |
show "\<not> collinear S"
|
|
4456 |
using collinear_aff_dim \<open>2 \<le> aff_dim S\<close> by force
|
|
4457 |
show "countable (y ` K)"
|
|
4458 |
using countable_finite insert.hyps(1) by blast
|
|
4459 |
qed
|
|
4460 |
show "f (x i) \<in> S - y ` K"
|
|
4461 |
apply (auto simp: f_in_S \<open>x i \<in> S\<close>)
|
|
4462 |
by (metis feq homfg \<open>x i \<in> S\<close> homeomorphism_def \<open>S \<subseteq> T\<close> \<open>i \<notin> K\<close> subsetCE xney xyS)
|
|
4463 |
show "y i \<in> S - y ` K"
|
|
4464 |
using insert.hyps xney by (auto simp: \<open>y i \<in> S\<close>)
|
|
4465 |
qed blast
|
|
4466 |
show ?case
|
|
4467 |
proof (intro exI conjI)
|
|
4468 |
show "homeomorphism T T (h \<circ> f) (g \<circ> k)"
|
|
4469 |
using homfg homhk homeomorphism_compose by blast
|
|
4470 |
show "\<forall>i \<in> insert i K. (h \<circ> f) (x i) = y i"
|
|
4471 |
using feq hk_sub by (auto simp: heq)
|
|
4472 |
show "{x. \<not> ((h \<circ> f) x = x \<and> (g \<circ> k) x = x)} \<subseteq> S"
|
|
4473 |
using fg_sub hk_sub by force
|
|
4474 |
have "bounded ({x. \<not>(f x = x \<and> g x = x)} \<union> {x. \<not>(h x = x \<and> k x = x)})"
|
|
4475 |
using bo_fg bo_hk bounded_Un by blast
|
|
4476 |
then show "bounded {x. \<not> ((h \<circ> f) x = x \<and> (g \<circ> k) x = x)}"
|
|
4477 |
by (rule bounded_subset) auto
|
|
4478 |
qed
|
|
4479 |
qed
|
|
4480 |
|
|
4481 |
proposition%unimportant homeomorphism_moving_points_exists:
|
|
4482 |
fixes S :: "'a::euclidean_space set"
|
|
4483 |
assumes 2: "2 \<le> DIM('a)" "open S" "connected S" "S \<subseteq> T" "finite K"
|
|
4484 |
and KS: "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
|
|
4485 |
and pw: "pairwise (\<lambda>i j. (x i \<noteq> x j) \<and> (y i \<noteq> y j)) K"
|
|
4486 |
and S: "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
|
|
4487 |
obtains f g where "homeomorphism T T f g" "\<And>i. i \<in> K \<Longrightarrow> f(x i) = y i"
|
|
4488 |
"{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S" "bounded {x. (\<not> (f x = x \<and> g x = x))}"
|
|
4489 |
proof (cases "S = {}")
|
|
4490 |
case True
|
|
4491 |
then show ?thesis
|
|
4492 |
using KS homeomorphism_ident that by fastforce
|
|
4493 |
next
|
|
4494 |
case False
|
|
4495 |
then have affS: "affine hull S = UNIV"
|
|
4496 |
by (simp add: affine_hull_open \<open>open S\<close>)
|
|
4497 |
then have ope: "openin (subtopology euclidean (affine hull S)) S"
|
|
4498 |
using \<open>open S\<close> open_openin by auto
|
|
4499 |
have "2 \<le> DIM('a)" by (rule 2)
|
|
4500 |
also have "\<dots> = aff_dim (UNIV :: 'a set)"
|
|
4501 |
by simp
|
|
4502 |
also have "\<dots> \<le> aff_dim S"
|
|
4503 |
by (metis aff_dim_UNIV aff_dim_affine_hull aff_dim_le_DIM affS)
|
|
4504 |
finally have "2 \<le> aff_dim S"
|
|
4505 |
by linarith
|
|
4506 |
then show ?thesis
|
|
4507 |
using homeomorphism_moving_points_exists_gen [OF \<open>finite K\<close> KS pw _ ope S] that by fastforce
|
|
4508 |
qed
|
|
4509 |
|
|
4510 |
subsubsection%unimportant\<open>The theorem \<open>homeomorphism_grouping_points_exists\<close>\<close>
|
|
4511 |
|
|
4512 |
lemma homeomorphism_grouping_point_1:
|
|
4513 |
fixes a::real and c::real
|
|
4514 |
assumes "a < b" "c < d"
|
|
4515 |
obtains f g where "homeomorphism (cbox a b) (cbox c d) f g" "f a = c" "f b = d"
|
|
4516 |
proof -
|
|
4517 |
define f where "f \<equiv> \<lambda>x. ((d - c) / (b - a)) * x + (c - a * ((d - c) / (b - a)))"
|
|
4518 |
have "\<exists>g. homeomorphism (cbox a b) (cbox c d) f g"
|
|
4519 |
proof (rule homeomorphism_compact)
|
|
4520 |
show "continuous_on (cbox a b) f"
|
|
4521 |
apply (simp add: f_def)
|
|
4522 |
apply (intro continuous_intros)
|
|
4523 |
using assms by auto
|
|
4524 |
have "f ` {a..b} = {c..d}"
|
|
4525 |
unfolding f_def image_affinity_atLeastAtMost
|
|
4526 |
using assms sum_sqs_eq by (auto simp: divide_simps algebra_simps)
|
|
4527 |
then show "f ` cbox a b = cbox c d"
|
|
4528 |
by auto
|
|
4529 |
show "inj_on f (cbox a b)"
|
|
4530 |
unfolding f_def inj_on_def using assms by auto
|
|
4531 |
qed auto
|
|
4532 |
then obtain g where "homeomorphism (cbox a b) (cbox c d) f g" ..
|
|
4533 |
then show ?thesis
|
|
4534 |
proof
|
|
4535 |
show "f a = c"
|
|
4536 |
by (simp add: f_def)
|
|
4537 |
show "f b = d"
|
|
4538 |
using assms sum_sqs_eq [of a b] by (auto simp: f_def divide_simps algebra_simps)
|
|
4539 |
qed
|
|
4540 |
qed
|
|
4541 |
|
|
4542 |
lemma homeomorphism_grouping_point_2:
|
|
4543 |
fixes a::real and w::real
|
|
4544 |
assumes hom_ab: "homeomorphism (cbox a b) (cbox u v) f1 g1"
|
|
4545 |
and hom_bc: "homeomorphism (cbox b c) (cbox v w) f2 g2"
|
|
4546 |
and "b \<in> cbox a c" "v \<in> cbox u w"
|
|
4547 |
and eq: "f1 a = u" "f1 b = v" "f2 b = v" "f2 c = w"
|
|
4548 |
obtains f g where "homeomorphism (cbox a c) (cbox u w) f g" "f a = u" "f c = w"
|
|
4549 |
"\<And>x. x \<in> cbox a b \<Longrightarrow> f x = f1 x" "\<And>x. x \<in> cbox b c \<Longrightarrow> f x = f2 x"
|
|
4550 |
proof -
|
|
4551 |
have le: "a \<le> b" "b \<le> c" "u \<le> v" "v \<le> w"
|
|
4552 |
using assms by simp_all
|
|
4553 |
then have ac: "cbox a c = cbox a b \<union> cbox b c" and uw: "cbox u w = cbox u v \<union> cbox v w"
|
|
4554 |
by auto
|
|
4555 |
define f where "f \<equiv> \<lambda>x. if x \<le> b then f1 x else f2 x"
|
|
4556 |
have "\<exists>g. homeomorphism (cbox a c) (cbox u w) f g"
|
|
4557 |
proof (rule homeomorphism_compact)
|
|
4558 |
have cf1: "continuous_on (cbox a b) f1"
|
|
4559 |
using hom_ab homeomorphism_cont1 by blast
|
|
4560 |
have cf2: "continuous_on (cbox b c) f2"
|
|
4561 |
using hom_bc homeomorphism_cont1 by blast
|
|
4562 |
show "continuous_on (cbox a c) f"
|
|
4563 |
apply (simp add: f_def)
|
|
4564 |
apply (rule continuous_on_cases_le [OF continuous_on_subset [OF cf1] continuous_on_subset [OF cf2]])
|
|
4565 |
using le eq apply (force simp: continuous_on_id)+
|
|
4566 |
done
|
|
4567 |
have "f ` cbox a b = f1 ` cbox a b" "f ` cbox b c = f2 ` cbox b c"
|
|
4568 |
unfolding f_def using eq by force+
|
|
4569 |
then show "f ` cbox a c = cbox u w"
|
|
4570 |
apply (simp only: ac uw image_Un)
|
|
4571 |
by (metis hom_ab hom_bc homeomorphism_def)
|
|
4572 |
have neq12: "f1 x \<noteq> f2 y" if x: "a \<le> x" "x \<le> b" and y: "b < y" "y \<le> c" for x y
|
|
4573 |
proof -
|
|
4574 |
have "f1 x \<in> cbox u v"
|
|
4575 |
by (metis hom_ab homeomorphism_def image_eqI mem_box_real(2) x)
|
|
4576 |
moreover have "f2 y \<in> cbox v w"
|
|
4577 |
by (metis (full_types) hom_bc homeomorphism_def image_subset_iff mem_box_real(2) not_le not_less_iff_gr_or_eq order_refl y)
|
|
4578 |
moreover have "f2 y \<noteq> f2 b"
|
|
4579 |
by (metis cancel_comm_monoid_add_class.diff_cancel diff_gt_0_iff_gt hom_bc homeomorphism_def le(2) less_imp_le less_numeral_extra(3) mem_box_real(2) order_refl y)
|
|
4580 |
ultimately show ?thesis
|
|
4581 |
using le eq by simp
|
|
4582 |
qed
|
|
4583 |
have "inj_on f1 (cbox a b)"
|
|
4584 |
by (metis (full_types) hom_ab homeomorphism_def inj_onI)
|
|
4585 |
moreover have "inj_on f2 (cbox b c)"
|
|
4586 |
by (metis (full_types) hom_bc homeomorphism_def inj_onI)
|
|
4587 |
ultimately show "inj_on f (cbox a c)"
|
|
4588 |
apply (simp (no_asm) add: inj_on_def)
|
|
4589 |
apply (simp add: f_def inj_on_eq_iff)
|
|
4590 |
using neq12 apply force
|
|
4591 |
done
|
|
4592 |
qed auto
|
|
4593 |
then obtain g where "homeomorphism (cbox a c) (cbox u w) f g" ..
|
|
4594 |
then show ?thesis
|
|
4595 |
apply (rule that)
|
|
4596 |
using eq le by (auto simp: f_def)
|
|
4597 |
qed
|
|
4598 |
|
|
4599 |
lemma homeomorphism_grouping_point_3:
|
|
4600 |
fixes a::real
|
|
4601 |
assumes cbox_sub: "cbox c d \<subseteq> box a b" "cbox u v \<subseteq> box a b"
|
|
4602 |
and box_ne: "box c d \<noteq> {}" "box u v \<noteq> {}"
|
|
4603 |
obtains f g where "homeomorphism (cbox a b) (cbox a b) f g" "f a = a" "f b = b"
|
|
4604 |
"\<And>x. x \<in> cbox c d \<Longrightarrow> f x \<in> cbox u v"
|
|
4605 |
proof -
|
|
4606 |
have less: "a < c" "a < u" "d < b" "v < b" "c < d" "u < v" "cbox c d \<noteq> {}"
|
|
4607 |
using assms
|
|
4608 |
by (simp_all add: cbox_sub subset_eq)
|
|
4609 |
obtain f1 g1 where 1: "homeomorphism (cbox a c) (cbox a u) f1 g1"
|
|
4610 |
and f1_eq: "f1 a = a" "f1 c = u"
|
|
4611 |
using homeomorphism_grouping_point_1 [OF \<open>a < c\<close> \<open>a < u\<close>] .
|
|
4612 |
obtain f2 g2 where 2: "homeomorphism (cbox c d) (cbox u v) f2 g2"
|
|
4613 |
and f2_eq: "f2 c = u" "f2 d = v"
|
|
4614 |
using homeomorphism_grouping_point_1 [OF \<open>c < d\<close> \<open>u < v\<close>] .
|
|
4615 |
obtain f3 g3 where 3: "homeomorphism (cbox d b) (cbox v b) f3 g3"
|
|
4616 |
and f3_eq: "f3 d = v" "f3 b = b"
|
|
4617 |
using homeomorphism_grouping_point_1 [OF \<open>d < b\<close> \<open>v < b\<close>] .
|
|
4618 |
obtain f4 g4 where 4: "homeomorphism (cbox a d) (cbox a v) f4 g4" and "f4 a = a" "f4 d = v"
|
|
4619 |
and f4_eq: "\<And>x. x \<in> cbox a c \<Longrightarrow> f4 x = f1 x" "\<And>x. x \<in> cbox c d \<Longrightarrow> f4 x = f2 x"
|
|
4620 |
using homeomorphism_grouping_point_2 [OF 1 2] less by (auto simp: f1_eq f2_eq)
|
|
4621 |
obtain f g where fg: "homeomorphism (cbox a b) (cbox a b) f g" "f a = a" "f b = b"
|
|
4622 |
and f_eq: "\<And>x. x \<in> cbox a d \<Longrightarrow> f x = f4 x" "\<And>x. x \<in> cbox d b \<Longrightarrow> f x = f3 x"
|
|
4623 |
using homeomorphism_grouping_point_2 [OF 4 3] less by (auto simp: f4_eq f3_eq f2_eq f1_eq)
|
|
4624 |
show ?thesis
|
|
4625 |
apply (rule that [OF fg])
|
|
4626 |
using f4_eq f_eq homeomorphism_image1 [OF 2]
|
|
4627 |
apply simp
|
|
4628 |
by (metis atLeastAtMost_iff box_real(1) box_real(2) cbox_sub(1) greaterThanLessThan_iff imageI less_eq_real_def subset_eq)
|
|
4629 |
qed
|
|
4630 |
|
|
4631 |
|
|
4632 |
lemma homeomorphism_grouping_point_4:
|
|
4633 |
fixes T :: "real set"
|
|
4634 |
assumes "open U" "open S" "connected S" "U \<noteq> {}" "finite K" "K \<subseteq> S" "U \<subseteq> S" "S \<subseteq> T"
|
|
4635 |
obtains f g where "homeomorphism T T f g"
|
|
4636 |
"\<And>x. x \<in> K \<Longrightarrow> f x \<in> U" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
|
|
4637 |
"bounded {x. (\<not> (f x = x \<and> g x = x))}"
|
|
4638 |
proof -
|
|
4639 |
obtain c d where "box c d \<noteq> {}" "cbox c d \<subseteq> U"
|
|
4640 |
proof -
|
|
4641 |
obtain u where "u \<in> U"
|
|
4642 |
using \<open>U \<noteq> {}\<close> by blast
|
|
4643 |
then obtain e where "e > 0" "cball u e \<subseteq> U"
|
|
4644 |
using \<open>open U\<close> open_contains_cball by blast
|
|
4645 |
then show ?thesis
|
|
4646 |
by (rule_tac c=u and d="u+e" in that) (auto simp: dist_norm subset_iff)
|
|
4647 |
qed
|
|
4648 |
have "compact K"
|
|
4649 |
by (simp add: \<open>finite K\<close> finite_imp_compact)
|
|
4650 |
obtain a b where "box a b \<noteq> {}" "K \<subseteq> cbox a b" "cbox a b \<subseteq> S"
|
|
4651 |
proof (cases "K = {}")
|
|
4652 |
case True then show ?thesis
|
|
4653 |
using \<open>box c d \<noteq> {}\<close> \<open>cbox c d \<subseteq> U\<close> \<open>U \<subseteq> S\<close> that by blast
|
|
4654 |
next
|
|
4655 |
case False
|
|
4656 |
then obtain a b where "a \<in> K" "b \<in> K"
|
|
4657 |
and a: "\<And>x. x \<in> K \<Longrightarrow> a \<le> x" and b: "\<And>x. x \<in> K \<Longrightarrow> x \<le> b"
|
|
4658 |
using compact_attains_inf compact_attains_sup by (metis \<open>compact K\<close>)+
|
|
4659 |
obtain e where "e > 0" "cball b e \<subseteq> S"
|
|
4660 |
using \<open>open S\<close> open_contains_cball
|
|
4661 |
by (metis \<open>b \<in> K\<close> \<open>K \<subseteq> S\<close> subsetD)
|
|
4662 |
show ?thesis
|
|
4663 |
proof
|
|
4664 |
show "box a (b + e) \<noteq> {}"
|
|
4665 |
using \<open>0 < e\<close> \<open>b \<in> K\<close> a by force
|
|
4666 |
show "K \<subseteq> cbox a (b + e)"
|
|
4667 |
using \<open>0 < e\<close> a b by fastforce
|
|
4668 |
have "a \<in> S"
|
|
4669 |
using \<open>a \<in> K\<close> assms(6) by blast
|
|
4670 |
have "b + e \<in> S"
|
|
4671 |
using \<open>0 < e\<close> \<open>cball b e \<subseteq> S\<close> by (force simp: dist_norm)
|
|
4672 |
show "cbox a (b + e) \<subseteq> S"
|
|
4673 |
using \<open>a \<in> S\<close> \<open>b + e \<in> S\<close> \<open>connected S\<close> connected_contains_Icc by auto
|
|
4674 |
qed
|
|
4675 |
qed
|
|
4676 |
obtain w z where "cbox w z \<subseteq> S" and sub_wz: "cbox a b \<union> cbox c d \<subseteq> box w z"
|
|
4677 |
proof -
|
|
4678 |
have "a \<in> S" "b \<in> S"
|
|
4679 |
using \<open>box a b \<noteq> {}\<close> \<open>cbox a b \<subseteq> S\<close> by auto
|
|
4680 |
moreover have "c \<in> S" "d \<in> S"
|
|
4681 |
using \<open>box c d \<noteq> {}\<close> \<open>cbox c d \<subseteq> U\<close> \<open>U \<subseteq> S\<close> by force+
|
|
4682 |
ultimately have "min a c \<in> S" "max b d \<in> S"
|
|
4683 |
by linarith+
|
|
4684 |
then obtain e1 e2 where "e1 > 0" "cball (min a c) e1 \<subseteq> S" "e2 > 0" "cball (max b d) e2 \<subseteq> S"
|
|
4685 |
using \<open>open S\<close> open_contains_cball by metis
|
|
4686 |
then have *: "min a c - e1 \<in> S" "max b d + e2 \<in> S"
|
|
4687 |
by (auto simp: dist_norm)
|
|
4688 |
show ?thesis
|
|
4689 |
proof
|
|
4690 |
show "cbox (min a c - e1) (max b d+ e2) \<subseteq> S"
|
|
4691 |
using * \<open>connected S\<close> connected_contains_Icc by auto
|
|
4692 |
show "cbox a b \<union> cbox c d \<subseteq> box (min a c - e1) (max b d + e2)"
|
|
4693 |
using \<open>0 < e1\<close> \<open>0 < e2\<close> by auto
|
|
4694 |
qed
|
|
4695 |
qed
|
|
4696 |
then
|
|
4697 |
obtain f g where hom: "homeomorphism (cbox w z) (cbox w z) f g"
|
|
4698 |
and "f w = w" "f z = z"
|
|
4699 |
and fin: "\<And>x. x \<in> cbox a b \<Longrightarrow> f x \<in> cbox c d"
|
|
4700 |
using homeomorphism_grouping_point_3 [of a b w z c d]
|
|
4701 |
using \<open>box a b \<noteq> {}\<close> \<open>box c d \<noteq> {}\<close> by blast
|
|
4702 |
have contfg: "continuous_on (cbox w z) f" "continuous_on (cbox w z) g"
|
|
4703 |
using hom homeomorphism_def by blast+
|
|
4704 |
define f' where "f' \<equiv> \<lambda>x. if x \<in> cbox w z then f x else x"
|
|
4705 |
define g' where "g' \<equiv> \<lambda>x. if x \<in> cbox w z then g x else x"
|
|
4706 |
show ?thesis
|
|
4707 |
proof
|
|
4708 |
have T: "cbox w z \<union> (T - box w z) = T"
|
|
4709 |
using \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> by auto
|
|
4710 |
show "homeomorphism T T f' g'"
|
|
4711 |
proof
|
|
4712 |
have clo: "closedin (subtopology euclidean (cbox w z \<union> (T - box w z))) (T - box w z)"
|
|
4713 |
by (metis Diff_Diff_Int Diff_subset T closedin_def open_box openin_open_Int topspace_euclidean_subtopology)
|
|
4714 |
have "continuous_on (cbox w z \<union> (T - box w z)) f'" "continuous_on (cbox w z \<union> (T - box w z)) g'"
|
|
4715 |
unfolding f'_def g'_def
|
|
4716 |
apply (safe intro!: continuous_on_cases_local contfg continuous_on_id clo)
|
|
4717 |
apply (simp_all add: closed_subset)
|
|
4718 |
using \<open>f w = w\<close> \<open>f z = z\<close> apply force
|
|
4719 |
by (metis \<open>f w = w\<close> \<open>f z = z\<close> hom homeomorphism_def less_eq_real_def mem_box_real(2))
|
|
4720 |
then show "continuous_on T f'" "continuous_on T g'"
|
|
4721 |
by (simp_all only: T)
|
|
4722 |
show "f' ` T \<subseteq> T"
|
|
4723 |
unfolding f'_def
|
|
4724 |
by clarsimp (metis \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> subsetD hom homeomorphism_def imageI mem_box_real(2))
|
|
4725 |
show "g' ` T \<subseteq> T"
|
|
4726 |
unfolding g'_def
|
|
4727 |
by clarsimp (metis \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> subsetD hom homeomorphism_def imageI mem_box_real(2))
|
|
4728 |
show "\<And>x. x \<in> T \<Longrightarrow> g' (f' x) = x"
|
|
4729 |
unfolding f'_def g'_def
|
|
4730 |
using homeomorphism_apply1 [OF hom] homeomorphism_image1 [OF hom] by fastforce
|
|
4731 |
show "\<And>y. y \<in> T \<Longrightarrow> f' (g' y) = y"
|
|
4732 |
unfolding f'_def g'_def
|
|
4733 |
using homeomorphism_apply2 [OF hom] homeomorphism_image2 [OF hom] by fastforce
|
|
4734 |
qed
|
|
4735 |
show "\<And>x. x \<in> K \<Longrightarrow> f' x \<in> U"
|
|
4736 |
using fin sub_wz \<open>K \<subseteq> cbox a b\<close> \<open>cbox c d \<subseteq> U\<close> by (force simp: f'_def)
|
|
4737 |
show "{x. \<not> (f' x = x \<and> g' x = x)} \<subseteq> S"
|
|
4738 |
using \<open>cbox w z \<subseteq> S\<close> by (auto simp: f'_def g'_def)
|
|
4739 |
show "bounded {x. \<not> (f' x = x \<and> g' x = x)}"
|
|
4740 |
apply (rule bounded_subset [of "cbox w z"])
|
|
4741 |
using bounded_cbox apply blast
|
|
4742 |
apply (auto simp: f'_def g'_def)
|
|
4743 |
done
|
|
4744 |
qed
|
|
4745 |
qed
|
|
4746 |
|
|
4747 |
proposition%unimportant homeomorphism_grouping_points_exists:
|
|
4748 |
fixes S :: "'a::euclidean_space set"
|
|
4749 |
assumes "open U" "open S" "connected S" "U \<noteq> {}" "finite K" "K \<subseteq> S" "U \<subseteq> S" "S \<subseteq> T"
|
|
4750 |
obtains f g where "homeomorphism T T f g" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
|
|
4751 |
"bounded {x. (\<not> (f x = x \<and> g x = x))}" "\<And>x. x \<in> K \<Longrightarrow> f x \<in> U"
|
|
4752 |
proof (cases "2 \<le> DIM('a)")
|
|
4753 |
case True
|
|
4754 |
have TS: "T \<subseteq> affine hull S"
|
|
4755 |
using affine_hull_open assms by blast
|
|
4756 |
have "infinite U"
|
|
4757 |
using \<open>open U\<close> \<open>U \<noteq> {}\<close> finite_imp_not_open by blast
|
|
4758 |
then obtain P where "P \<subseteq> U" "finite P" "card K = card P"
|
|
4759 |
using infinite_arbitrarily_large by metis
|
|
4760 |
then obtain \<gamma> where \<gamma>: "bij_betw \<gamma> K P"
|
|
4761 |
using \<open>finite K\<close> finite_same_card_bij by blast
|
|
4762 |
obtain f g where "homeomorphism T T f g" "\<And>i. i \<in> K \<Longrightarrow> f (id i) = \<gamma> i" "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S" "bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4763 |
proof (rule homeomorphism_moving_points_exists [OF True \<open>open S\<close> \<open>connected S\<close> \<open>S \<subseteq> T\<close> \<open>finite K\<close>])
|
|
4764 |
show "\<And>i. i \<in> K \<Longrightarrow> id i \<in> S \<and> \<gamma> i \<in> S"
|
|
4765 |
using \<open>P \<subseteq> U\<close> \<open>bij_betw \<gamma> K P\<close> \<open>K \<subseteq> S\<close> \<open>U \<subseteq> S\<close> bij_betwE by blast
|
|
4766 |
show "pairwise (\<lambda>i j. id i \<noteq> id j \<and> \<gamma> i \<noteq> \<gamma> j) K"
|
|
4767 |
using \<gamma> by (auto simp: pairwise_def bij_betw_def inj_on_def)
|
|
4768 |
qed (use affine_hull_open assms that in auto)
|
|
4769 |
then show ?thesis
|
|
4770 |
using \<gamma> \<open>P \<subseteq> U\<close> bij_betwE by (fastforce simp add: intro!: that)
|
|
4771 |
next
|
|
4772 |
case False
|
|
4773 |
with DIM_positive have "DIM('a) = 1"
|
|
4774 |
by (simp add: dual_order.antisym)
|
|
4775 |
then obtain h::"'a \<Rightarrow>real" and j
|
|
4776 |
where "linear h" "linear j"
|
|
4777 |
and noh: "\<And>x. norm(h x) = norm x" and noj: "\<And>y. norm(j y) = norm y"
|
|
4778 |
and hj: "\<And>x. j(h x) = x" "\<And>y. h(j y) = y"
|
|
4779 |
and ranh: "surj h"
|
|
4780 |
using isomorphisms_UNIV_UNIV
|
|
4781 |
by (metis (mono_tags, hide_lams) DIM_real UNIV_eq_I range_eqI)
|
|
4782 |
obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g"
|
|
4783 |
and f: "\<And>x. x \<in> h ` K \<Longrightarrow> f x \<in> h ` U"
|
|
4784 |
and sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> h ` S"
|
|
4785 |
and bou: "bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4786 |
apply (rule homeomorphism_grouping_point_4 [of "h ` U" "h ` S" "h ` K" "h ` T"])
|
|
4787 |
by (simp_all add: assms image_mono \<open>linear h\<close> open_surjective_linear_image connected_linear_image ranh)
|
|
4788 |
have jf: "j (f (h x)) = x \<longleftrightarrow> f (h x) = h x" for x
|
|
4789 |
by (metis hj)
|
|
4790 |
have jg: "j (g (h x)) = x \<longleftrightarrow> g (h x) = h x" for x
|
|
4791 |
by (metis hj)
|
|
4792 |
have cont_hj: "continuous_on X h" "continuous_on Y j" for X Y
|
|
4793 |
by (simp_all add: \<open>linear h\<close> \<open>linear j\<close> linear_linear linear_continuous_on)
|
|
4794 |
show ?thesis
|
|
4795 |
proof
|
|
4796 |
show "homeomorphism T T (j \<circ> f \<circ> h) (j \<circ> g \<circ> h)"
|
|
4797 |
proof
|
|
4798 |
show "continuous_on T (j \<circ> f \<circ> h)" "continuous_on T (j \<circ> g \<circ> h)"
|
|
4799 |
using hom homeomorphism_def
|
|
4800 |
by (blast intro: continuous_on_compose cont_hj)+
|
|
4801 |
show "(j \<circ> f \<circ> h) ` T \<subseteq> T" "(j \<circ> g \<circ> h) ` T \<subseteq> T"
|
|
4802 |
by auto (metis (mono_tags, hide_lams) hj(1) hom homeomorphism_def imageE imageI)+
|
|
4803 |
show "\<And>x. x \<in> T \<Longrightarrow> (j \<circ> g \<circ> h) ((j \<circ> f \<circ> h) x) = x"
|
|
4804 |
using hj hom homeomorphism_apply1 by fastforce
|
|
4805 |
show "\<And>y. y \<in> T \<Longrightarrow> (j \<circ> f \<circ> h) ((j \<circ> g \<circ> h) y) = y"
|
|
4806 |
using hj hom homeomorphism_apply2 by fastforce
|
|
4807 |
qed
|
|
4808 |
show "{x. \<not> ((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)} \<subseteq> S"
|
|
4809 |
apply (clarsimp simp: jf jg hj)
|
|
4810 |
using sub hj
|
|
4811 |
apply (drule_tac c="h x" in subsetD, force)
|
|
4812 |
by (metis imageE)
|
|
4813 |
have "bounded (j ` {x. (\<not> (f x = x \<and> g x = x))})"
|
|
4814 |
by (rule bounded_linear_image [OF bou]) (use \<open>linear j\<close> linear_conv_bounded_linear in auto)
|
|
4815 |
moreover
|
|
4816 |
have *: "{x. \<not>((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)} = j ` {x. (\<not> (f x = x \<and> g x = x))}"
|
|
4817 |
using hj by (auto simp: jf jg image_iff, metis+)
|
|
4818 |
ultimately show "bounded {x. \<not> ((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)}"
|
|
4819 |
by metis
|
|
4820 |
show "\<And>x. x \<in> K \<Longrightarrow> (j \<circ> f \<circ> h) x \<in> U"
|
|
4821 |
using f hj by fastforce
|
|
4822 |
qed
|
|
4823 |
qed
|
|
4824 |
|
|
4825 |
|
|
4826 |
proposition%unimportant homeomorphism_grouping_points_exists_gen:
|
|
4827 |
fixes S :: "'a::euclidean_space set"
|
|
4828 |
assumes opeU: "openin (subtopology euclidean S) U"
|
|
4829 |
and opeS: "openin (subtopology euclidean (affine hull S)) S"
|
|
4830 |
and "U \<noteq> {}" "finite K" "K \<subseteq> S" and S: "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
|
|
4831 |
obtains f g where "homeomorphism T T f g" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
|
|
4832 |
"bounded {x. (\<not> (f x = x \<and> g x = x))}" "\<And>x. x \<in> K \<Longrightarrow> f x \<in> U"
|
|
4833 |
proof (cases "2 \<le> aff_dim S")
|
|
4834 |
case True
|
|
4835 |
have opeU': "openin (subtopology euclidean (affine hull S)) U"
|
|
4836 |
using opeS opeU openin_trans by blast
|
|
4837 |
obtain u where "u \<in> U" "u \<in> S"
|
|
4838 |
using \<open>U \<noteq> {}\<close> opeU openin_imp_subset by fastforce+
|
|
4839 |
have "infinite U"
|
|
4840 |
apply (rule infinite_openin [OF opeU \<open>u \<in> U\<close>])
|
|
4841 |
apply (rule connected_imp_perfect_aff_dim [OF \<open>connected S\<close> _ \<open>u \<in> S\<close>])
|
|
4842 |
using True apply simp
|
|
4843 |
done
|
|
4844 |
then obtain P where "P \<subseteq> U" "finite P" "card K = card P"
|
|
4845 |
using infinite_arbitrarily_large by metis
|
|
4846 |
then obtain \<gamma> where \<gamma>: "bij_betw \<gamma> K P"
|
|
4847 |
using \<open>finite K\<close> finite_same_card_bij by blast
|
|
4848 |
have "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(id i) = \<gamma> i) \<and>
|
|
4849 |
{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4850 |
proof (rule homeomorphism_moving_points_exists_gen [OF \<open>finite K\<close> _ _ True opeS S])
|
|
4851 |
show "\<And>i. i \<in> K \<Longrightarrow> id i \<in> S \<and> \<gamma> i \<in> S"
|
|
4852 |
by (metis id_apply opeU openin_contains_cball subsetCE \<open>P \<subseteq> U\<close> \<open>bij_betw \<gamma> K P\<close> \<open>K \<subseteq> S\<close> bij_betwE)
|
|
4853 |
show "pairwise (\<lambda>i j. id i \<noteq> id j \<and> \<gamma> i \<noteq> \<gamma> j) K"
|
|
4854 |
using \<gamma> by (auto simp: pairwise_def bij_betw_def inj_on_def)
|
|
4855 |
qed
|
|
4856 |
then show ?thesis
|
|
4857 |
using \<gamma> \<open>P \<subseteq> U\<close> bij_betwE by (fastforce simp add: intro!: that)
|
|
4858 |
next
|
|
4859 |
case False
|
|
4860 |
with aff_dim_geq [of S] consider "aff_dim S = -1" | "aff_dim S = 0" | "aff_dim S = 1" by linarith
|
|
4861 |
then show ?thesis
|
|
4862 |
proof cases
|
|
4863 |
assume "aff_dim S = -1"
|
|
4864 |
then have "S = {}"
|
|
4865 |
using aff_dim_empty by blast
|
|
4866 |
then have "False"
|
|
4867 |
using \<open>U \<noteq> {}\<close> \<open>K \<subseteq> S\<close> openin_imp_subset [OF opeU] by blast
|
|
4868 |
then show ?thesis ..
|
|
4869 |
next
|
|
4870 |
assume "aff_dim S = 0"
|
|
4871 |
then obtain a where "S = {a}"
|
|
4872 |
using aff_dim_eq_0 by blast
|
|
4873 |
then have "K \<subseteq> U"
|
|
4874 |
using \<open>U \<noteq> {}\<close> \<open>K \<subseteq> S\<close> openin_imp_subset [OF opeU] by blast
|
|
4875 |
show ?thesis
|
|
4876 |
apply (rule that [of id id])
|
|
4877 |
using \<open>K \<subseteq> U\<close> by (auto simp: continuous_on_id intro: homeomorphismI)
|
|
4878 |
next
|
|
4879 |
assume "aff_dim S = 1"
|
|
4880 |
then have "affine hull S homeomorphic (UNIV :: real set)"
|
|
4881 |
by (auto simp: homeomorphic_affine_sets)
|
|
4882 |
then obtain h::"'a\<Rightarrow>real" and j where homhj: "homeomorphism (affine hull S) UNIV h j"
|
|
4883 |
using homeomorphic_def by blast
|
|
4884 |
then have h: "\<And>x. x \<in> affine hull S \<Longrightarrow> j(h(x)) = x" and j: "\<And>y. j y \<in> affine hull S \<and> h(j y) = y"
|
|
4885 |
by (auto simp: homeomorphism_def)
|
|
4886 |
have connh: "connected (h ` S)"
|
|
4887 |
by (meson Topological_Spaces.connected_continuous_image \<open>connected S\<close> homeomorphism_cont1 homeomorphism_of_subsets homhj hull_subset top_greatest)
|
|
4888 |
have hUS: "h ` U \<subseteq> h ` S"
|
|
4889 |
by (meson homeomorphism_imp_open_map homeomorphism_of_subsets homhj hull_subset opeS opeU open_UNIV openin_open_eq)
|
|
4890 |
have opn: "openin (subtopology euclidean (affine hull S)) U \<Longrightarrow> open (h ` U)" for U
|
|
4891 |
using homeomorphism_imp_open_map [OF homhj] by simp
|
|
4892 |
have "open (h ` U)" "open (h ` S)"
|
|
4893 |
by (auto intro: opeS opeU openin_trans opn)
|
|
4894 |
then obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g"
|
|
4895 |
and f: "\<And>x. x \<in> h ` K \<Longrightarrow> f x \<in> h ` U"
|
|
4896 |
and sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> h ` S"
|
|
4897 |
and bou: "bounded {x. \<not> (f x = x \<and> g x = x)}"
|
|
4898 |
apply (rule homeomorphism_grouping_points_exists [of "h ` U" "h ` S" "h ` K" "h ` T"])
|
|
4899 |
using assms by (auto simp: connh hUS)
|
|
4900 |
have jf: "\<And>x. x \<in> affine hull S \<Longrightarrow> j (f (h x)) = x \<longleftrightarrow> f (h x) = h x"
|
|
4901 |
by (metis h j)
|
|
4902 |
have jg: "\<And>x. x \<in> affine hull S \<Longrightarrow> j (g (h x)) = x \<longleftrightarrow> g (h x) = h x"
|
|
4903 |
by (metis h j)
|
|
4904 |
have cont_hj: "continuous_on T h" "continuous_on Y j" for Y
|
|
4905 |
apply (rule continuous_on_subset [OF _ \<open>T \<subseteq> affine hull S\<close>])
|
|
4906 |
using homeomorphism_def homhj apply blast
|
|
4907 |
by (meson continuous_on_subset homeomorphism_def homhj top_greatest)
|
|
4908 |
define f' where "f' \<equiv> \<lambda>x. if x \<in> affine hull S then (j \<circ> f \<circ> h) x else x"
|
|
4909 |
define g' where "g' \<equiv> \<lambda>x. if x \<in> affine hull S then (j \<circ> g \<circ> h) x else x"
|
|
4910 |
show ?thesis
|
|
4911 |
proof
|
|
4912 |
show "homeomorphism T T f' g'"
|
|
4913 |
proof
|
|
4914 |
have "continuous_on T (j \<circ> f \<circ> h)"
|
|
4915 |
apply (intro continuous_on_compose cont_hj)
|
|
4916 |
using hom homeomorphism_def by blast
|
|
4917 |
then show "continuous_on T f'"
|
|
4918 |
apply (rule continuous_on_eq)
|
|
4919 |
using \<open>T \<subseteq> affine hull S\<close> f'_def by auto
|
|
4920 |
have "continuous_on T (j \<circ> g \<circ> h)"
|
|
4921 |
apply (intro continuous_on_compose cont_hj)
|
|
4922 |
using hom homeomorphism_def by blast
|
|
4923 |
then show "continuous_on T g'"
|
|
4924 |
apply (rule continuous_on_eq)
|
|
4925 |
using \<open>T \<subseteq> affine hull S\<close> g'_def by auto
|
|
4926 |
show "f' ` T \<subseteq> T"
|
|
4927 |
proof (clarsimp simp: f'_def)
|
|
4928 |
fix x assume "x \<in> T"
|
|
4929 |
then have "f (h x) \<in> h ` T"
|
|
4930 |
by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
|
|
4931 |
then show "j (f (h x)) \<in> T"
|
|
4932 |
using \<open>T \<subseteq> affine hull S\<close> h by auto
|
|
4933 |
qed
|
|
4934 |
show "g' ` T \<subseteq> T"
|
|
4935 |
proof (clarsimp simp: g'_def)
|
|
4936 |
fix x assume "x \<in> T"
|
|
4937 |
then have "g (h x) \<in> h ` T"
|
|
4938 |
by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
|
|
4939 |
then show "j (g (h x)) \<in> T"
|
|
4940 |
using \<open>T \<subseteq> affine hull S\<close> h by auto
|
|
4941 |
qed
|
|
4942 |
show "\<And>x. x \<in> T \<Longrightarrow> g' (f' x) = x"
|
|
4943 |
using h j hom homeomorphism_apply1 by (fastforce simp add: f'_def g'_def)
|
|
4944 |
show "\<And>y. y \<in> T \<Longrightarrow> f' (g' y) = y"
|
|
4945 |
using h j hom homeomorphism_apply2 by (fastforce simp add: f'_def g'_def)
|
|
4946 |
qed
|
|
4947 |
next
|
|
4948 |
show "{x. \<not> (f' x = x \<and> g' x = x)} \<subseteq> S"
|
|
4949 |
apply (clarsimp simp: f'_def g'_def jf jg)
|
|
4950 |
apply (rule imageE [OF subsetD [OF sub]], force)
|
|
4951 |
by (metis h hull_inc)
|
|
4952 |
next
|
|
4953 |
have "compact (j ` closure {x. \<not> (f x = x \<and> g x = x)})"
|
|
4954 |
using bou by (auto simp: compact_continuous_image cont_hj)
|
|
4955 |
then have "bounded (j ` {x. \<not> (f x = x \<and> g x = x)})"
|
|
4956 |
by (rule bounded_closure_image [OF compact_imp_bounded])
|
|
4957 |
moreover
|
|
4958 |
have *: "{x \<in> affine hull S. j (f (h x)) \<noteq> x \<or> j (g (h x)) \<noteq> x} = j ` {x. (\<not> (f x = x \<and> g x = x))}"
|
|
4959 |
using h j by (auto simp: image_iff; metis)
|
|
4960 |
ultimately have "bounded {x \<in> affine hull S. j (f (h x)) \<noteq> x \<or> j (g (h x)) \<noteq> x}"
|
|
4961 |
by metis
|
|
4962 |
then show "bounded {x. \<not> (f' x = x \<and> g' x = x)}"
|
|
4963 |
by (simp add: f'_def g'_def Collect_mono bounded_subset)
|
|
4964 |
next
|
|
4965 |
show "f' x \<in> U" if "x \<in> K" for x
|
|
4966 |
proof -
|
|
4967 |
have "U \<subseteq> S"
|
|
4968 |
using opeU openin_imp_subset by blast
|
|
4969 |
then have "j (f (h x)) \<in> U"
|
|
4970 |
using f h hull_subset that by fastforce
|
|
4971 |
then show "f' x \<in> U"
|
|
4972 |
using \<open>K \<subseteq> S\<close> S f'_def that by auto
|
|
4973 |
qed
|
|
4974 |
qed
|
|
4975 |
qed
|
|
4976 |
qed
|
|
4977 |
|
|
4978 |
|
|
4979 |
subsection\<open>Nullhomotopic mappings\<close>
|
|
4980 |
|
|
4981 |
text\<open> A mapping out of a sphere is nullhomotopic iff it extends to the ball.
|
|
4982 |
This even works out in the degenerate cases when the radius is \<open>\<le>\<close> 0, and
|
|
4983 |
we also don't need to explicitly assume continuity since it's already implicit
|
|
4984 |
in both sides of the equivalence.\<close>
|
|
4985 |
|
|
4986 |
lemma nullhomotopic_from_lemma:
|
|
4987 |
assumes contg: "continuous_on (cball a r - {a}) g"
|
|
4988 |
and fa: "\<And>e. 0 < e
|
|
4989 |
\<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>x. x \<noteq> a \<and> norm(x - a) < d \<longrightarrow> norm(g x - f a) < e)"
|
|
4990 |
and r: "\<And>x. x \<in> cball a r \<and> x \<noteq> a \<Longrightarrow> f x = g x"
|
|
4991 |
shows "continuous_on (cball a r) f"
|
|
4992 |
proof (clarsimp simp: continuous_on_eq_continuous_within Ball_def)
|
|
4993 |
fix x
|
|
4994 |
assume x: "dist a x \<le> r"
|
|
4995 |
show "continuous (at x within cball a r) f"
|
|
4996 |
proof (cases "x=a")
|
|
4997 |
case True
|
|
4998 |
then show ?thesis
|
|
4999 |
by (metis continuous_within_eps_delta fa dist_norm dist_self r)
|
|
5000 |
next
|
|
5001 |
case False
|
|
5002 |
show ?thesis
|
|
5003 |
proof (rule continuous_transform_within [where f=g and d = "norm(x-a)"])
|
|
5004 |
have "\<exists>d>0. \<forall>x'\<in>cball a r.
|
|
5005 |
dist x' x < d \<longrightarrow> dist (g x') (g x) < e" if "e>0" for e
|
|
5006 |
proof -
|
|
5007 |
obtain d where "d > 0"
|
|
5008 |
and d: "\<And>x'. \<lbrakk>dist x' a \<le> r; x' \<noteq> a; dist x' x < d\<rbrakk> \<Longrightarrow>
|
|
5009 |
dist (g x') (g x) < e"
|
|
5010 |
using contg False x \<open>e>0\<close>
|
|
5011 |
unfolding continuous_on_iff by (fastforce simp add: dist_commute intro: that)
|
|
5012 |
show ?thesis
|
|
5013 |
using \<open>d > 0\<close> \<open>x \<noteq> a\<close>
|
|
5014 |
by (rule_tac x="min d (norm(x - a))" in exI)
|
|
5015 |
(auto simp: dist_commute dist_norm [symmetric] intro!: d)
|
|
5016 |
qed
|
|
5017 |
then show "continuous (at x within cball a r) g"
|
|
5018 |
using contg False by (auto simp: continuous_within_eps_delta)
|
|
5019 |
show "0 < norm (x - a)"
|
|
5020 |
using False by force
|
|
5021 |
show "x \<in> cball a r"
|
|
5022 |
by (simp add: x)
|
|
5023 |
show "\<And>x'. \<lbrakk>x' \<in> cball a r; dist x' x < norm (x - a)\<rbrakk>
|
|
5024 |
\<Longrightarrow> g x' = f x'"
|
|
5025 |
by (metis dist_commute dist_norm less_le r)
|
|
5026 |
qed
|
|
5027 |
qed
|
|
5028 |
qed
|
|
5029 |
|
|
5030 |
proposition nullhomotopic_from_sphere_extension:
|
|
5031 |
fixes f :: "'M::euclidean_space \<Rightarrow> 'a::real_normed_vector"
|
|
5032 |
shows "(\<exists>c. homotopic_with (\<lambda>x. True) (sphere a r) S f (\<lambda>x. c)) \<longleftrightarrow>
|
|
5033 |
(\<exists>g. continuous_on (cball a r) g \<and> g ` (cball a r) \<subseteq> S \<and>
|
|
5034 |
(\<forall>x \<in> sphere a r. g x = f x))"
|
|
5035 |
(is "?lhs = ?rhs")
|
|
5036 |
proof (cases r "0::real" rule: linorder_cases)
|
|
5037 |
case equal
|
|
5038 |
then show ?thesis
|
|
5039 |
apply (auto simp: homotopic_with)
|
|
5040 |
apply (rule_tac x="\<lambda>x. h (0, a)" in exI)
|
|
5041 |
apply (fastforce simp add:)
|
|
5042 |
using continuous_on_const by blast
|
|
5043 |
next
|
|
5044 |
case greater
|
|
5045 |
let ?P = "continuous_on {x. norm(x - a) = r} f \<and> f ` {x. norm(x - a) = r} \<subseteq> S"
|
|
5046 |
have ?P if ?lhs using that
|
|
5047 |
proof
|
|
5048 |
fix c
|
|
5049 |
assume c: "homotopic_with (\<lambda>x. True) (sphere a r) S f (\<lambda>x. c)"
|
|
5050 |
then have contf: "continuous_on (sphere a r) f" and fim: "f ` sphere a r \<subseteq> S"
|
|
5051 |
by (auto simp: homotopic_with_imp_subset1 homotopic_with_imp_continuous)
|
|
5052 |
show ?P
|
|
5053 |
using contf fim by (auto simp: sphere_def dist_norm norm_minus_commute)
|
|
5054 |
qed
|
|
5055 |
moreover have ?P if ?rhs using that
|
|
5056 |
proof
|
|
5057 |
fix g
|
|
5058 |
assume g: "continuous_on (cball a r) g \<and> g ` cball a r \<subseteq> S \<and> (\<forall>xa\<in>sphere a r. g xa = f xa)"
|
|
5059 |
then
|
|
5060 |
show ?P
|
|
5061 |
apply (safe elim!: continuous_on_eq [OF continuous_on_subset])
|
|
5062 |
apply (auto simp: dist_norm norm_minus_commute)
|
|
5063 |
by (metis dist_norm image_subset_iff mem_sphere norm_minus_commute sphere_cball subsetCE)
|
|
5064 |
qed
|
|
5065 |
moreover have ?thesis if ?P
|
|
5066 |
proof
|
|
5067 |
assume ?lhs
|
|
5068 |
then obtain c where "homotopic_with (\<lambda>x. True) (sphere a r) S (\<lambda>x. c) f"
|
|
5069 |
using homotopic_with_sym by blast
|
|
5070 |
then obtain h where conth: "continuous_on ({0..1::real} \<times> sphere a r) h"
|
|
5071 |
and him: "h ` ({0..1} \<times> sphere a r) \<subseteq> S"
|
|
5072 |
and h: "\<And>x. h(0, x) = c" "\<And>x. h(1, x) = f x"
|
|
5073 |
by (auto simp: homotopic_with_def)
|
|
5074 |
obtain b1::'M where "b1 \<in> Basis"
|
|
5075 |
using SOME_Basis by auto
|
|
5076 |
have "c \<in> S"
|
|
5077 |
apply (rule him [THEN subsetD])
|
|
5078 |
apply (rule_tac x = "(0, a + r *\<^sub>R b1)" in image_eqI)
|
|
5079 |
using h greater \<open>b1 \<in> Basis\<close>
|
|
5080 |
apply (auto simp: dist_norm)
|
|
5081 |
done
|
|
5082 |
have uconth: "uniformly_continuous_on ({0..1::real} \<times> (sphere a r)) h"
|
|
5083 |
by (force intro: compact_Times conth compact_uniformly_continuous)
|
|
5084 |
let ?g = "\<lambda>x. h (norm (x - a)/r,
|
|
5085 |
a + (if x = a then r *\<^sub>R b1 else (r / norm(x - a)) *\<^sub>R (x - a)))"
|
|
5086 |
let ?g' = "\<lambda>x. h (norm (x - a)/r, a + (r / norm(x - a)) *\<^sub>R (x - a))"
|
|
5087 |
show ?rhs
|
|
5088 |
proof (intro exI conjI)
|
|
5089 |
have "continuous_on (cball a r - {a}) ?g'"
|
|
5090 |
apply (rule continuous_on_compose2 [OF conth])
|
|
5091 |
apply (intro continuous_intros)
|
|
5092 |
using greater apply (auto simp: dist_norm norm_minus_commute)
|
|
5093 |
done
|
|
5094 |
then show "continuous_on (cball a r) ?g"
|
|
5095 |
proof (rule nullhomotopic_from_lemma)
|
|
5096 |
show "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> norm (?g' x - ?g a) < e" if "0 < e" for e
|
|
5097 |
proof -
|
|
5098 |
obtain d where "0 < d"
|
|
5099 |
and d: "\<And>x x'. \<lbrakk>x \<in> {0..1} \<times> sphere a r; x' \<in> {0..1} \<times> sphere a r; dist x' x < d\<rbrakk>
|
|
5100 |
\<Longrightarrow> dist (h x') (h x) < e"
|
|
5101 |
using uniformly_continuous_onE [OF uconth \<open>0 < e\<close>] by auto
|
|
5102 |
have *: "norm (h (norm (x - a) / r,
|
|
5103 |
a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + r *\<^sub>R b1)) < e"
|
|
5104 |
if "x \<noteq> a" "norm (x - a) < r" "norm (x - a) < d * r" for x
|
|
5105 |
proof -
|
|
5106 |
have "norm (h (norm (x - a) / r, a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + r *\<^sub>R b1)) =
|
|
5107 |
norm (h (norm (x - a) / r, a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + (r / norm (x - a)) *\<^sub>R (x - a)))"
|
|
5108 |
by (simp add: h)
|
|
5109 |
also have "\<dots> < e"
|
|
5110 |
apply (rule d [unfolded dist_norm])
|
|
5111 |
using greater \<open>0 < d\<close> \<open>b1 \<in> Basis\<close> that
|
|
5112 |
by (auto simp: dist_norm divide_simps)
|
|
5113 |
finally show ?thesis .
|
|
5114 |
qed
|
|
5115 |
show ?thesis
|
|
5116 |
apply (rule_tac x = "min r (d * r)" in exI)
|
|
5117 |
using greater \<open>0 < d\<close> by (auto simp: *)
|
|
5118 |
qed
|
|
5119 |
show "\<And>x. x \<in> cball a r \<and> x \<noteq> a \<Longrightarrow> ?g x = ?g' x"
|
|
5120 |
by auto
|
|
5121 |
qed
|
|
5122 |
next
|
|
5123 |
show "?g ` cball a r \<subseteq> S"
|
|
5124 |
using greater him \<open>c \<in> S\<close>
|
|
5125 |
by (force simp: h dist_norm norm_minus_commute)
|
|
5126 |
next
|
|
5127 |
show "\<forall>x\<in>sphere a r. ?g x = f x"
|
|
5128 |
using greater by (auto simp: h dist_norm norm_minus_commute)
|
|
5129 |
qed
|
|
5130 |
next
|
|
5131 |
assume ?rhs
|
|
5132 |
then obtain g where contg: "continuous_on (cball a r) g"
|
|
5133 |
and gim: "g ` cball a r \<subseteq> S"
|
|
5134 |
and gf: "\<forall>x \<in> sphere a r. g x = f x"
|
|
5135 |
by auto
|
|
5136 |
let ?h = "\<lambda>y. g (a + (fst y) *\<^sub>R (snd y - a))"
|
|
5137 |
have "continuous_on ({0..1} \<times> sphere a r) ?h"
|
|
5138 |
apply (rule continuous_on_compose2 [OF contg])
|
|
5139 |
apply (intro continuous_intros)
|
|
5140 |
apply (auto simp: dist_norm norm_minus_commute mult_left_le_one_le)
|
|
5141 |
done
|
|
5142 |
moreover
|
|
5143 |
have "?h ` ({0..1} \<times> sphere a r) \<subseteq> S"
|
|
5144 |
by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gim [THEN subsetD])
|
|
5145 |
moreover
|
|
5146 |
have "\<forall>x\<in>sphere a r. ?h (0, x) = g a" "\<forall>x\<in>sphere a r. ?h (1, x) = f x"
|
|
5147 |
by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gf)
|
|
5148 |
ultimately
|
|
5149 |
show ?lhs
|
|
5150 |
apply (subst homotopic_with_sym)
|
|
5151 |
apply (rule_tac x="g a" in exI)
|
|
5152 |
apply (auto simp: homotopic_with)
|
|
5153 |
done
|
|
5154 |
qed
|
|
5155 |
ultimately
|
|
5156 |
show ?thesis by meson
|
|
5157 |
qed simp
|
|
5158 |
|
|
5159 |
end |