| 61640 |      1 | (* Author: Tobias Nipkow *)
 | 
|  |      2 | 
 | 
| 62130 |      3 | section \<open>2-3-4 Tree Implementation of Maps\<close>
 | 
| 61640 |      4 | 
 | 
|  |      5 | theory Tree234_Map
 | 
|  |      6 | imports
 | 
|  |      7 |   Tree234_Set
 | 
|  |      8 |   "../Data_Structures/Map_by_Ordered"
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | subsection \<open>Map operations on 2-3-4 trees\<close>
 | 
|  |     12 | 
 | 
|  |     13 | fun lookup :: "('a::cmp * 'b) tree234 \<Rightarrow> 'a \<Rightarrow> 'b option" where
 | 
|  |     14 | "lookup Leaf x = None" |
 | 
|  |     15 | "lookup (Node2 l (a,b) r) x = (case cmp x a of
 | 
|  |     16 |   LT \<Rightarrow> lookup l x |
 | 
|  |     17 |   GT \<Rightarrow> lookup r x |
 | 
|  |     18 |   EQ \<Rightarrow> Some b)" |
 | 
|  |     19 | "lookup (Node3 l (a1,b1) m (a2,b2) r) x = (case cmp x a1 of
 | 
|  |     20 |   LT \<Rightarrow> lookup l x |
 | 
|  |     21 |   EQ \<Rightarrow> Some b1 |
 | 
|  |     22 |   GT \<Rightarrow> (case cmp x a2 of
 | 
|  |     23 |           LT \<Rightarrow> lookup m x |
 | 
|  |     24 |           EQ \<Rightarrow> Some b2 |
 | 
|  |     25 |           GT \<Rightarrow> lookup r x))" |
 | 
|  |     26 | "lookup (Node4 t1 (a1,b1) t2 (a2,b2) t3 (a3,b3) t4) x = (case cmp x a2 of
 | 
|  |     27 |   LT \<Rightarrow> (case cmp x a1 of
 | 
|  |     28 |            LT \<Rightarrow> lookup t1 x | EQ \<Rightarrow> Some b1 | GT \<Rightarrow> lookup t2 x) |
 | 
|  |     29 |   EQ \<Rightarrow> Some b2 |
 | 
|  |     30 |   GT \<Rightarrow> (case cmp x a3 of
 | 
|  |     31 |            LT \<Rightarrow> lookup t3 x | EQ \<Rightarrow> Some b3 | GT \<Rightarrow> lookup t4 x))"
 | 
|  |     32 | 
 | 
|  |     33 | fun upd :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>i" where
 | 
|  |     34 | "upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" |
 | 
|  |     35 | "upd x y (Node2 l ab r) = (case cmp x (fst ab) of
 | 
|  |     36 |    LT \<Rightarrow> (case upd x y l of
 | 
|  |     37 |            T\<^sub>i l' => T\<^sub>i (Node2 l' ab r)
 | 
|  |     38 |          | Up\<^sub>i l1 ab' l2 => T\<^sub>i (Node3 l1 ab' l2 ab r)) |
 | 
|  |     39 |    EQ \<Rightarrow> T\<^sub>i (Node2 l (x,y) r) |
 | 
|  |     40 |    GT \<Rightarrow> (case upd x y r of
 | 
|  |     41 |            T\<^sub>i r' => T\<^sub>i (Node2 l ab r')
 | 
|  |     42 |          | Up\<^sub>i r1 ab' r2 => T\<^sub>i (Node3 l ab r1 ab' r2)))" |
 | 
|  |     43 | "upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
 | 
|  |     44 |    LT \<Rightarrow> (case upd x y l of
 | 
|  |     45 |            T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r)
 | 
|  |     46 |          | Up\<^sub>i l1 ab' l2 => Up\<^sub>i (Node2 l1 ab' l2) ab1 (Node2 m ab2 r)) |
 | 
|  |     47 |    EQ \<Rightarrow> T\<^sub>i (Node3 l (x,y) m ab2 r) |
 | 
|  |     48 |    GT \<Rightarrow> (case cmp x (fst ab2) of
 | 
|  |     49 |            LT \<Rightarrow> (case upd x y m of
 | 
|  |     50 |                    T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r)
 | 
|  |     51 |                  | Up\<^sub>i m1 ab' m2 => Up\<^sub>i (Node2 l ab1 m1) ab' (Node2 m2 ab2 r)) |
 | 
|  |     52 |            EQ \<Rightarrow> T\<^sub>i (Node3 l ab1 m (x,y) r) |
 | 
|  |     53 |            GT \<Rightarrow> (case upd x y r of
 | 
|  |     54 |                    T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r')
 | 
|  |     55 |                  | Up\<^sub>i r1 ab' r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 ab' r2))))" |
 | 
|  |     56 | "upd x y (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
 | 
|  |     57 |    LT \<Rightarrow> (case cmp x (fst ab1) of
 | 
|  |     58 |             LT \<Rightarrow> (case upd x y t1 of
 | 
|  |     59 |                      T\<^sub>i t1' => T\<^sub>i (Node4 t1' ab1 t2 ab2 t3 ab3 t4)
 | 
|  |     60 |                   | Up\<^sub>i t11 q t12 => Up\<^sub>i (Node2 t11 q t12) ab1 (Node3 t2 ab2 t3 ab3 t4)) |
 | 
|  |     61 |             EQ \<Rightarrow> T\<^sub>i (Node4 t1 (x,y) t2 ab2 t3 ab3 t4) |
 | 
|  |     62 |             GT \<Rightarrow> (case upd x y t2 of
 | 
|  |     63 |                     T\<^sub>i t2' => T\<^sub>i (Node4 t1 ab1 t2' ab2 t3 ab3 t4)
 | 
|  |     64 |                   | Up\<^sub>i t21 q t22 => Up\<^sub>i (Node2 t1 ab1 t21) q (Node3 t22 ab2 t3 ab3 t4))) |
 | 
|  |     65 |    EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 (x,y) t3 ab3 t4) |
 | 
|  |     66 |    GT \<Rightarrow> (case cmp x (fst ab3) of
 | 
|  |     67 |             LT \<Rightarrow> (case upd x y t3 of
 | 
|  |     68 |                     T\<^sub>i t3' \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3' ab3 t4)
 | 
|  |     69 |                   | Up\<^sub>i t31 q t32 => Up\<^sub>i (Node2 t1 ab1 t2) ab2(*q*) (Node3 t31 q t32 ab3 t4)) |
 | 
|  |     70 |             EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 (x,y) t4) |
 | 
|  |     71 |             GT \<Rightarrow> (case upd x y t4 of
 | 
|  |     72 |                     T\<^sub>i t4' => T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 ab3 t4')
 | 
|  |     73 |                   | Up\<^sub>i t41 q t42 => Up\<^sub>i (Node2 t1 ab1 t2) ab2 (Node3 t3 ab3 t41 q t42))))"
 | 
|  |     74 | 
 | 
|  |     75 | definition update :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
 | 
|  |     76 | "update x y t = tree\<^sub>i(upd x y t)"
 | 
|  |     77 | 
 | 
|  |     78 | fun del :: "'a::cmp \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>d" where
 | 
|  |     79 | "del x Leaf = T\<^sub>d Leaf" |
 | 
|  |     80 | "del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf ab1 Leaf))" |
 | 
|  |     81 | "del x (Node3 Leaf ab1 Leaf ab2 Leaf) = T\<^sub>d(if x=fst ab1 then Node2 Leaf ab2 Leaf
 | 
|  |     82 |   else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2 Leaf)" |
 | 
|  |     83 | "del x (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) =
 | 
|  |     84 |   T\<^sub>d(if x = fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else
 | 
|  |     85 |      if x = fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else
 | 
|  |     86 |      if x = fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf
 | 
|  |     87 |      else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf)" |
 | 
|  |     88 | "del x (Node2 l ab1 r) = (case cmp x (fst ab1) of
 | 
|  |     89 |   LT \<Rightarrow> node21 (del x l) ab1 r |
 | 
|  |     90 |   GT \<Rightarrow> node22 l ab1 (del x r) |
 | 
|  |     91 |   EQ \<Rightarrow> let (ab1',t) = del_min r in node22 l ab1' t)" |
 | 
|  |     92 | "del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
 | 
|  |     93 |   LT \<Rightarrow> node31 (del x l) ab1 m ab2 r |
 | 
|  |     94 |   EQ \<Rightarrow> let (ab1',m') = del_min m in node32 l ab1' m' ab2 r |
 | 
|  |     95 |   GT \<Rightarrow> (case cmp x (fst ab2) of
 | 
|  |     96 |            LT \<Rightarrow> node32 l ab1 (del x m) ab2 r |
 | 
|  |     97 |            EQ \<Rightarrow> let (ab2',r') = del_min r in node33 l ab1 m ab2' r' |
 | 
|  |     98 |            GT \<Rightarrow> node33 l ab1 m ab2 (del x r)))" |
 | 
|  |     99 | "del x (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
 | 
|  |    100 |   LT \<Rightarrow> (case cmp x (fst ab1) of
 | 
|  |    101 |            LT \<Rightarrow> node41 (del x t1) ab1 t2 ab2 t3 ab3 t4 |
 | 
|  |    102 |            EQ \<Rightarrow> let (ab',t2') = del_min t2 in node42 t1 ab' t2' ab2 t3 ab3 t4 |
 | 
|  |    103 |            GT \<Rightarrow> node42 t1 ab1 (del x t2) ab2 t3 ab3 t4) |
 | 
|  |    104 |   EQ \<Rightarrow> let (ab',t3') = del_min t3 in node43 t1 ab1 t2 ab' t3' ab3 t4 |
 | 
|  |    105 |   GT \<Rightarrow> (case cmp x (fst ab3) of
 | 
|  |    106 |           LT \<Rightarrow> node43 t1 ab1 t2 ab2 (del x t3) ab3 t4 |
 | 
|  |    107 |           EQ \<Rightarrow> let (ab',t4') = del_min t4 in node44 t1 ab1 t2 ab2 t3 ab' t4' |
 | 
|  |    108 |           GT \<Rightarrow> node44 t1 ab1 t2 ab2 t3 ab3 (del x t4)))"
 | 
|  |    109 | 
 | 
|  |    110 | definition delete :: "'a::cmp \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
 | 
|  |    111 | "delete x t = tree\<^sub>d(del x t)"
 | 
|  |    112 | 
 | 
|  |    113 | 
 | 
|  |    114 | subsection "Functional correctness"
 | 
|  |    115 | 
 | 
| 61790 |    116 | lemma lookup_map_of:
 | 
|  |    117 |   "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
 | 
| 61640 |    118 | by (induction t) (auto simp: map_of_simps split: option.split)
 | 
|  |    119 | 
 | 
|  |    120 | 
 | 
|  |    121 | lemma inorder_upd:
 | 
|  |    122 |   "sorted1(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(upd a b t)) = upd_list a b (inorder t)"
 | 
|  |    123 | by(induction t)
 | 
|  |    124 |   (auto simp: upd_list_simps, auto simp: upd_list_simps split: up\<^sub>i.splits)
 | 
|  |    125 | 
 | 
|  |    126 | lemma inorder_update:
 | 
|  |    127 |   "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)"
 | 
|  |    128 | by(simp add: update_def inorder_upd)
 | 
|  |    129 | 
 | 
|  |    130 | 
 | 
|  |    131 | lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
 | 
|  |    132 |   inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
 | 
|  |    133 | by(induction t rule: del.induct)
 | 
|  |    134 |   ((auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)[1])+
 | 
|  |    135 | (* 200 secs (2015) *)
 | 
|  |    136 | 
 | 
|  |    137 | lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
 | 
|  |    138 |   inorder(delete x t) = del_list x (inorder t)"
 | 
|  |    139 | by(simp add: delete_def inorder_del)
 | 
|  |    140 | 
 | 
|  |    141 | 
 | 
|  |    142 | subsection \<open>Balancedness\<close>
 | 
|  |    143 | 
 | 
|  |    144 | lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t"
 | 
|  |    145 | by (induct t) (auto, auto split: up\<^sub>i.split) (* 20 secs (2015) *)
 | 
|  |    146 | 
 | 
|  |    147 | lemma bal_update: "bal t \<Longrightarrow> bal (update x y t)"
 | 
|  |    148 | by (simp add: update_def bal_upd)
 | 
|  |    149 | 
 | 
|  |    150 | 
 | 
|  |    151 | lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
 | 
|  |    152 | by(induction x t rule: del.induct)
 | 
|  |    153 |   (auto simp add: heights height_del_min split: prod.split)
 | 
|  |    154 | (* 20 secs (2015) *)
 | 
|  |    155 | 
 | 
|  |    156 | lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
 | 
|  |    157 | by(induction x t rule: del.induct)
 | 
|  |    158 |   (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
 | 
|  |    159 | (* 100 secs (2015) *)
 | 
|  |    160 | 
 | 
|  |    161 | corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
 | 
|  |    162 | by(simp add: delete_def bal_tree\<^sub>d_del)
 | 
|  |    163 | 
 | 
|  |    164 | 
 | 
|  |    165 | subsection \<open>Overall Correctness\<close>
 | 
|  |    166 | 
 | 
| 61790 |    167 | interpretation Map_by_Ordered
 | 
| 61640 |    168 | where empty = Leaf and lookup = lookup and update = update and delete = delete
 | 
| 61686 |    169 | and inorder = inorder and inv = bal
 | 
| 61640 |    170 | proof (standard, goal_cases)
 | 
| 61790 |    171 |   case 2 thus ?case by(simp add: lookup_map_of)
 | 
| 61640 |    172 | next
 | 
|  |    173 |   case 3 thus ?case by(simp add: inorder_update)
 | 
|  |    174 | next
 | 
|  |    175 |   case 4 thus ?case by(simp add: inorder_delete)
 | 
|  |    176 | next
 | 
|  |    177 |   case 6 thus ?case by(simp add: bal_update)
 | 
|  |    178 | next
 | 
|  |    179 |   case 7 thus ?case by(simp add: bal_delete)
 | 
|  |    180 | qed simp+
 | 
|  |    181 | 
 | 
|  |    182 | end
 |