9722
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
9924
|
3 |
\def\isabellecontext{natsum}%
|
17056
|
4 |
%
|
|
5 |
\isadelimtheory
|
|
6 |
%
|
|
7 |
\endisadelimtheory
|
|
8 |
%
|
|
9 |
\isatagtheory
|
|
10 |
%
|
|
11 |
\endisatagtheory
|
|
12 |
{\isafoldtheory}%
|
|
13 |
%
|
|
14 |
\isadelimtheory
|
|
15 |
%
|
|
16 |
\endisadelimtheory
|
8749
|
17 |
%
|
|
18 |
\begin{isamarkuptext}%
|
|
19 |
\noindent
|
9541
|
20 |
In particular, there are \isa{case}-expressions, for example
|
|
21 |
\begin{isabelle}%
|
40406
|
22 |
\ \ \ \ \ case\ n\ of\ {\isadigit{0}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isadigit{0}}\ {\isaliteral{7C}{\isacharbar}}\ Suc\ m\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ m%
|
9924
|
23 |
\end{isabelle}
|
8749
|
24 |
primitive recursion, for example%
|
|
25 |
\end{isamarkuptext}%
|
17175
|
26 |
\isamarkuptrue%
|
|
27 |
\isacommand{primrec}\isamarkupfalse%
|
40406
|
28 |
\ sum\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
|
|
29 |
{\isaliteral{22}{\isachardoublequoteopen}}sum\ {\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
|
|
30 |
{\isaliteral{22}{\isachardoublequoteopen}}sum\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ Suc\ n\ {\isaliteral{2B}{\isacharplus}}\ sum\ n{\isaliteral{22}{\isachardoublequoteclose}}%
|
8749
|
31 |
\begin{isamarkuptext}%
|
|
32 |
\noindent
|
|
33 |
and induction, for example%
|
|
34 |
\end{isamarkuptext}%
|
17175
|
35 |
\isamarkuptrue%
|
|
36 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
37 |
\ {\isaliteral{22}{\isachardoublequoteopen}}sum\ n\ {\isaliteral{2B}{\isacharplus}}\ sum\ n\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
17056
|
38 |
%
|
|
39 |
\isadelimproof
|
|
40 |
%
|
|
41 |
\endisadelimproof
|
|
42 |
%
|
|
43 |
\isatagproof
|
17175
|
44 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
45 |
{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ n{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
46 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
47 |
{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline
|
17175
|
48 |
\isacommand{done}\isamarkupfalse%
|
|
49 |
%
|
17056
|
50 |
\endisatagproof
|
|
51 |
{\isafoldproof}%
|
|
52 |
%
|
|
53 |
\isadelimproof
|
|
54 |
%
|
|
55 |
\endisadelimproof
|
11866
|
56 |
%
|
10538
|
57 |
\begin{isamarkuptext}%
|
|
58 |
\newcommand{\mystar}{*%
|
|
59 |
}
|
11456
|
60 |
\index{arithmetic operations!for \protect\isa{nat}}%
|
15364
|
61 |
The arithmetic operations \isadxboldpos{+}{$HOL2arithfun},
|
|
62 |
\isadxboldpos{-}{$HOL2arithfun}, \isadxboldpos{\mystar}{$HOL2arithfun},
|
11428
|
63 |
\sdx{div}, \sdx{mod}, \cdx{min} and
|
|
64 |
\cdx{max} are predefined, as are the relations
|
15364
|
65 |
\isadxboldpos{\isasymle}{$HOL2arithrel} and
|
40406
|
66 |
\isadxboldpos{<}{$HOL2arithrel}. As usual, \isa{m\ {\isaliteral{2D}{\isacharminus}}\ n\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}} if
|
|
67 |
\isa{m\ {\isaliteral{3C}{\isacharless}}\ n}. There is even a least number operation
|
|
68 |
\sdx{LEAST}\@. For example, \isa{{\isaliteral{28}{\isacharparenleft}}LEAST\ n{\isaliteral{2E}{\isachardot}}\ {\isadigit{0}}\ {\isaliteral{3C}{\isacharless}}\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ Suc\ {\isadigit{0}}}.
|
11456
|
69 |
\begin{warn}\index{overloading}
|
12327
|
70 |
The constants \cdx{0} and \cdx{1} and the operations
|
15364
|
71 |
\isadxboldpos{+}{$HOL2arithfun}, \isadxboldpos{-}{$HOL2arithfun},
|
|
72 |
\isadxboldpos{\mystar}{$HOL2arithfun}, \cdx{min},
|
|
73 |
\cdx{max}, \isadxboldpos{\isasymle}{$HOL2arithrel} and
|
|
74 |
\isadxboldpos{<}{$HOL2arithrel} are overloaded: they are available
|
12332
|
75 |
not just for natural numbers but for other types as well.
|
40406
|
76 |
For example, given the goal \isa{x\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ x}, there is nothing to indicate
|
12327
|
77 |
that you are talking about natural numbers. Hence Isabelle can only infer
|
40406
|
78 |
that \isa{x} is of some arbitrary type where \isa{{\isadigit{0}}} and \isa{{\isaliteral{2B}{\isacharplus}}} are
|
12327
|
79 |
declared. As a consequence, you will be unable to prove the
|
|
80 |
goal. To alert you to such pitfalls, Isabelle flags numerals without a
|
40406
|
81 |
fixed type in its output: \isa{x\ {\isaliteral{2B}{\isacharplus}}\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{0}}{\isaliteral{5C3C436F6C6F6E3E}{\isasymColon}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ x}. (In the absence of a numeral,
|
16523
|
82 |
it may take you some time to realize what has happened if \pgmenu{Show
|
|
83 |
Types} is not set). In this particular example, you need to include
|
40406
|
84 |
an explicit type constraint, for example \isa{x{\isaliteral{2B}{\isacharplus}}{\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}}. If there
|
|
85 |
is enough contextual information this may not be necessary: \isa{Suc\ x\ {\isaliteral{3D}{\isacharequal}}\ x} automatically implies \isa{x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat} because \isa{Suc} is not
|
12327
|
86 |
overloaded.
|
10978
|
87 |
|
12327
|
88 |
For details on overloading see \S\ref{sec:overloading}.
|
|
89 |
Table~\ref{tab:overloading} in the appendix shows the most important
|
|
90 |
overloaded operations.
|
|
91 |
\end{warn}
|
|
92 |
\begin{warn}
|
15364
|
93 |
The symbols \isadxboldpos{>}{$HOL2arithrel} and
|
40406
|
94 |
\isadxboldpos{\isasymge}{$HOL2arithrel} are merely syntax: \isa{x\ {\isaliteral{3E}{\isachargreater}}\ y}
|
|
95 |
stands for \isa{y\ {\isaliteral{3C}{\isacharless}}\ x} and similary for \isa{{\isaliteral{5C3C67653E}{\isasymge}}} and
|
|
96 |
\isa{{\isaliteral{5C3C6C653E}{\isasymle}}}.
|
15364
|
97 |
\end{warn}
|
|
98 |
\begin{warn}
|
40406
|
99 |
Constant \isa{{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat} is defined to equal \isa{Suc\ {\isadigit{0}}}. This definition
|
12327
|
100 |
(see \S\ref{sec:ConstDefinitions}) is unfolded automatically by some
|
|
101 |
tactics (like \isa{auto}, \isa{simp} and \isa{arith}) but not by
|
|
102 |
others (especially the single step tactics in Chapter~\ref{chap:rules}).
|
|
103 |
If you need the full set of numerals, see~\S\ref{sec:numerals}.
|
12328
|
104 |
\emph{Novices are advised to stick to \isa{{\isadigit{0}}} and \isa{Suc}.}
|
10538
|
105 |
\end{warn}
|
|
106 |
|
11456
|
107 |
Both \isa{auto} and \isa{simp}
|
|
108 |
(a method introduced below, \S\ref{sec:Simplification}) prove
|
|
109 |
simple arithmetic goals automatically:%
|
10538
|
110 |
\end{isamarkuptext}%
|
17175
|
111 |
\isamarkuptrue%
|
|
112 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
113 |
\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ m\ {\isaliteral{3C}{\isacharless}}\ n{\isaliteral{3B}{\isacharsemicolon}}\ m\ {\isaliteral{3C}{\isacharless}}\ n\ {\isaliteral{2B}{\isacharplus}}\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ m\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{22}{\isachardoublequoteclose}}%
|
17056
|
114 |
\isadelimproof
|
|
115 |
%
|
|
116 |
\endisadelimproof
|
|
117 |
%
|
|
118 |
\isatagproof
|
|
119 |
%
|
|
120 |
\endisatagproof
|
|
121 |
{\isafoldproof}%
|
|
122 |
%
|
|
123 |
\isadelimproof
|
|
124 |
%
|
|
125 |
\endisadelimproof
|
11866
|
126 |
%
|
10538
|
127 |
\begin{isamarkuptext}%
|
|
128 |
\noindent
|
11458
|
129 |
For efficiency's sake, this built-in prover ignores quantified formulae,
|
16797
|
130 |
many logical connectives, and all arithmetic operations apart from addition.
|
13181
|
131 |
In consequence, \isa{auto} and \isa{simp} cannot prove this slightly more complex goal:%
|
11458
|
132 |
\end{isamarkuptext}%
|
17175
|
133 |
\isamarkuptrue%
|
|
134 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
135 |
\ {\isaliteral{22}{\isachardoublequoteopen}}m\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ {\isaliteral{28}{\isacharparenleft}}n{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ m\ {\isaliteral{3C}{\isacharless}}\ n\ {\isaliteral{5C3C6F723E}{\isasymor}}\ n\ {\isaliteral{3C}{\isacharless}}\ m{\isaliteral{22}{\isachardoublequoteclose}}%
|
17056
|
136 |
\isadelimproof
|
|
137 |
%
|
|
138 |
\endisadelimproof
|
|
139 |
%
|
|
140 |
\isatagproof
|
|
141 |
%
|
|
142 |
\endisatagproof
|
|
143 |
{\isafoldproof}%
|
|
144 |
%
|
|
145 |
\isadelimproof
|
|
146 |
%
|
|
147 |
\endisadelimproof
|
11866
|
148 |
%
|
11458
|
149 |
\begin{isamarkuptext}%
|
13996
|
150 |
\noindent The method \methdx{arith} is more general. It attempts to
|
|
151 |
prove the first subgoal provided it is a \textbf{linear arithmetic} formula.
|
40406
|
152 |
Such formulas may involve the usual logical connectives (\isa{{\isaliteral{5C3C6E6F743E}{\isasymnot}}},
|
|
153 |
\isa{{\isaliteral{5C3C616E643E}{\isasymand}}}, \isa{{\isaliteral{5C3C6F723E}{\isasymor}}}, \isa{{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}}, \isa{{\isaliteral{3D}{\isacharequal}}},
|
|
154 |
\isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}}, \isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}), the relations \isa{{\isaliteral{3D}{\isacharequal}}},
|
|
155 |
\isa{{\isaliteral{5C3C6C653E}{\isasymle}}} and \isa{{\isaliteral{3C}{\isacharless}}}, and the operations \isa{{\isaliteral{2B}{\isacharplus}}}, \isa{{\isaliteral{2D}{\isacharminus}}},
|
23059
|
156 |
\isa{min} and \isa{max}. For example,%
|
10538
|
157 |
\end{isamarkuptext}%
|
17175
|
158 |
\isamarkuptrue%
|
|
159 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
160 |
\ {\isaliteral{22}{\isachardoublequoteopen}}min\ i\ {\isaliteral{28}{\isacharparenleft}}max\ j\ {\isaliteral{28}{\isacharparenleft}}k{\isaliteral{2A}{\isacharasterisk}}k{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ max\ {\isaliteral{28}{\isacharparenleft}}min\ {\isaliteral{28}{\isacharparenleft}}k{\isaliteral{2A}{\isacharasterisk}}k{\isaliteral{29}{\isacharparenright}}\ i{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}min\ i\ {\isaliteral{28}{\isacharparenleft}}j{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
|
17056
|
161 |
%
|
|
162 |
\isadelimproof
|
|
163 |
%
|
|
164 |
\endisadelimproof
|
|
165 |
%
|
|
166 |
\isatagproof
|
17175
|
167 |
\isacommand{apply}\isamarkupfalse%
|
40406
|
168 |
{\isaliteral{28}{\isacharparenleft}}arith{\isaliteral{29}{\isacharparenright}}%
|
17056
|
169 |
\endisatagproof
|
|
170 |
{\isafoldproof}%
|
|
171 |
%
|
|
172 |
\isadelimproof
|
|
173 |
%
|
|
174 |
\endisadelimproof
|
17175
|
175 |
%
|
|
176 |
\begin{isamarkuptext}%
|
|
177 |
\noindent
|
40406
|
178 |
succeeds because \isa{k\ {\isaliteral{2A}{\isacharasterisk}}\ k} can be treated as atomic. In contrast,%
|
17175
|
179 |
\end{isamarkuptext}%
|
11866
|
180 |
\isamarkuptrue%
|
17175
|
181 |
\isacommand{lemma}\isamarkupfalse%
|
40406
|
182 |
\ {\isaliteral{22}{\isachardoublequoteopen}}n{\isaliteral{2A}{\isacharasterisk}}n\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ n{\isaliteral{3D}{\isacharequal}}{\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}%
|
17175
|
183 |
\isadelimproof
|
|
184 |
%
|
|
185 |
\endisadelimproof
|
|
186 |
%
|
|
187 |
\isatagproof
|
|
188 |
%
|
|
189 |
\endisatagproof
|
|
190 |
{\isafoldproof}%
|
|
191 |
%
|
|
192 |
\isadelimproof
|
|
193 |
%
|
|
194 |
\endisadelimproof
|
11866
|
195 |
%
|
10538
|
196 |
\begin{isamarkuptext}%
|
|
197 |
\noindent
|
27168
|
198 |
is not proved by \isa{arith} because the proof relies
|
13996
|
199 |
on properties of multiplication. Only multiplication by numerals (which is
|
27168
|
200 |
the same as iterated addition) is taken into account.
|
10538
|
201 |
|
13996
|
202 |
\begin{warn} The running time of \isa{arith} is exponential in the number
|
|
203 |
of occurrences of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and
|
11428
|
204 |
\cdx{max} because they are first eliminated by case distinctions.
|
10538
|
205 |
|
13996
|
206 |
If \isa{k} is a numeral, \sdx{div}~\isa{k}, \sdx{mod}~\isa{k} and
|
|
207 |
\isa{k}~\sdx{dvd} are also supported, where the former two are eliminated
|
|
208 |
by case distinctions, again blowing up the running time.
|
|
209 |
|
16797
|
210 |
If the formula involves quantifiers, \isa{arith} may take
|
13996
|
211 |
super-exponential time and space.
|
10538
|
212 |
\end{warn}%
|
|
213 |
\end{isamarkuptext}%
|
17175
|
214 |
\isamarkuptrue%
|
17056
|
215 |
%
|
|
216 |
\isadelimtheory
|
|
217 |
%
|
|
218 |
\endisadelimtheory
|
|
219 |
%
|
|
220 |
\isatagtheory
|
|
221 |
%
|
|
222 |
\endisatagtheory
|
|
223 |
{\isafoldtheory}%
|
|
224 |
%
|
|
225 |
\isadelimtheory
|
|
226 |
%
|
|
227 |
\endisadelimtheory
|
9722
|
228 |
\end{isabellebody}%
|
9145
|
229 |
%%% Local Variables:
|
|
230 |
%%% mode: latex
|
|
231 |
%%% TeX-master: "root"
|
|
232 |
%%% End:
|