10267
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
|
3 |
\def\isabellecontext{CTLind}%
|
17056
|
4 |
%
|
|
5 |
\isadelimtheory
|
|
6 |
%
|
|
7 |
\endisadelimtheory
|
|
8 |
%
|
|
9 |
\isatagtheory
|
|
10 |
%
|
|
11 |
\endisatagtheory
|
|
12 |
{\isafoldtheory}%
|
|
13 |
%
|
|
14 |
\isadelimtheory
|
|
15 |
%
|
|
16 |
\endisadelimtheory
|
10267
|
17 |
%
|
10878
|
18 |
\isamarkupsubsection{CTL Revisited%
|
10395
|
19 |
}
|
11866
|
20 |
\isamarkuptrue%
|
10267
|
21 |
%
|
|
22 |
\begin{isamarkuptext}%
|
|
23 |
\label{sec:CTL-revisited}
|
11494
|
24 |
\index{CTL|(}%
|
|
25 |
The purpose of this section is twofold: to demonstrate
|
|
26 |
some of the induction principles and heuristics discussed above and to
|
10283
|
27 |
show how inductive definitions can simplify proofs.
|
10267
|
28 |
In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
|
10795
|
29 |
model checker for CTL\@. In particular the proof of the
|
40406
|
30 |
\isa{infinity{\isaliteral{5F}{\isacharunderscore}}lemma} on the way to \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} is not as
|
11494
|
31 |
simple as one might expect, due to the \isa{SOME} operator
|
40406
|
32 |
involved. Below we give a simpler proof of \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}}
|
10283
|
33 |
based on an auxiliary inductive definition.
|
10267
|
34 |
|
|
35 |
Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
|
40406
|
36 |
not touch any node in the set \isa{A}. Then \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} says
|
10267
|
37 |
that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
|
40406
|
38 |
then \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. We prove this by inductively defining the set
|
10267
|
39 |
\isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
|
|
40 |
% Second proof of opposite direction, directly by well-founded induction
|
|
41 |
% on the initial segment of M that avoids A.%
|
|
42 |
\end{isamarkuptext}%
|
17175
|
43 |
\isamarkuptrue%
|
40406
|
44 |
\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
|
23733
|
45 |
\isanewline
|
40406
|
46 |
\ \ Avoid\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
|
47 |
\ \ \isakeyword{for}\ s\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ state\ \isakeyword{and}\ A\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
23733
|
48 |
\isakeyword{where}\isanewline
|
40406
|
49 |
\ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
|
50 |
\ \ {\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}u{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ u\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}%
|
10267
|
51 |
\begin{isamarkuptext}%
|
|
52 |
It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
|
40406
|
53 |
with \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
|
10267
|
54 |
starting with \isa{s} because (by definition of \isa{Avoid}) there is a
|
12492
|
55 |
finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
|
40406
|
56 |
The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}. However,
|
10267
|
57 |
this requires the following
|
|
58 |
reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
|
40406
|
59 |
the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive undoes the reformulation after the proof.%
|
10267
|
60 |
\end{isamarkuptext}%
|
17175
|
61 |
\isamarkuptrue%
|
|
62 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
63 |
\ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
|
|
64 |
\ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
|
|
65 |
\ \ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ f\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
17056
|
66 |
%
|
|
67 |
\isadelimproof
|
|
68 |
%
|
|
69 |
\endisadelimproof
|
|
70 |
%
|
|
71 |
\isatagproof
|
17175
|
72 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
73 |
{\isaliteral{28}{\isacharparenleft}}erule\ Avoid{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
74 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
75 |
{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
76 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
77 |
{\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
78 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
79 |
{\isaliteral{28}{\isacharparenleft}}drule{\isaliteral{5F}{\isacharunderscore}}tac\ x\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}i{\isaliteral{2E}{\isachardot}}\ case\ i\ of\ {\isadigit{0}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ t\ {\isaliteral{7C}{\isacharbar}}\ Suc\ i\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ i{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{in}\ bspec{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
80 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
81 |
{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{5F}{\isacharunderscore}}all\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def\ split{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{2E}{\isachardot}}split{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
82 |
\isacommand{done}\isamarkupfalse%
|
|
83 |
%
|
17056
|
84 |
\endisatagproof
|
|
85 |
{\isafoldproof}%
|
|
86 |
%
|
|
87 |
\isadelimproof
|
|
88 |
%
|
|
89 |
\endisadelimproof
|
11866
|
90 |
%
|
10267
|
91 |
\begin{isamarkuptext}%
|
|
92 |
\noindent
|
40406
|
93 |
The base case (\isa{t\ {\isaliteral{3D}{\isacharequal}}\ s}) is trivial and proved by \isa{blast}.
|
10267
|
94 |
In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
|
|
95 |
starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
|
40406
|
96 |
the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t} in the induction hypothesis by the path starting with
|
10267
|
97 |
\isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
|
10878
|
98 |
expresses. Simplification shows that this is a path starting with \isa{t}
|
|
99 |
and that the instantiated induction hypothesis implies the conclusion.
|
10267
|
100 |
|
11196
|
101 |
Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
|
40406
|
102 |
path starts from \isa{s}, we want to show \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. For the
|
11277
|
103 |
inductive proof this must be generalized to the statement that every point \isa{t}
|
11494
|
104 |
``between'' \isa{s} and \isa{A}, in other words all of \isa{Avoid\ s\ A},
|
40406
|
105 |
is contained in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}:%
|
10267
|
106 |
\end{isamarkuptext}%
|
17175
|
107 |
\isamarkuptrue%
|
|
108 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
109 |
\ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
|
|
110 |
\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
|
17056
|
111 |
\isadelimproof
|
|
112 |
%
|
|
113 |
\endisadelimproof
|
|
114 |
%
|
|
115 |
\isatagproof
|
16069
|
116 |
%
|
|
117 |
\begin{isamarkuptxt}%
|
|
118 |
\noindent
|
40406
|
119 |
The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}.
|
|
120 |
If \isa{t} is already in \isa{A}, then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is
|
16069
|
121 |
trivial. If \isa{t} is not in \isa{A} but all successors are in
|
40406
|
122 |
\isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} (induction hypothesis), then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is
|
16069
|
123 |
again trivial.
|
|
124 |
|
|
125 |
The formal counterpart of this proof sketch is a well-founded induction
|
40406
|
126 |
on~\isa{M} restricted to \isa{Avoid\ s\ A\ {\isaliteral{2D}{\isacharminus}}\ A}, roughly speaking:
|
16069
|
127 |
\begin{isabelle}%
|
40406
|
128 |
\ \ \ \ \ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}%
|
16069
|
129 |
\end{isabelle}
|
|
130 |
As we shall see presently, the absence of infinite \isa{A}-avoiding paths
|
|
131 |
starting from \isa{s} implies well-foundedness of this relation. For the
|
|
132 |
moment we assume this and proceed with the induction:%
|
|
133 |
\end{isamarkuptxt}%
|
17175
|
134 |
\isamarkuptrue%
|
|
135 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
136 |
{\isaliteral{28}{\isacharparenleft}}subgoal{\isaliteral{5F}{\isacharunderscore}}tac\ {\isaliteral{22}{\isachardoublequoteopen}}wf{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
137 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
138 |
{\isaliteral{28}{\isacharparenleft}}erule{\isaliteral{5F}{\isacharunderscore}}tac\ a\ {\isaliteral{3D}{\isacharequal}}\ t\ \isakeyword{in}\ wf{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
139 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
140 |
{\isaliteral{28}{\isacharparenleft}}clarsimp{\isaliteral{29}{\isacharparenright}}%
|
16069
|
141 |
\begin{isamarkuptxt}%
|
|
142 |
\noindent
|
|
143 |
\begin{isabelle}%
|
40406
|
144 |
\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\isanewline
|
|
145 |
\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\isanewline
|
|
146 |
\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ }y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
|
|
147 |
\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
|
|
148 |
\isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\isanewline
|
|
149 |
\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
|
|
150 |
\isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ }wf\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}%
|
16069
|
151 |
\end{isabelle}
|
40406
|
152 |
Now the induction hypothesis states that if \isa{t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A}
|
16069
|
153 |
then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
|
40406
|
154 |
\isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Unfolding \isa{lfp} in the conclusion of the first
|
16069
|
155 |
subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors
|
40406
|
156 |
of \isa{t} are in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. But if \isa{t} is not in \isa{A},
|
16069
|
157 |
the second
|
|
158 |
\isa{Avoid}-rule implies that all successors of \isa{t} are in
|
40406
|
159 |
\isa{Avoid\ s\ A}, because we also assume \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}.
|
16069
|
160 |
Hence, by the induction hypothesis, all successors of \isa{t} are indeed in
|
40406
|
161 |
\isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Mechanically:%
|
16069
|
162 |
\end{isamarkuptxt}%
|
17175
|
163 |
\isamarkuptrue%
|
|
164 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
165 |
{\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}af{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
166 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
167 |
{\isaliteral{28}{\isacharparenleft}}simp\ {\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}\ add{\isaliteral{3A}{\isacharcolon}}\ af{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
168 |
\ \isacommand{apply}\isamarkupfalse%
|
40406
|
169 |
{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}%
|
16069
|
170 |
\begin{isamarkuptxt}%
|
|
171 |
Having proved the main goal, we return to the proof obligation that the
|
|
172 |
relation used above is indeed well-founded. This is proved by contradiction: if
|
|
173 |
the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
|
40406
|
174 |
\isa{wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain}:
|
16069
|
175 |
\begin{isabelle}%
|
40406
|
176 |
\ \ \ \ \ wf\ r\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}f{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}f\ {\isaliteral{28}{\isacharparenleft}}Suc\ i{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}\ f\ i{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}%
|
16069
|
177 |
\end{isabelle}
|
40406
|
178 |
From lemma \isa{ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path} the existence of an infinite
|
16069
|
179 |
\isa{A}-avoiding path starting in \isa{s} follows, contradiction.%
|
|
180 |
\end{isamarkuptxt}%
|
17175
|
181 |
\isamarkuptrue%
|
|
182 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
183 |
{\isaliteral{28}{\isacharparenleft}}erule\ contrapos{\isaliteral{5F}{\isacharunderscore}}pp{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
184 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
185 |
{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
186 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
187 |
{\isaliteral{28}{\isacharparenleft}}erule\ exE{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
188 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
189 |
{\isaliteral{28}{\isacharparenleft}}rule\ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
190 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
191 |
{\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
192 |
\isacommand{done}\isamarkupfalse%
|
|
193 |
%
|
17056
|
194 |
\endisatagproof
|
|
195 |
{\isafoldproof}%
|
|
196 |
%
|
|
197 |
\isadelimproof
|
|
198 |
%
|
|
199 |
\endisadelimproof
|
11866
|
200 |
%
|
10267
|
201 |
\begin{isamarkuptext}%
|
40406
|
202 |
The \isa{{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}} modifier of the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive in the
|
11196
|
203 |
statement of the lemma means
|
40406
|
204 |
that the assumption is left unchanged; otherwise the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p}
|
11494
|
205 |
would be turned
|
40406
|
206 |
into a \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}p}, which would complicate matters below. As it is,
|
|
207 |
\isa{Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp} is now
|
10267
|
208 |
\begin{isabelle}%
|
40406
|
209 |
\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}%
|
10267
|
210 |
\end{isabelle}
|
40406
|
211 |
The main theorem is simply the corollary where \isa{t\ {\isaliteral{3D}{\isacharequal}}\ s},
|
|
212 |
when the assumption \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} is trivially true
|
10845
|
213 |
by the first \isa{Avoid}-rule. Isabelle confirms this:%
|
11494
|
214 |
\index{CTL|)}%
|
10267
|
215 |
\end{isamarkuptext}%
|
17175
|
216 |
\isamarkuptrue%
|
|
217 |
\isacommand{theorem}\isamarkupfalse%
|
40406
|
218 |
\ AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}\ i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
17056
|
219 |
%
|
|
220 |
\isadelimproof
|
|
221 |
%
|
|
222 |
\endisadelimproof
|
|
223 |
%
|
|
224 |
\isatagproof
|
17175
|
225 |
\isacommand{by}\isamarkupfalse%
|
40406
|
226 |
{\isaliteral{28}{\isacharparenleft}}auto\ elim{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline
|
15488
|
227 |
\isanewline
|
17056
|
228 |
%
|
|
229 |
\endisatagproof
|
|
230 |
{\isafoldproof}%
|
|
231 |
%
|
|
232 |
\isadelimproof
|
|
233 |
%
|
|
234 |
\endisadelimproof
|
|
235 |
%
|
|
236 |
\isadelimtheory
|
|
237 |
%
|
|
238 |
\endisadelimtheory
|
|
239 |
%
|
|
240 |
\isatagtheory
|
|
241 |
%
|
|
242 |
\endisatagtheory
|
|
243 |
{\isafoldtheory}%
|
|
244 |
%
|
|
245 |
\isadelimtheory
|
|
246 |
%
|
|
247 |
\endisadelimtheory
|
10267
|
248 |
\end{isabellebody}%
|
|
249 |
%%% Local Variables:
|
|
250 |
%%% mode: latex
|
|
251 |
%%% TeX-master: "root"
|
|
252 |
%%% End:
|