author | schirmer |
Wed, 19 Dec 2007 16:32:12 +0100 | |
changeset 25705 | 45a2ffc5911e |
parent 24893 | b8ef7afe3a6b |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/List |
516 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
516 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
*) |
|
7 |
||
13327 | 8 |
header{*Lists in Zermelo-Fraenkel Set Theory*} |
9 |
||
16417 | 10 |
theory List imports Datatype ArithSimp begin |
516 | 11 |
|
12 |
consts |
|
12789 | 13 |
list :: "i=>i" |
13327 | 14 |
|
516 | 15 |
datatype |
581 | 16 |
"list(A)" = Nil | Cons ("a:A", "l: list(A)") |
516 | 17 |
|
18 |
||
2539 | 19 |
syntax |
20 |
"[]" :: i ("[]") |
|
12789 | 21 |
"@List" :: "is => i" ("[(_)]") |
2539 | 22 |
|
516 | 23 |
translations |
24 |
"[x, xs]" == "Cons(x, [xs])" |
|
25 |
"[x]" == "Cons(x, [])" |
|
26 |
"[]" == "Nil" |
|
27 |
||
28 |
||
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
29 |
consts |
12789 | 30 |
length :: "i=>i" |
13396 | 31 |
hd :: "i=>i" |
32 |
tl :: "i=>i" |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
33 |
|
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
34 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
35 |
"length([]) = 0" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
36 |
"length(Cons(a,l)) = succ(length(l))" |
13327 | 37 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
38 |
primrec |
13396 | 39 |
"hd([]) = 0" |
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
40 |
"hd(Cons(a,l)) = a" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
41 |
|
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
42 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
43 |
"tl([]) = []" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
44 |
"tl(Cons(a,l)) = l" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
45 |
|
6070 | 46 |
|
47 |
consts |
|
13327 | 48 |
map :: "[i=>i, i] => i" |
12789 | 49 |
set_of_list :: "i=>i" |
13327 | 50 |
app :: "[i,i]=>i" (infixr "@" 60) |
51 |
||
52 |
(*map is a binding operator -- it applies to meta-level functions, not |
|
53 |
object-level functions. This simplifies the final form of term_rec_conv, |
|
54 |
although complicating its derivation.*) |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
55 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
56 |
"map(f,[]) = []" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
57 |
"map(f,Cons(a,l)) = Cons(f(a), map(f,l))" |
13327 | 58 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
59 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
60 |
"set_of_list([]) = 0" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
61 |
"set_of_list(Cons(a,l)) = cons(a, set_of_list(l))" |
13327 | 62 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
63 |
primrec |
13327 | 64 |
app_Nil: "[] @ ys = ys" |
65 |
app_Cons: "(Cons(a,l)) @ ys = Cons(a, l @ ys)" |
|
66 |
||
6070 | 67 |
|
68 |
consts |
|
12789 | 69 |
rev :: "i=>i" |
70 |
flat :: "i=>i" |
|
71 |
list_add :: "i=>i" |
|
6070 | 72 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
73 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
74 |
"rev([]) = []" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
75 |
"rev(Cons(a,l)) = rev(l) @ [a]" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
76 |
|
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
77 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
78 |
"flat([]) = []" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
79 |
"flat(Cons(l,ls)) = l @ flat(ls)" |
13327 | 80 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
81 |
primrec |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
82 |
"list_add([]) = 0" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3840
diff
changeset
|
83 |
"list_add(Cons(a,l)) = a #+ list_add(l)" |
13327 | 84 |
|
6070 | 85 |
consts |
12789 | 86 |
drop :: "[i,i]=>i" |
6070 | 87 |
|
88 |
primrec |
|
13327 | 89 |
drop_0: "drop(0,l) = l" |
13387 | 90 |
drop_succ: "drop(succ(i), l) = tl (drop(i,l))" |
516 | 91 |
|
12789 | 92 |
|
93 |
(*** Thanks to Sidi Ehmety for the following ***) |
|
94 |
||
24893 | 95 |
definition |
12789 | 96 |
(* Function `take' returns the first n elements of a list *) |
24893 | 97 |
take :: "[i,i]=>i" where |
12789 | 98 |
"take(n, as) == list_rec(lam n:nat. [], |
99 |
%a l r. lam n:nat. nat_case([], %m. Cons(a, r`m), n), as)`n" |
|
13327 | 100 |
|
24893 | 101 |
definition |
102 |
nth :: "[i, i]=>i" where |
|
13387 | 103 |
--{*returns the (n+1)th element of a list, or 0 if the |
104 |
list is too short.*} |
|
12789 | 105 |
"nth(n, as) == list_rec(lam n:nat. 0, |
13387 | 106 |
%a l r. lam n:nat. nat_case(a, %m. r`m, n), as) ` n" |
12789 | 107 |
|
24893 | 108 |
definition |
109 |
list_update :: "[i, i, i]=>i" where |
|
12789 | 110 |
"list_update(xs, i, v) == list_rec(lam n:nat. Nil, |
111 |
%u us vs. lam n:nat. nat_case(Cons(v, us), %m. Cons(u, vs`m), n), xs)`i" |
|
112 |
||
113 |
consts |
|
114 |
filter :: "[i=>o, i] => i" |
|
115 |
upt :: "[i, i] =>i" |
|
116 |
||
117 |
primrec |
|
118 |
"filter(P, Nil) = Nil" |
|
119 |
"filter(P, Cons(x, xs)) = |
|
120 |
(if P(x) then Cons(x, filter(P, xs)) else filter(P, xs))" |
|
121 |
||
122 |
primrec |
|
123 |
"upt(i, 0) = Nil" |
|
124 |
"upt(i, succ(j)) = (if i le j then upt(i, j)@[j] else Nil)" |
|
125 |
||
24893 | 126 |
definition |
127 |
min :: "[i,i] =>i" where |
|
12789 | 128 |
"min(x, y) == (if x le y then x else y)" |
13327 | 129 |
|
24893 | 130 |
definition |
131 |
max :: "[i, i] =>i" where |
|
12789 | 132 |
"max(x, y) == (if x le y then y else x)" |
133 |
||
13327 | 134 |
(*** Aspects of the datatype definition ***) |
135 |
||
136 |
declare list.intros [simp,TC] |
|
137 |
||
138 |
(*An elimination rule, for type-checking*) |
|
139 |
inductive_cases ConsE: "Cons(a,l) : list(A)" |
|
140 |
||
14055 | 141 |
lemma Cons_type_iff [simp]: "Cons(a,l) \<in> list(A) <-> a \<in> A & l \<in> list(A)" |
13509 | 142 |
by (blast elim: ConsE) |
143 |
||
13327 | 144 |
(*Proving freeness results*) |
145 |
lemma Cons_iff: "Cons(a,l)=Cons(a',l') <-> a=a' & l=l'" |
|
146 |
by auto |
|
147 |
||
148 |
lemma Nil_Cons_iff: "~ Nil=Cons(a,l)" |
|
149 |
by auto |
|
150 |
||
151 |
lemma list_unfold: "list(A) = {0} + (A * list(A))" |
|
152 |
by (blast intro!: list.intros [unfolded list.con_defs] |
|
153 |
elim: list.cases [unfolded list.con_defs]) |
|
154 |
||
155 |
||
156 |
(** Lemmas to justify using "list" in other recursive type definitions **) |
|
157 |
||
158 |
lemma list_mono: "A<=B ==> list(A) <= list(B)" |
|
159 |
apply (unfold list.defs ) |
|
160 |
apply (rule lfp_mono) |
|
161 |
apply (simp_all add: list.bnd_mono) |
|
162 |
apply (assumption | rule univ_mono basic_monos)+ |
|
163 |
done |
|
164 |
||
165 |
(*There is a similar proof by list induction.*) |
|
166 |
lemma list_univ: "list(univ(A)) <= univ(A)" |
|
167 |
apply (unfold list.defs list.con_defs) |
|
168 |
apply (rule lfp_lowerbound) |
|
169 |
apply (rule_tac [2] A_subset_univ [THEN univ_mono]) |
|
170 |
apply (blast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ) |
|
171 |
done |
|
172 |
||
173 |
(*These two theorems justify datatypes involving list(nat), list(A), ...*) |
|
174 |
lemmas list_subset_univ = subset_trans [OF list_mono list_univ] |
|
175 |
||
176 |
lemma list_into_univ: "[| l: list(A); A <= univ(B) |] ==> l: univ(B)" |
|
177 |
by (blast intro: list_subset_univ [THEN subsetD]) |
|
178 |
||
179 |
lemma list_case_type: |
|
180 |
"[| l: list(A); |
|
181 |
c: C(Nil); |
|
182 |
!!x y. [| x: A; y: list(A) |] ==> h(x,y): C(Cons(x,y)) |
|
183 |
|] ==> list_case(c,h,l) : C(l)" |
|
13387 | 184 |
by (erule list.induct, auto) |
185 |
||
186 |
lemma list_0_triv: "list(0) = {Nil}" |
|
187 |
apply (rule equalityI, auto) |
|
188 |
apply (induct_tac x, auto) |
|
13327 | 189 |
done |
190 |
||
191 |
||
192 |
(*** List functions ***) |
|
193 |
||
194 |
lemma tl_type: "l: list(A) ==> tl(l) : list(A)" |
|
195 |
apply (induct_tac "l") |
|
196 |
apply (simp_all (no_asm_simp) add: list.intros) |
|
197 |
done |
|
198 |
||
199 |
(** drop **) |
|
200 |
||
201 |
lemma drop_Nil [simp]: "i:nat ==> drop(i, Nil) = Nil" |
|
202 |
apply (induct_tac "i") |
|
203 |
apply (simp_all (no_asm_simp)) |
|
204 |
done |
|
205 |
||
206 |
lemma drop_succ_Cons [simp]: "i:nat ==> drop(succ(i), Cons(a,l)) = drop(i,l)" |
|
207 |
apply (rule sym) |
|
208 |
apply (induct_tac "i") |
|
209 |
apply (simp (no_asm)) |
|
210 |
apply (simp (no_asm_simp)) |
|
211 |
done |
|
212 |
||
213 |
lemma drop_type [simp,TC]: "[| i:nat; l: list(A) |] ==> drop(i,l) : list(A)" |
|
214 |
apply (induct_tac "i") |
|
215 |
apply (simp_all (no_asm_simp) add: tl_type) |
|
216 |
done |
|
217 |
||
13387 | 218 |
declare drop_succ [simp del] |
13327 | 219 |
|
220 |
||
221 |
(** Type checking -- proved by induction, as usual **) |
|
222 |
||
223 |
lemma list_rec_type [TC]: |
|
224 |
"[| l: list(A); |
|
225 |
c: C(Nil); |
|
226 |
!!x y r. [| x:A; y: list(A); r: C(y) |] ==> h(x,y,r): C(Cons(x,y)) |
|
227 |
|] ==> list_rec(c,h,l) : C(l)" |
|
228 |
by (induct_tac "l", auto) |
|
229 |
||
230 |
(** map **) |
|
231 |
||
232 |
lemma map_type [TC]: |
|
233 |
"[| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)" |
|
234 |
apply (simp add: map_list_def) |
|
235 |
apply (typecheck add: list.intros list_rec_type, blast) |
|
236 |
done |
|
237 |
||
238 |
lemma map_type2 [TC]: "l: list(A) ==> map(h,l) : list({h(u). u:A})" |
|
239 |
apply (erule map_type) |
|
240 |
apply (erule RepFunI) |
|
241 |
done |
|
242 |
||
243 |
(** length **) |
|
244 |
||
245 |
lemma length_type [TC]: "l: list(A) ==> length(l) : nat" |
|
246 |
by (simp add: length_list_def) |
|
247 |
||
248 |
lemma lt_length_in_nat: |
|
14055 | 249 |
"[|x < length(xs); xs \<in> list(A)|] ==> x \<in> nat" |
13327 | 250 |
by (frule lt_nat_in_nat, typecheck) |
251 |
||
252 |
(** app **) |
|
253 |
||
254 |
lemma app_type [TC]: "[| xs: list(A); ys: list(A) |] ==> xs@ys : list(A)" |
|
255 |
by (simp add: app_list_def) |
|
256 |
||
257 |
(** rev **) |
|
258 |
||
259 |
lemma rev_type [TC]: "xs: list(A) ==> rev(xs) : list(A)" |
|
260 |
by (simp add: rev_list_def) |
|
261 |
||
262 |
||
263 |
(** flat **) |
|
264 |
||
265 |
lemma flat_type [TC]: "ls: list(list(A)) ==> flat(ls) : list(A)" |
|
266 |
by (simp add: flat_list_def) |
|
267 |
||
268 |
||
269 |
(** set_of_list **) |
|
270 |
||
271 |
lemma set_of_list_type [TC]: "l: list(A) ==> set_of_list(l) : Pow(A)" |
|
272 |
apply (unfold set_of_list_list_def) |
|
273 |
apply (erule list_rec_type, auto) |
|
274 |
done |
|
275 |
||
276 |
lemma set_of_list_append: |
|
277 |
"xs: list(A) ==> set_of_list (xs@ys) = set_of_list(xs) Un set_of_list(ys)" |
|
278 |
apply (erule list.induct) |
|
279 |
apply (simp_all (no_asm_simp) add: Un_cons) |
|
280 |
done |
|
281 |
||
282 |
||
283 |
(** list_add **) |
|
284 |
||
285 |
lemma list_add_type [TC]: "xs: list(nat) ==> list_add(xs) : nat" |
|
286 |
by (simp add: list_add_list_def) |
|
287 |
||
288 |
||
289 |
(*** theorems about map ***) |
|
290 |
||
291 |
lemma map_ident [simp]: "l: list(A) ==> map(%u. u, l) = l" |
|
292 |
apply (induct_tac "l") |
|
293 |
apply (simp_all (no_asm_simp)) |
|
294 |
done |
|
295 |
||
296 |
lemma map_compose: "l: list(A) ==> map(h, map(j,l)) = map(%u. h(j(u)), l)" |
|
297 |
apply (induct_tac "l") |
|
298 |
apply (simp_all (no_asm_simp)) |
|
299 |
done |
|
300 |
||
301 |
lemma map_app_distrib: "xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)" |
|
302 |
apply (induct_tac "xs") |
|
303 |
apply (simp_all (no_asm_simp)) |
|
304 |
done |
|
305 |
||
306 |
lemma map_flat: "ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))" |
|
307 |
apply (induct_tac "ls") |
|
308 |
apply (simp_all (no_asm_simp) add: map_app_distrib) |
|
309 |
done |
|
310 |
||
311 |
lemma list_rec_map: |
|
312 |
"l: list(A) ==> |
|
313 |
list_rec(c, d, map(h,l)) = |
|
314 |
list_rec(c, %x xs r. d(h(x), map(h,xs), r), l)" |
|
315 |
apply (induct_tac "l") |
|
316 |
apply (simp_all (no_asm_simp)) |
|
317 |
done |
|
318 |
||
319 |
(** theorems about list(Collect(A,P)) -- used in Induct/Term.thy **) |
|
320 |
||
321 |
(* c : list(Collect(B,P)) ==> c : list(B) *) |
|
322 |
lemmas list_CollectD = Collect_subset [THEN list_mono, THEN subsetD, standard] |
|
323 |
||
324 |
lemma map_list_Collect: "l: list({x:A. h(x)=j(x)}) ==> map(h,l) = map(j,l)" |
|
325 |
apply (induct_tac "l") |
|
326 |
apply (simp_all (no_asm_simp)) |
|
327 |
done |
|
328 |
||
329 |
(*** theorems about length ***) |
|
330 |
||
331 |
lemma length_map [simp]: "xs: list(A) ==> length(map(h,xs)) = length(xs)" |
|
13387 | 332 |
by (induct_tac "xs", simp_all) |
13327 | 333 |
|
334 |
lemma length_app [simp]: |
|
335 |
"[| xs: list(A); ys: list(A) |] |
|
336 |
==> length(xs@ys) = length(xs) #+ length(ys)" |
|
13387 | 337 |
by (induct_tac "xs", simp_all) |
13327 | 338 |
|
339 |
lemma length_rev [simp]: "xs: list(A) ==> length(rev(xs)) = length(xs)" |
|
340 |
apply (induct_tac "xs") |
|
341 |
apply (simp_all (no_asm_simp) add: length_app) |
|
342 |
done |
|
343 |
||
344 |
lemma length_flat: |
|
345 |
"ls: list(list(A)) ==> length(flat(ls)) = list_add(map(length,ls))" |
|
346 |
apply (induct_tac "ls") |
|
347 |
apply (simp_all (no_asm_simp) add: length_app) |
|
348 |
done |
|
349 |
||
350 |
(** Length and drop **) |
|
351 |
||
352 |
(*Lemma for the inductive step of drop_length*) |
|
353 |
lemma drop_length_Cons [rule_format]: |
|
354 |
"xs: list(A) ==> |
|
14055 | 355 |
\<forall>x. EX z zs. drop(length(xs), Cons(x,xs)) = Cons(z,zs)" |
13387 | 356 |
by (erule list.induct, simp_all) |
13327 | 357 |
|
358 |
lemma drop_length [rule_format]: |
|
14055 | 359 |
"l: list(A) ==> \<forall>i \<in> length(l). (EX z zs. drop(i,l) = Cons(z,zs))" |
13784 | 360 |
apply (erule list.induct, simp_all, safe) |
13327 | 361 |
apply (erule drop_length_Cons) |
362 |
apply (rule natE) |
|
13387 | 363 |
apply (erule Ord_trans [OF asm_rl length_type Ord_nat], assumption, simp_all) |
13327 | 364 |
apply (blast intro: succ_in_naturalD length_type) |
365 |
done |
|
366 |
||
367 |
||
368 |
(*** theorems about app ***) |
|
369 |
||
370 |
lemma app_right_Nil [simp]: "xs: list(A) ==> xs@Nil=xs" |
|
13387 | 371 |
by (erule list.induct, simp_all) |
13327 | 372 |
|
373 |
lemma app_assoc: "xs: list(A) ==> (xs@ys)@zs = xs@(ys@zs)" |
|
13387 | 374 |
by (induct_tac "xs", simp_all) |
13327 | 375 |
|
376 |
lemma flat_app_distrib: "ls: list(list(A)) ==> flat(ls@ms) = flat(ls)@flat(ms)" |
|
377 |
apply (induct_tac "ls") |
|
378 |
apply (simp_all (no_asm_simp) add: app_assoc) |
|
379 |
done |
|
380 |
||
381 |
(*** theorems about rev ***) |
|
382 |
||
383 |
lemma rev_map_distrib: "l: list(A) ==> rev(map(h,l)) = map(h,rev(l))" |
|
384 |
apply (induct_tac "l") |
|
385 |
apply (simp_all (no_asm_simp) add: map_app_distrib) |
|
386 |
done |
|
387 |
||
388 |
(*Simplifier needs the premises as assumptions because rewriting will not |
|
389 |
instantiate the variable ?A in the rules' typing conditions; note that |
|
390 |
rev_type does not instantiate ?A. Only the premises do. |
|
391 |
*) |
|
392 |
lemma rev_app_distrib: |
|
393 |
"[| xs: list(A); ys: list(A) |] ==> rev(xs@ys) = rev(ys)@rev(xs)" |
|
394 |
apply (erule list.induct) |
|
395 |
apply (simp_all add: app_assoc) |
|
396 |
done |
|
397 |
||
398 |
lemma rev_rev_ident [simp]: "l: list(A) ==> rev(rev(l))=l" |
|
399 |
apply (induct_tac "l") |
|
400 |
apply (simp_all (no_asm_simp) add: rev_app_distrib) |
|
401 |
done |
|
402 |
||
403 |
lemma rev_flat: "ls: list(list(A)) ==> rev(flat(ls)) = flat(map(rev,rev(ls)))" |
|
404 |
apply (induct_tac "ls") |
|
405 |
apply (simp_all add: map_app_distrib flat_app_distrib rev_app_distrib) |
|
406 |
done |
|
407 |
||
408 |
||
409 |
(*** theorems about list_add ***) |
|
410 |
||
411 |
lemma list_add_app: |
|
412 |
"[| xs: list(nat); ys: list(nat) |] |
|
413 |
==> list_add(xs@ys) = list_add(ys) #+ list_add(xs)" |
|
13387 | 414 |
apply (induct_tac "xs", simp_all) |
13327 | 415 |
done |
416 |
||
417 |
lemma list_add_rev: "l: list(nat) ==> list_add(rev(l)) = list_add(l)" |
|
418 |
apply (induct_tac "l") |
|
419 |
apply (simp_all (no_asm_simp) add: list_add_app) |
|
420 |
done |
|
421 |
||
422 |
lemma list_add_flat: |
|
423 |
"ls: list(list(nat)) ==> list_add(flat(ls)) = list_add(map(list_add,ls))" |
|
424 |
apply (induct_tac "ls") |
|
425 |
apply (simp_all (no_asm_simp) add: list_add_app) |
|
426 |
done |
|
427 |
||
13509 | 428 |
(** New induction rules **) |
13327 | 429 |
|
13524 | 430 |
lemma list_append_induct [case_names Nil snoc, consumes 1]: |
13327 | 431 |
"[| l: list(A); |
432 |
P(Nil); |
|
433 |
!!x y. [| x: A; y: list(A); P(y) |] ==> P(y @ [x]) |
|
434 |
|] ==> P(l)" |
|
435 |
apply (subgoal_tac "P(rev(rev(l)))", simp) |
|
436 |
apply (erule rev_type [THEN list.induct], simp_all) |
|
437 |
done |
|
438 |
||
13509 | 439 |
lemma list_complete_induct_lemma [rule_format]: |
440 |
assumes ih: |
|
14055 | 441 |
"\<And>l. [| l \<in> list(A); |
442 |
\<forall>l' \<in> list(A). length(l') < length(l) --> P(l')|] |
|
13509 | 443 |
==> P(l)" |
14055 | 444 |
shows "n \<in> nat ==> \<forall>l \<in> list(A). length(l) < n --> P(l)" |
13509 | 445 |
apply (induct_tac n, simp) |
446 |
apply (blast intro: ih elim!: leE) |
|
447 |
done |
|
448 |
||
449 |
theorem list_complete_induct: |
|
14055 | 450 |
"[| l \<in> list(A); |
451 |
\<And>l. [| l \<in> list(A); |
|
452 |
\<forall>l' \<in> list(A). length(l') < length(l) --> P(l')|] |
|
13509 | 453 |
==> P(l) |
454 |
|] ==> P(l)" |
|
455 |
apply (rule list_complete_induct_lemma [of A]) |
|
456 |
prefer 4 apply (rule le_refl, simp) |
|
457 |
apply blast |
|
458 |
apply simp |
|
459 |
apply assumption |
|
460 |
done |
|
461 |
||
13327 | 462 |
|
463 |
(*** Thanks to Sidi Ehmety for these results about min, take, etc. ***) |
|
464 |
||
465 |
(** min FIXME: replace by Int! **) |
|
466 |
(* Min theorems are also true for i, j ordinals *) |
|
467 |
lemma min_sym: "[| i:nat; j:nat |] ==> min(i,j)=min(j,i)" |
|
468 |
apply (unfold min_def) |
|
469 |
apply (auto dest!: not_lt_imp_le dest: lt_not_sym intro: le_anti_sym) |
|
470 |
done |
|
471 |
||
472 |
lemma min_type [simp,TC]: "[| i:nat; j:nat |] ==> min(i,j):nat" |
|
473 |
by (unfold min_def, auto) |
|
474 |
||
475 |
lemma min_0 [simp]: "i:nat ==> min(0,i) = 0" |
|
476 |
apply (unfold min_def) |
|
477 |
apply (auto dest: not_lt_imp_le) |
|
478 |
done |
|
479 |
||
480 |
lemma min_02 [simp]: "i:nat ==> min(i, 0) = 0" |
|
481 |
apply (unfold min_def) |
|
482 |
apply (auto dest: not_lt_imp_le) |
|
483 |
done |
|
484 |
||
485 |
lemma lt_min_iff: "[| i:nat; j:nat; k:nat |] ==> i<min(j,k) <-> i<j & i<k" |
|
486 |
apply (unfold min_def) |
|
487 |
apply (auto dest!: not_lt_imp_le intro: lt_trans2 lt_trans) |
|
488 |
done |
|
489 |
||
490 |
lemma min_succ_succ [simp]: |
|
491 |
"[| i:nat; j:nat |] ==> min(succ(i), succ(j))= succ(min(i, j))" |
|
492 |
apply (unfold min_def, auto) |
|
493 |
done |
|
494 |
||
495 |
(*** more theorems about lists ***) |
|
496 |
||
497 |
(** filter **) |
|
498 |
||
499 |
lemma filter_append [simp]: |
|
500 |
"xs:list(A) ==> filter(P, xs@ys) = filter(P, xs) @ filter(P, ys)" |
|
501 |
by (induct_tac "xs", auto) |
|
502 |
||
503 |
lemma filter_type [simp,TC]: "xs:list(A) ==> filter(P, xs):list(A)" |
|
504 |
by (induct_tac "xs", auto) |
|
505 |
||
506 |
lemma length_filter: "xs:list(A) ==> length(filter(P, xs)) le length(xs)" |
|
507 |
apply (induct_tac "xs", auto) |
|
508 |
apply (rule_tac j = "length (l) " in le_trans) |
|
509 |
apply (auto simp add: le_iff) |
|
510 |
done |
|
511 |
||
512 |
lemma filter_is_subset: "xs:list(A) ==> set_of_list(filter(P,xs)) <= set_of_list(xs)" |
|
513 |
by (induct_tac "xs", auto) |
|
514 |
||
515 |
lemma filter_False [simp]: "xs:list(A) ==> filter(%p. False, xs) = Nil" |
|
516 |
by (induct_tac "xs", auto) |
|
517 |
||
518 |
lemma filter_True [simp]: "xs:list(A) ==> filter(%p. True, xs) = xs" |
|
519 |
by (induct_tac "xs", auto) |
|
520 |
||
521 |
(** length **) |
|
522 |
||
523 |
lemma length_is_0_iff [simp]: "xs:list(A) ==> length(xs)=0 <-> xs=Nil" |
|
524 |
by (erule list.induct, auto) |
|
525 |
||
526 |
lemma length_is_0_iff2 [simp]: "xs:list(A) ==> 0 = length(xs) <-> xs=Nil" |
|
527 |
by (erule list.induct, auto) |
|
528 |
||
529 |
lemma length_tl [simp]: "xs:list(A) ==> length(tl(xs)) = length(xs) #- 1" |
|
530 |
by (erule list.induct, auto) |
|
531 |
||
532 |
lemma length_greater_0_iff: "xs:list(A) ==> 0<length(xs) <-> xs ~= Nil" |
|
533 |
by (erule list.induct, auto) |
|
534 |
||
535 |
lemma length_succ_iff: "xs:list(A) ==> length(xs)=succ(n) <-> (EX y ys. xs=Cons(y, ys) & length(ys)=n)" |
|
536 |
by (erule list.induct, auto) |
|
537 |
||
538 |
(** more theorems about append **) |
|
539 |
||
540 |
lemma append_is_Nil_iff [simp]: |
|
541 |
"xs:list(A) ==> (xs@ys = Nil) <-> (xs=Nil & ys = Nil)" |
|
542 |
by (erule list.induct, auto) |
|
543 |
||
544 |
lemma append_is_Nil_iff2 [simp]: |
|
545 |
"xs:list(A) ==> (Nil = xs@ys) <-> (xs=Nil & ys = Nil)" |
|
546 |
by (erule list.induct, auto) |
|
547 |
||
548 |
lemma append_left_is_self_iff [simp]: |
|
549 |
"xs:list(A) ==> (xs@ys = xs) <-> (ys = Nil)" |
|
550 |
by (erule list.induct, auto) |
|
551 |
||
552 |
lemma append_left_is_self_iff2 [simp]: |
|
553 |
"xs:list(A) ==> (xs = xs@ys) <-> (ys = Nil)" |
|
554 |
by (erule list.induct, auto) |
|
555 |
||
556 |
(*TOO SLOW as a default simprule!*) |
|
557 |
lemma append_left_is_Nil_iff [rule_format]: |
|
558 |
"[| xs:list(A); ys:list(A); zs:list(A) |] ==> |
|
559 |
length(ys)=length(zs) --> (xs@ys=zs <-> (xs=Nil & ys=zs))" |
|
560 |
apply (erule list.induct) |
|
561 |
apply (auto simp add: length_app) |
|
562 |
done |
|
563 |
||
564 |
(*TOO SLOW as a default simprule!*) |
|
565 |
lemma append_left_is_Nil_iff2 [rule_format]: |
|
566 |
"[| xs:list(A); ys:list(A); zs:list(A) |] ==> |
|
567 |
length(ys)=length(zs) --> (zs=ys@xs <-> (xs=Nil & ys=zs))" |
|
568 |
apply (erule list.induct) |
|
569 |
apply (auto simp add: length_app) |
|
570 |
done |
|
571 |
||
572 |
lemma append_eq_append_iff [rule_format,simp]: |
|
14055 | 573 |
"xs:list(A) ==> \<forall>ys \<in> list(A). |
13327 | 574 |
length(xs)=length(ys) --> (xs@us = ys@vs) <-> (xs=ys & us=vs)" |
575 |
apply (erule list.induct) |
|
576 |
apply (simp (no_asm_simp)) |
|
577 |
apply clarify |
|
13387 | 578 |
apply (erule_tac a = ys in list.cases, auto) |
13327 | 579 |
done |
580 |
||
581 |
lemma append_eq_append [rule_format]: |
|
582 |
"xs:list(A) ==> |
|
14055 | 583 |
\<forall>ys \<in> list(A). \<forall>us \<in> list(A). \<forall>vs \<in> list(A). |
13327 | 584 |
length(us) = length(vs) --> (xs@us = ys@vs) --> (xs=ys & us=vs)" |
585 |
apply (induct_tac "xs") |
|
586 |
apply (force simp add: length_app, clarify) |
|
13387 | 587 |
apply (erule_tac a = ys in list.cases, simp) |
13327 | 588 |
apply (subgoal_tac "Cons (a, l) @ us =vs") |
13387 | 589 |
apply (drule rev_iffD1 [OF _ append_left_is_Nil_iff], simp_all, blast) |
13327 | 590 |
done |
591 |
||
592 |
lemma append_eq_append_iff2 [simp]: |
|
593 |
"[| xs:list(A); ys:list(A); us:list(A); vs:list(A); length(us)=length(vs) |] |
|
594 |
==> xs@us = ys@vs <-> (xs=ys & us=vs)" |
|
595 |
apply (rule iffI) |
|
596 |
apply (rule append_eq_append, auto) |
|
597 |
done |
|
598 |
||
599 |
lemma append_self_iff [simp]: |
|
600 |
"[| xs:list(A); ys:list(A); zs:list(A) |] ==> xs@ys=xs@zs <-> ys=zs" |
|
13509 | 601 |
by simp |
13327 | 602 |
|
603 |
lemma append_self_iff2 [simp]: |
|
604 |
"[| xs:list(A); ys:list(A); zs:list(A) |] ==> ys@xs=zs@xs <-> ys=zs" |
|
13509 | 605 |
by simp |
13327 | 606 |
|
607 |
(* Can also be proved from append_eq_append_iff2, |
|
608 |
but the proof requires two more hypotheses: x:A and y:A *) |
|
609 |
lemma append1_eq_iff [rule_format,simp]: |
|
14055 | 610 |
"xs:list(A) ==> \<forall>ys \<in> list(A). xs@[x] = ys@[y] <-> (xs = ys & x=y)" |
13327 | 611 |
apply (erule list.induct) |
612 |
apply clarify |
|
613 |
apply (erule list.cases) |
|
614 |
apply simp_all |
|
615 |
txt{*Inductive step*} |
|
616 |
apply clarify |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
617 |
apply (erule_tac a=ys in list.cases, simp_all) |
13327 | 618 |
done |
619 |
||
620 |
||
621 |
lemma append_right_is_self_iff [simp]: |
|
622 |
"[| xs:list(A); ys:list(A) |] ==> (xs@ys = ys) <-> (xs=Nil)" |
|
13509 | 623 |
by (simp (no_asm_simp) add: append_left_is_Nil_iff) |
13327 | 624 |
|
625 |
lemma append_right_is_self_iff2 [simp]: |
|
626 |
"[| xs:list(A); ys:list(A) |] ==> (ys = xs@ys) <-> (xs=Nil)" |
|
627 |
apply (rule iffI) |
|
628 |
apply (drule sym, auto) |
|
629 |
done |
|
630 |
||
631 |
lemma hd_append [rule_format,simp]: |
|
632 |
"xs:list(A) ==> xs ~= Nil --> hd(xs @ ys) = hd(xs)" |
|
633 |
by (induct_tac "xs", auto) |
|
634 |
||
635 |
lemma tl_append [rule_format,simp]: |
|
636 |
"xs:list(A) ==> xs~=Nil --> tl(xs @ ys) = tl(xs)@ys" |
|
637 |
by (induct_tac "xs", auto) |
|
638 |
||
639 |
(** rev **) |
|
640 |
lemma rev_is_Nil_iff [simp]: "xs:list(A) ==> (rev(xs) = Nil <-> xs = Nil)" |
|
641 |
by (erule list.induct, auto) |
|
642 |
||
643 |
lemma Nil_is_rev_iff [simp]: "xs:list(A) ==> (Nil = rev(xs) <-> xs = Nil)" |
|
644 |
by (erule list.induct, auto) |
|
645 |
||
646 |
lemma rev_is_rev_iff [rule_format,simp]: |
|
14055 | 647 |
"xs:list(A) ==> \<forall>ys \<in> list(A). rev(xs)=rev(ys) <-> xs=ys" |
13387 | 648 |
apply (erule list.induct, force, clarify) |
649 |
apply (erule_tac a = ys in list.cases, auto) |
|
13327 | 650 |
done |
651 |
||
652 |
lemma rev_list_elim [rule_format]: |
|
653 |
"xs:list(A) ==> |
|
14055 | 654 |
(xs=Nil --> P) --> (\<forall>ys \<in> list(A). \<forall>y \<in> A. xs =ys@[y] -->P)-->P" |
13509 | 655 |
by (erule list_append_induct, auto) |
13327 | 656 |
|
657 |
||
658 |
(** more theorems about drop **) |
|
659 |
||
660 |
lemma length_drop [rule_format,simp]: |
|
14055 | 661 |
"n:nat ==> \<forall>xs \<in> list(A). length(drop(n, xs)) = length(xs) #- n" |
13327 | 662 |
apply (erule nat_induct) |
663 |
apply (auto elim: list.cases) |
|
664 |
done |
|
665 |
||
666 |
lemma drop_all [rule_format,simp]: |
|
14055 | 667 |
"n:nat ==> \<forall>xs \<in> list(A). length(xs) le n --> drop(n, xs)=Nil" |
13327 | 668 |
apply (erule nat_induct) |
669 |
apply (auto elim: list.cases) |
|
670 |
done |
|
671 |
||
672 |
lemma drop_append [rule_format]: |
|
673 |
"n:nat ==> |
|
14055 | 674 |
\<forall>xs \<in> list(A). drop(n, xs@ys) = drop(n,xs) @ drop(n #- length(xs), ys)" |
13327 | 675 |
apply (induct_tac "n") |
676 |
apply (auto elim: list.cases) |
|
677 |
done |
|
678 |
||
679 |
lemma drop_drop: |
|
14055 | 680 |
"m:nat ==> \<forall>xs \<in> list(A). \<forall>n \<in> nat. drop(n, drop(m, xs))=drop(n #+ m, xs)" |
13327 | 681 |
apply (induct_tac "m") |
682 |
apply (auto elim: list.cases) |
|
683 |
done |
|
684 |
||
685 |
(** take **) |
|
686 |
||
687 |
lemma take_0 [simp]: "xs:list(A) ==> take(0, xs) = Nil" |
|
688 |
apply (unfold take_def) |
|
689 |
apply (erule list.induct, auto) |
|
690 |
done |
|
691 |
||
692 |
lemma take_succ_Cons [simp]: |
|
693 |
"n:nat ==> take(succ(n), Cons(a, xs)) = Cons(a, take(n, xs))" |
|
694 |
by (simp add: take_def) |
|
695 |
||
696 |
(* Needed for proving take_all *) |
|
697 |
lemma take_Nil [simp]: "n:nat ==> take(n, Nil) = Nil" |
|
698 |
by (unfold take_def, auto) |
|
699 |
||
700 |
lemma take_all [rule_format,simp]: |
|
14055 | 701 |
"n:nat ==> \<forall>xs \<in> list(A). length(xs) le n --> take(n, xs) = xs" |
13327 | 702 |
apply (erule nat_induct) |
703 |
apply (auto elim: list.cases) |
|
704 |
done |
|
705 |
||
706 |
lemma take_type [rule_format,simp,TC]: |
|
14055 | 707 |
"xs:list(A) ==> \<forall>n \<in> nat. take(n, xs):list(A)" |
13387 | 708 |
apply (erule list.induct, simp, clarify) |
13327 | 709 |
apply (erule natE, auto) |
710 |
done |
|
711 |
||
712 |
lemma take_append [rule_format,simp]: |
|
713 |
"xs:list(A) ==> |
|
14055 | 714 |
\<forall>ys \<in> list(A). \<forall>n \<in> nat. take(n, xs @ ys) = |
13327 | 715 |
take(n, xs) @ take(n #- length(xs), ys)" |
13387 | 716 |
apply (erule list.induct, simp, clarify) |
13327 | 717 |
apply (erule natE, auto) |
718 |
done |
|
719 |
||
720 |
lemma take_take [rule_format]: |
|
721 |
"m : nat ==> |
|
14055 | 722 |
\<forall>xs \<in> list(A). \<forall>n \<in> nat. take(n, take(m,xs))= take(min(n, m), xs)" |
13327 | 723 |
apply (induct_tac "m", auto) |
13387 | 724 |
apply (erule_tac a = xs in list.cases) |
13327 | 725 |
apply (auto simp add: take_Nil) |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13611
diff
changeset
|
726 |
apply (erule_tac n=n in natE) |
13327 | 727 |
apply (auto intro: take_0 take_type) |
728 |
done |
|
729 |
||
730 |
(** nth **) |
|
731 |
||
13387 | 732 |
lemma nth_0 [simp]: "nth(0, Cons(a, l)) = a" |
733 |
by (simp add: nth_def) |
|
734 |
||
735 |
lemma nth_Cons [simp]: "n:nat ==> nth(succ(n), Cons(a,l)) = nth(n,l)" |
|
736 |
by (simp add: nth_def) |
|
13327 | 737 |
|
13387 | 738 |
lemma nth_empty [simp]: "nth(n, Nil) = 0" |
739 |
by (simp add: nth_def) |
|
740 |
||
741 |
lemma nth_type [rule_format,simp,TC]: |
|
14055 | 742 |
"xs:list(A) ==> \<forall>n. n < length(xs) --> nth(n,xs) : A" |
14046 | 743 |
apply (erule list.induct, simp, clarify) |
14055 | 744 |
apply (subgoal_tac "n \<in> nat") |
14046 | 745 |
apply (erule natE, auto dest!: le_in_nat) |
13327 | 746 |
done |
747 |
||
13387 | 748 |
lemma nth_eq_0 [rule_format]: |
14055 | 749 |
"xs:list(A) ==> \<forall>n \<in> nat. length(xs) le n --> nth(n,xs) = 0" |
13387 | 750 |
apply (erule list.induct, simp, clarify) |
13327 | 751 |
apply (erule natE, auto) |
752 |
done |
|
753 |
||
754 |
lemma nth_append [rule_format]: |
|
755 |
"xs:list(A) ==> |
|
14055 | 756 |
\<forall>n \<in> nat. nth(n, xs @ ys) = (if n < length(xs) then nth(n,xs) |
13387 | 757 |
else nth(n #- length(xs), ys))" |
758 |
apply (induct_tac "xs", simp, clarify) |
|
13327 | 759 |
apply (erule natE, auto) |
760 |
done |
|
761 |
||
762 |
lemma set_of_list_conv_nth: |
|
763 |
"xs:list(A) |
|
13387 | 764 |
==> set_of_list(xs) = {x:A. EX i:nat. i<length(xs) & x = nth(i,xs)}" |
13327 | 765 |
apply (induct_tac "xs", simp_all) |
766 |
apply (rule equalityI, auto) |
|
13387 | 767 |
apply (rule_tac x = 0 in bexI, auto) |
13327 | 768 |
apply (erule natE, auto) |
769 |
done |
|
770 |
||
771 |
(* Other theorems about lists *) |
|
772 |
||
773 |
lemma nth_take_lemma [rule_format]: |
|
774 |
"k:nat ==> |
|
14055 | 775 |
\<forall>xs \<in> list(A). (\<forall>ys \<in> list(A). k le length(xs) --> k le length(ys) --> |
776 |
(\<forall>i \<in> nat. i<k --> nth(i,xs) = nth(i,ys))--> take(k,xs) = take(k,ys))" |
|
13327 | 777 |
apply (induct_tac "k") |
778 |
apply (simp_all (no_asm_simp) add: lt_succ_eq_0_disj all_conj_distrib) |
|
779 |
apply clarify |
|
780 |
(*Both lists are non-empty*) |
|
13387 | 781 |
apply (erule_tac a=xs in list.cases, simp) |
782 |
apply (erule_tac a=ys in list.cases, clarify) |
|
13327 | 783 |
apply (simp (no_asm_use) ) |
784 |
apply clarify |
|
785 |
apply (simp (no_asm_simp)) |
|
786 |
apply (rule conjI, force) |
|
787 |
apply (rename_tac y ys z zs) |
|
13387 | 788 |
apply (drule_tac x = zs and x1 = ys in bspec [THEN bspec], auto) |
13327 | 789 |
done |
790 |
||
791 |
lemma nth_equalityI [rule_format]: |
|
792 |
"[| xs:list(A); ys:list(A); length(xs) = length(ys); |
|
14055 | 793 |
\<forall>i \<in> nat. i < length(xs) --> nth(i,xs) = nth(i,ys) |] |
13327 | 794 |
==> xs = ys" |
795 |
apply (subgoal_tac "length (xs) le length (ys) ") |
|
796 |
apply (cut_tac k="length(xs)" and xs=xs and ys=ys in nth_take_lemma) |
|
797 |
apply (simp_all add: take_all) |
|
798 |
done |
|
799 |
||
800 |
(*The famous take-lemma*) |
|
801 |
||
802 |
lemma take_equalityI [rule_format]: |
|
14055 | 803 |
"[| xs:list(A); ys:list(A); (\<forall>i \<in> nat. take(i, xs) = take(i,ys)) |] |
13327 | 804 |
==> xs = ys" |
805 |
apply (case_tac "length (xs) le length (ys) ") |
|
806 |
apply (drule_tac x = "length (ys) " in bspec) |
|
807 |
apply (drule_tac [3] not_lt_imp_le) |
|
808 |
apply (subgoal_tac [5] "length (ys) le length (xs) ") |
|
809 |
apply (rule_tac [6] j = "succ (length (ys))" in le_trans) |
|
810 |
apply (rule_tac [6] leI) |
|
811 |
apply (drule_tac [5] x = "length (xs) " in bspec) |
|
812 |
apply (simp_all add: take_all) |
|
813 |
done |
|
814 |
||
815 |
lemma nth_drop [rule_format]: |
|
14055 | 816 |
"n:nat ==> \<forall>i \<in> nat. \<forall>xs \<in> list(A). nth(i, drop(n, xs)) = nth(n #+ i, xs)" |
13387 | 817 |
apply (induct_tac "n", simp_all, clarify) |
818 |
apply (erule list.cases, auto) |
|
13327 | 819 |
done |
820 |
||
14055 | 821 |
lemma take_succ [rule_format]: |
822 |
"xs\<in>list(A) |
|
823 |
==> \<forall>i. i < length(xs) --> take(succ(i), xs) = take(i,xs) @ [nth(i, xs)]" |
|
824 |
apply (induct_tac "xs", auto) |
|
825 |
apply (subgoal_tac "i\<in>nat") |
|
826 |
apply (erule natE) |
|
827 |
apply (auto simp add: le_in_nat) |
|
828 |
done |
|
829 |
||
830 |
lemma take_add [rule_format]: |
|
831 |
"[|xs\<in>list(A); j\<in>nat|] |
|
832 |
==> \<forall>i\<in>nat. take(i #+ j, xs) = take(i,xs) @ take(j, drop(i,xs))" |
|
833 |
apply (induct_tac "xs", simp_all, clarify) |
|
834 |
apply (erule_tac n = i in natE, simp_all) |
|
835 |
done |
|
836 |
||
14076 | 837 |
lemma length_take: |
838 |
"l\<in>list(A) ==> \<forall>n\<in>nat. length(take(n,l)) = min(n, length(l))" |
|
839 |
apply (induct_tac "l", safe, simp_all) |
|
840 |
apply (erule natE, simp_all) |
|
841 |
done |
|
842 |
||
13327 | 843 |
subsection{*The function zip*} |
844 |
||
845 |
text{*Crafty definition to eliminate a type argument*} |
|
846 |
||
847 |
consts |
|
848 |
zip_aux :: "[i,i]=>i" |
|
849 |
||
850 |
primrec (*explicit lambda is required because both arguments of "un" vary*) |
|
851 |
"zip_aux(B,[]) = |
|
14055 | 852 |
(\<lambda>ys \<in> list(B). list_case([], %y l. [], ys))" |
13327 | 853 |
|
854 |
"zip_aux(B,Cons(x,l)) = |
|
14055 | 855 |
(\<lambda>ys \<in> list(B). |
13327 | 856 |
list_case(Nil, %y zs. Cons(<x,y>, zip_aux(B,l)`zs), ys))" |
857 |
||
24893 | 858 |
definition |
859 |
zip :: "[i, i]=>i" where |
|
13327 | 860 |
"zip(xs, ys) == zip_aux(set_of_list(ys),xs)`ys" |
861 |
||
862 |
||
863 |
(* zip equations *) |
|
864 |
||
14055 | 865 |
lemma list_on_set_of_list: "xs \<in> list(A) ==> xs \<in> list(set_of_list(xs))" |
13327 | 866 |
apply (induct_tac xs, simp_all) |
867 |
apply (blast intro: list_mono [THEN subsetD]) |
|
868 |
done |
|
869 |
||
870 |
lemma zip_Nil [simp]: "ys:list(A) ==> zip(Nil, ys)=Nil" |
|
871 |
apply (simp add: zip_def list_on_set_of_list [of _ A]) |
|
872 |
apply (erule list.cases, simp_all) |
|
873 |
done |
|
874 |
||
875 |
lemma zip_Nil2 [simp]: "xs:list(A) ==> zip(xs, Nil)=Nil" |
|
876 |
apply (simp add: zip_def list_on_set_of_list [of _ A]) |
|
877 |
apply (erule list.cases, simp_all) |
|
878 |
done |
|
879 |
||
880 |
lemma zip_aux_unique [rule_format]: |
|
14055 | 881 |
"[|B<=C; xs \<in> list(A)|] |
882 |
==> \<forall>ys \<in> list(B). zip_aux(C,xs) ` ys = zip_aux(B,xs) ` ys" |
|
13327 | 883 |
apply (induct_tac xs) |
884 |
apply simp_all |
|
885 |
apply (blast intro: list_mono [THEN subsetD], clarify) |
|
13387 | 886 |
apply (erule_tac a=ys in list.cases, auto) |
13327 | 887 |
apply (blast intro: list_mono [THEN subsetD]) |
888 |
done |
|
889 |
||
890 |
lemma zip_Cons_Cons [simp]: |
|
891 |
"[| xs:list(A); ys:list(B); x:A; y:B |] ==> |
|
892 |
zip(Cons(x,xs), Cons(y, ys)) = Cons(<x,y>, zip(xs, ys))" |
|
893 |
apply (simp add: zip_def, auto) |
|
894 |
apply (rule zip_aux_unique, auto) |
|
895 |
apply (simp add: list_on_set_of_list [of _ B]) |
|
896 |
apply (blast intro: list_on_set_of_list list_mono [THEN subsetD]) |
|
897 |
done |
|
898 |
||
899 |
lemma zip_type [rule_format,simp,TC]: |
|
14055 | 900 |
"xs:list(A) ==> \<forall>ys \<in> list(B). zip(xs, ys):list(A*B)" |
13327 | 901 |
apply (induct_tac "xs") |
902 |
apply (simp (no_asm)) |
|
903 |
apply clarify |
|
13387 | 904 |
apply (erule_tac a = ys in list.cases, auto) |
13327 | 905 |
done |
906 |
||
907 |
(* zip length *) |
|
908 |
lemma length_zip [rule_format,simp]: |
|
14055 | 909 |
"xs:list(A) ==> \<forall>ys \<in> list(B). length(zip(xs,ys)) = |
13327 | 910 |
min(length(xs), length(ys))" |
911 |
apply (unfold min_def) |
|
13387 | 912 |
apply (induct_tac "xs", simp_all, clarify) |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
913 |
apply (erule_tac a = ys in list.cases, auto) |
13327 | 914 |
done |
915 |
||
916 |
lemma zip_append1 [rule_format]: |
|
917 |
"[| ys:list(A); zs:list(B) |] ==> |
|
14055 | 918 |
\<forall>xs \<in> list(A). zip(xs @ ys, zs) = |
13327 | 919 |
zip(xs, take(length(xs), zs)) @ zip(ys, drop(length(xs),zs))" |
13387 | 920 |
apply (induct_tac "zs", force, clarify) |
921 |
apply (erule_tac a = xs in list.cases, simp_all) |
|
13327 | 922 |
done |
923 |
||
924 |
lemma zip_append2 [rule_format]: |
|
14055 | 925 |
"[| xs:list(A); zs:list(B) |] ==> \<forall>ys \<in> list(B). zip(xs, ys@zs) = |
13327 | 926 |
zip(take(length(ys), xs), ys) @ zip(drop(length(ys), xs), zs)" |
13387 | 927 |
apply (induct_tac "xs", force, clarify) |
928 |
apply (erule_tac a = ys in list.cases, auto) |
|
13327 | 929 |
done |
930 |
||
931 |
lemma zip_append [simp]: |
|
932 |
"[| length(xs) = length(us); length(ys) = length(vs); |
|
933 |
xs:list(A); us:list(B); ys:list(A); vs:list(B) |] |
|
934 |
==> zip(xs@ys,us@vs) = zip(xs, us) @ zip(ys, vs)" |
|
935 |
by (simp (no_asm_simp) add: zip_append1 drop_append diff_self_eq_0) |
|
936 |
||
937 |
||
938 |
lemma zip_rev [rule_format,simp]: |
|
14055 | 939 |
"ys:list(B) ==> \<forall>xs \<in> list(A). |
13327 | 940 |
length(xs) = length(ys) --> zip(rev(xs), rev(ys)) = rev(zip(xs, ys))" |
13387 | 941 |
apply (induct_tac "ys", force, clarify) |
942 |
apply (erule_tac a = xs in list.cases) |
|
13327 | 943 |
apply (auto simp add: length_rev) |
944 |
done |
|
945 |
||
946 |
lemma nth_zip [rule_format,simp]: |
|
14055 | 947 |
"ys:list(B) ==> \<forall>i \<in> nat. \<forall>xs \<in> list(A). |
13327 | 948 |
i < length(xs) --> i < length(ys) --> |
949 |
nth(i,zip(xs, ys)) = <nth(i,xs),nth(i, ys)>" |
|
13387 | 950 |
apply (induct_tac "ys", force, clarify) |
951 |
apply (erule_tac a = xs in list.cases, simp) |
|
13327 | 952 |
apply (auto elim: natE) |
953 |
done |
|
954 |
||
955 |
lemma set_of_list_zip [rule_format]: |
|
956 |
"[| xs:list(A); ys:list(B); i:nat |] |
|
957 |
==> set_of_list(zip(xs, ys)) = |
|
958 |
{<x, y>:A*B. EX i:nat. i < min(length(xs), length(ys)) |
|
13387 | 959 |
& x = nth(i, xs) & y = nth(i, ys)}" |
13327 | 960 |
by (force intro!: Collect_cong simp add: lt_min_iff set_of_list_conv_nth) |
961 |
||
962 |
(** list_update **) |
|
963 |
||
964 |
lemma list_update_Nil [simp]: "i:nat ==>list_update(Nil, i, v) = Nil" |
|
965 |
by (unfold list_update_def, auto) |
|
966 |
||
967 |
lemma list_update_Cons_0 [simp]: "list_update(Cons(x, xs), 0, v)= Cons(v, xs)" |
|
968 |
by (unfold list_update_def, auto) |
|
969 |
||
970 |
lemma list_update_Cons_succ [simp]: |
|
971 |
"n:nat ==> |
|
972 |
list_update(Cons(x, xs), succ(n), v)= Cons(x, list_update(xs, n, v))" |
|
973 |
apply (unfold list_update_def, auto) |
|
974 |
done |
|
975 |
||
976 |
lemma list_update_type [rule_format,simp,TC]: |
|
14055 | 977 |
"[| xs:list(A); v:A |] ==> \<forall>n \<in> nat. list_update(xs, n, v):list(A)" |
13327 | 978 |
apply (induct_tac "xs") |
979 |
apply (simp (no_asm)) |
|
980 |
apply clarify |
|
981 |
apply (erule natE, auto) |
|
982 |
done |
|
983 |
||
984 |
lemma length_list_update [rule_format,simp]: |
|
14055 | 985 |
"xs:list(A) ==> \<forall>i \<in> nat. length(list_update(xs, i, v))=length(xs)" |
13327 | 986 |
apply (induct_tac "xs") |
987 |
apply (simp (no_asm)) |
|
988 |
apply clarify |
|
989 |
apply (erule natE, auto) |
|
990 |
done |
|
991 |
||
992 |
lemma nth_list_update [rule_format]: |
|
14055 | 993 |
"[| xs:list(A) |] ==> \<forall>i \<in> nat. \<forall>j \<in> nat. i < length(xs) --> |
13327 | 994 |
nth(j, list_update(xs, i, x)) = (if i=j then x else nth(j, xs))" |
995 |
apply (induct_tac "xs") |
|
996 |
apply simp_all |
|
997 |
apply clarify |
|
998 |
apply (rename_tac i j) |
|
999 |
apply (erule_tac n=i in natE) |
|
1000 |
apply (erule_tac [2] n=j in natE) |
|
1001 |
apply (erule_tac n=j in natE, simp_all, force) |
|
1002 |
done |
|
1003 |
||
1004 |
lemma nth_list_update_eq [simp]: |
|
1005 |
"[| i < length(xs); xs:list(A) |] ==> nth(i, list_update(xs, i,x)) = x" |
|
1006 |
by (simp (no_asm_simp) add: lt_length_in_nat nth_list_update) |
|
1007 |
||
1008 |
||
1009 |
lemma nth_list_update_neq [rule_format,simp]: |
|
13387 | 1010 |
"xs:list(A) ==> |
14055 | 1011 |
\<forall>i \<in> nat. \<forall>j \<in> nat. i ~= j --> nth(j, list_update(xs,i,x)) = nth(j,xs)" |
13327 | 1012 |
apply (induct_tac "xs") |
1013 |
apply (simp (no_asm)) |
|
1014 |
apply clarify |
|
1015 |
apply (erule natE) |
|
1016 |
apply (erule_tac [2] natE, simp_all) |
|
1017 |
apply (erule natE, simp_all) |
|
1018 |
done |
|
1019 |
||
1020 |
lemma list_update_overwrite [rule_format,simp]: |
|
14055 | 1021 |
"xs:list(A) ==> \<forall>i \<in> nat. i < length(xs) |
13327 | 1022 |
--> list_update(list_update(xs, i, x), i, y) = list_update(xs, i,y)" |
1023 |
apply (induct_tac "xs") |
|
1024 |
apply (simp (no_asm)) |
|
1025 |
apply clarify |
|
1026 |
apply (erule natE, auto) |
|
1027 |
done |
|
1028 |
||
1029 |
lemma list_update_same_conv [rule_format]: |
|
13387 | 1030 |
"xs:list(A) ==> |
14055 | 1031 |
\<forall>i \<in> nat. i < length(xs) --> |
13387 | 1032 |
(list_update(xs, i, x) = xs) <-> (nth(i, xs) = x)" |
13327 | 1033 |
apply (induct_tac "xs") |
1034 |
apply (simp (no_asm)) |
|
1035 |
apply clarify |
|
1036 |
apply (erule natE, auto) |
|
1037 |
done |
|
1038 |
||
1039 |
lemma update_zip [rule_format]: |
|
13387 | 1040 |
"ys:list(B) ==> |
14055 | 1041 |
\<forall>i \<in> nat. \<forall>xy \<in> A*B. \<forall>xs \<in> list(A). |
13387 | 1042 |
length(xs) = length(ys) --> |
1043 |
list_update(zip(xs, ys), i, xy) = zip(list_update(xs, i, fst(xy)), |
|
1044 |
list_update(ys, i, snd(xy)))" |
|
13327 | 1045 |
apply (induct_tac "ys") |
1046 |
apply auto |
|
13387 | 1047 |
apply (erule_tac a = xs in list.cases) |
13327 | 1048 |
apply (auto elim: natE) |
1049 |
done |
|
1050 |
||
1051 |
lemma set_update_subset_cons [rule_format]: |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
1052 |
"xs:list(A) ==> |
14055 | 1053 |
\<forall>i \<in> nat. set_of_list(list_update(xs, i, x)) <= cons(x, set_of_list(xs))" |
13327 | 1054 |
apply (induct_tac "xs") |
1055 |
apply simp |
|
1056 |
apply (rule ballI) |
|
13387 | 1057 |
apply (erule natE, simp_all, auto) |
13327 | 1058 |
done |
1059 |
||
1060 |
lemma set_of_list_update_subsetI: |
|
1061 |
"[| set_of_list(xs) <= A; xs:list(A); x:A; i:nat|] |
|
1062 |
==> set_of_list(list_update(xs, i,x)) <= A" |
|
1063 |
apply (rule subset_trans) |
|
1064 |
apply (rule set_update_subset_cons, auto) |
|
1065 |
done |
|
1066 |
||
1067 |
(** upt **) |
|
1068 |
||
1069 |
lemma upt_rec: |
|
1070 |
"j:nat ==> upt(i,j) = (if i<j then Cons(i, upt(succ(i), j)) else Nil)" |
|
1071 |
apply (induct_tac "j", auto) |
|
1072 |
apply (drule not_lt_imp_le) |
|
1073 |
apply (auto simp: lt_Ord intro: le_anti_sym) |
|
1074 |
done |
|
1075 |
||
1076 |
lemma upt_conv_Nil [simp]: "[| j le i; j:nat |] ==> upt(i,j) = Nil" |
|
1077 |
apply (subst upt_rec, auto) |
|
1078 |
apply (auto simp add: le_iff) |
|
1079 |
apply (drule lt_asym [THEN notE], auto) |
|
1080 |
done |
|
1081 |
||
1082 |
(*Only needed if upt_Suc is deleted from the simpset*) |
|
1083 |
lemma upt_succ_append: |
|
1084 |
"[| i le j; j:nat |] ==> upt(i,succ(j)) = upt(i, j)@[j]" |
|
1085 |
by simp |
|
1086 |
||
1087 |
lemma upt_conv_Cons: |
|
1088 |
"[| i<j; j:nat |] ==> upt(i,j) = Cons(i,upt(succ(i),j))" |
|
1089 |
apply (rule trans) |
|
1090 |
apply (rule upt_rec, auto) |
|
1091 |
done |
|
1092 |
||
1093 |
lemma upt_type [simp,TC]: "j:nat ==> upt(i,j):list(nat)" |
|
1094 |
by (induct_tac "j", auto) |
|
1095 |
||
1096 |
(*LOOPS as a simprule, since j<=j*) |
|
1097 |
lemma upt_add_eq_append: |
|
1098 |
"[| i le j; j:nat; k:nat |] ==> upt(i, j #+k) = upt(i,j)@upt(j,j#+k)" |
|
1099 |
apply (induct_tac "k") |
|
1100 |
apply (auto simp add: app_assoc app_type) |
|
13387 | 1101 |
apply (rule_tac j = j in le_trans, auto) |
13327 | 1102 |
done |
1103 |
||
1104 |
lemma length_upt [simp]: "[| i:nat; j:nat |] ==>length(upt(i,j)) = j #- i" |
|
1105 |
apply (induct_tac "j") |
|
1106 |
apply (rule_tac [2] sym) |
|
14055 | 1107 |
apply (auto dest!: not_lt_imp_le simp add: diff_succ diff_is_0_iff) |
13327 | 1108 |
done |
1109 |
||
1110 |
lemma nth_upt [rule_format,simp]: |
|
1111 |
"[| i:nat; j:nat; k:nat |] ==> i #+ k < j --> nth(k, upt(i,j)) = i #+ k" |
|
13387 | 1112 |
apply (induct_tac "j", simp) |
14055 | 1113 |
apply (simp add: nth_append le_iff) |
13387 | 1114 |
apply (auto dest!: not_lt_imp_le |
14055 | 1115 |
simp add: nth_append less_diff_conv add_commute) |
13327 | 1116 |
done |
1117 |
||
1118 |
lemma take_upt [rule_format,simp]: |
|
1119 |
"[| m:nat; n:nat |] ==> |
|
14055 | 1120 |
\<forall>i \<in> nat. i #+ m le n --> take(m, upt(i,n)) = upt(i,i#+m)" |
13327 | 1121 |
apply (induct_tac "m") |
1122 |
apply (simp (no_asm_simp) add: take_0) |
|
1123 |
apply clarify |
|
1124 |
apply (subst upt_rec, simp) |
|
1125 |
apply (rule sym) |
|
1126 |
apply (subst upt_rec, simp) |
|
1127 |
apply (simp_all del: upt.simps) |
|
1128 |
apply (rule_tac j = "succ (i #+ x) " in lt_trans2) |
|
1129 |
apply auto |
|
1130 |
done |
|
1131 |
||
1132 |
lemma map_succ_upt: |
|
1133 |
"[| m:nat; n:nat |] ==> map(succ, upt(m,n))= upt(succ(m), succ(n))" |
|
1134 |
apply (induct_tac "n") |
|
1135 |
apply (auto simp add: map_app_distrib) |
|
1136 |
done |
|
1137 |
||
1138 |
lemma nth_map [rule_format,simp]: |
|
1139 |
"xs:list(A) ==> |
|
14055 | 1140 |
\<forall>n \<in> nat. n < length(xs) --> nth(n, map(f, xs)) = f(nth(n, xs))" |
13327 | 1141 |
apply (induct_tac "xs", simp) |
1142 |
apply (rule ballI) |
|
1143 |
apply (induct_tac "n", auto) |
|
1144 |
done |
|
1145 |
||
1146 |
lemma nth_map_upt [rule_format]: |
|
1147 |
"[| m:nat; n:nat |] ==> |
|
14055 | 1148 |
\<forall>i \<in> nat. i < n #- m --> nth(i, map(f, upt(m,n))) = f(m #+ i)" |
13784 | 1149 |
apply (rule_tac n = m and m = n in diff_induct, typecheck, simp, simp) |
13387 | 1150 |
apply (subst map_succ_upt [symmetric], simp_all, clarify) |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
1151 |
apply (subgoal_tac "i < length (upt (0, x))") |
13327 | 1152 |
prefer 2 |
1153 |
apply (simp add: less_diff_conv) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
1154 |
apply (rule_tac j = "succ (i #+ y) " in lt_trans2) |
13327 | 1155 |
apply simp |
1156 |
apply simp |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13327
diff
changeset
|
1157 |
apply (subgoal_tac "i < length (upt (y, x))") |
13327 | 1158 |
apply (simp_all add: add_commute less_diff_conv) |
1159 |
done |
|
1160 |
||
1161 |
(** sublist (a generalization of nth to sets) **) |
|
1162 |
||
24893 | 1163 |
definition |
1164 |
sublist :: "[i, i] => i" where |
|
13327 | 1165 |
"sublist(xs, A)== |
1166 |
map(fst, (filter(%p. snd(p): A, zip(xs, upt(0,length(xs))))))" |
|
1167 |
||
1168 |
lemma sublist_0 [simp]: "xs:list(A) ==>sublist(xs, 0) =Nil" |
|
1169 |
by (unfold sublist_def, auto) |
|
1170 |
||
1171 |
lemma sublist_Nil [simp]: "sublist(Nil, A) = Nil" |
|
1172 |
by (unfold sublist_def, auto) |
|
1173 |
||
1174 |
lemma sublist_shift_lemma: |
|
1175 |
"[| xs:list(B); i:nat |] ==> |
|
1176 |
map(fst, filter(%p. snd(p):A, zip(xs, upt(i,i #+ length(xs))))) = |
|
1177 |
map(fst, filter(%p. snd(p):nat & snd(p) #+ i:A, zip(xs,upt(0,length(xs)))))" |
|
1178 |
apply (erule list_append_induct) |
|
1179 |
apply (simp (no_asm_simp)) |
|
1180 |
apply (auto simp add: add_commute length_app filter_append map_app_distrib) |
|
1181 |
done |
|
1182 |
||
1183 |
lemma sublist_type [simp,TC]: |
|
1184 |
"xs:list(B) ==> sublist(xs, A):list(B)" |
|
1185 |
apply (unfold sublist_def) |
|
1186 |
apply (induct_tac "xs") |
|
1187 |
apply (auto simp add: filter_append map_app_distrib) |
|
1188 |
done |
|
1189 |
||
1190 |
lemma upt_add_eq_append2: |
|
1191 |
"[| i:nat; j:nat |] ==> upt(0, i #+ j) = upt(0, i) @ upt(i, i #+ j)" |
|
1192 |
by (simp add: upt_add_eq_append [of 0] nat_0_le) |
|
1193 |
||
1194 |
lemma sublist_append: |
|
1195 |
"[| xs:list(B); ys:list(B) |] ==> |
|
1196 |
sublist(xs@ys, A) = sublist(xs, A) @ sublist(ys, {j:nat. j #+ length(xs): A})" |
|
1197 |
apply (unfold sublist_def) |
|
13387 | 1198 |
apply (erule_tac l = ys in list_append_induct, simp) |
13327 | 1199 |
apply (simp (no_asm_simp) add: upt_add_eq_append2 app_assoc [symmetric]) |
1200 |
apply (auto simp add: sublist_shift_lemma length_type map_app_distrib app_assoc) |
|
1201 |
apply (simp_all add: add_commute) |
|
1202 |
done |
|
1203 |
||
1204 |
||
1205 |
lemma sublist_Cons: |
|
1206 |
"[| xs:list(B); x:B |] ==> |
|
1207 |
sublist(Cons(x, xs), A) = |
|
1208 |
(if 0:A then [x] else []) @ sublist(xs, {j:nat. succ(j) : A})" |
|
13387 | 1209 |
apply (erule_tac l = xs in list_append_induct) |
13327 | 1210 |
apply (simp (no_asm_simp) add: sublist_def) |
1211 |
apply (simp del: app_Cons add: app_Cons [symmetric] sublist_append, simp) |
|
1212 |
done |
|
1213 |
||
1214 |
lemma sublist_singleton [simp]: |
|
1215 |
"sublist([x], A) = (if 0 : A then [x] else [])" |
|
14046 | 1216 |
by (simp add: sublist_Cons) |
13327 | 1217 |
|
14046 | 1218 |
lemma sublist_upt_eq_take [rule_format, simp]: |
1219 |
"xs:list(A) ==> ALL n:nat. sublist(xs,n) = take(n,xs)" |
|
1220 |
apply (erule list.induct, simp) |
|
1221 |
apply (clarify ); |
|
1222 |
apply (erule natE) |
|
1223 |
apply (simp_all add: nat_eq_Collect_lt Ord_mem_iff_lt sublist_Cons) |
|
1224 |
done |
|
1225 |
||
1226 |
lemma sublist_Int_eq: |
|
14055 | 1227 |
"xs : list(B) ==> sublist(xs, A \<inter> nat) = sublist(xs, A)" |
14046 | 1228 |
apply (erule list.induct) |
1229 |
apply (simp_all add: sublist_Cons) |
|
13327 | 1230 |
done |
1231 |
||
13387 | 1232 |
text{*Repetition of a List Element*} |
1233 |
||
1234 |
consts repeat :: "[i,i]=>i" |
|
1235 |
primrec |
|
1236 |
"repeat(a,0) = []" |
|
1237 |
||
1238 |
"repeat(a,succ(n)) = Cons(a,repeat(a,n))" |
|
1239 |
||
14055 | 1240 |
lemma length_repeat: "n \<in> nat ==> length(repeat(a,n)) = n" |
13387 | 1241 |
by (induct_tac n, auto) |
1242 |
||
14055 | 1243 |
lemma repeat_succ_app: "n \<in> nat ==> repeat(a,succ(n)) = repeat(a,n) @ [a]" |
13387 | 1244 |
apply (induct_tac n) |
1245 |
apply (simp_all del: app_Cons add: app_Cons [symmetric]) |
|
1246 |
done |
|
1247 |
||
14055 | 1248 |
lemma repeat_type [TC]: "[|a \<in> A; n \<in> nat|] ==> repeat(a,n) \<in> list(A)" |
13387 | 1249 |
by (induct_tac n, auto) |
1250 |
||
516 | 1251 |
end |