105
|
1 |
Pretty.setmargin 72; (*existing macros just allow this margin*)
|
|
2 |
print_depth 0;
|
|
3 |
|
|
4 |
(*operations for "thm"*)
|
|
5 |
|
|
6 |
prth mp;
|
|
7 |
|
|
8 |
prth (mp RS mp);
|
|
9 |
|
|
10 |
prth (conjunct1 RS mp);
|
|
11 |
prth (conjunct1 RSN (2,mp));
|
|
12 |
|
|
13 |
prth (mp RS conjunct1);
|
|
14 |
prth (spec RS it);
|
|
15 |
prth (standard it);
|
|
16 |
|
|
17 |
prth spec;
|
|
18 |
prth (it RS mp);
|
|
19 |
prth (it RS conjunct1);
|
|
20 |
prth (standard it);
|
|
21 |
|
|
22 |
- prth spec;
|
|
23 |
ALL x. ?P(x) ==> ?P(?x)
|
|
24 |
- prth (it RS mp);
|
|
25 |
[| ALL x. ?P3(x) --> ?Q2(x); ?P3(?x1) |] ==> ?Q2(?x1)
|
|
26 |
- prth (it RS conjunct1);
|
|
27 |
[| ALL x. ?P4(x) --> ?P6(x) & ?Q5(x); ?P4(?x2) |] ==> ?P6(?x2)
|
|
28 |
- prth (standard it);
|
|
29 |
[| ALL x. ?P(x) --> ?Pa(x) & ?Q(x); ?P(?x) |] ==> ?Pa(?x)
|
|
30 |
|
|
31 |
(*flexflex pairs*)
|
|
32 |
- prth refl;
|
|
33 |
?a = ?a
|
|
34 |
- prth exI;
|
|
35 |
?P(?x) ==> EX x. ?P(x)
|
|
36 |
- prth (refl RS exI);
|
|
37 |
?a3(?x) == ?a2(?x) ==> EX x. ?a3(x) = ?a2(x)
|
|
38 |
- prthq (flexflex_rule it);
|
|
39 |
EX x. ?a4 = ?a4
|
|
40 |
|
|
41 |
(*Usage of RL*)
|
|
42 |
- val reflk = prth (read_instantiate [("a","k")] refl);
|
|
43 |
k = k
|
|
44 |
val reflk = Thm {hyps=#,maxidx=#,prop=#,sign=#} : thm
|
|
45 |
- prth (reflk RS exI);
|
|
46 |
|
|
47 |
uncaught exception THM
|
|
48 |
- prths ([reflk] RL [exI]);
|
|
49 |
EX x. x = x
|
|
50 |
|
|
51 |
EX x. k = x
|
|
52 |
|
|
53 |
EX x. x = k
|
|
54 |
|
|
55 |
EX x. k = k
|
|
56 |
|
|
57 |
|
|
58 |
|
|
59 |
(*tactics *)
|
|
60 |
|
|
61 |
goal cla_thy "P|P --> P";
|
|
62 |
by (resolve_tac [impI] 1);
|
|
63 |
by (resolve_tac [disjE] 1);
|
|
64 |
by (assume_tac 3);
|
|
65 |
by (assume_tac 2);
|
|
66 |
by (assume_tac 1);
|
|
67 |
val mythm = prth(result());
|
|
68 |
|
|
69 |
|
|
70 |
goal cla_thy "(P & Q) | R --> (P | R)";
|
|
71 |
by (resolve_tac [impI] 1);
|
|
72 |
by (eresolve_tac [disjE] 1);
|
|
73 |
by (dresolve_tac [conjunct1] 1);
|
|
74 |
by (resolve_tac [disjI1] 1);
|
|
75 |
by (resolve_tac [disjI2] 2);
|
|
76 |
by (REPEAT (assume_tac 1));
|
|
77 |
|
|
78 |
|
|
79 |
- goal cla_thy "(P & Q) | R --> (P | R)";
|
|
80 |
Level 0
|
|
81 |
P & Q | R --> P | R
|
|
82 |
1. P & Q | R --> P | R
|
|
83 |
- by (resolve_tac [impI] 1);
|
|
84 |
Level 1
|
|
85 |
P & Q | R --> P | R
|
|
86 |
1. P & Q | R ==> P | R
|
|
87 |
- by (eresolve_tac [disjE] 1);
|
|
88 |
Level 2
|
|
89 |
P & Q | R --> P | R
|
|
90 |
1. P & Q ==> P | R
|
|
91 |
2. R ==> P | R
|
|
92 |
- by (dresolve_tac [conjunct1] 1);
|
|
93 |
Level 3
|
|
94 |
P & Q | R --> P | R
|
|
95 |
1. P ==> P | R
|
|
96 |
2. R ==> P | R
|
|
97 |
- by (resolve_tac [disjI1] 1);
|
|
98 |
Level 4
|
|
99 |
P & Q | R --> P | R
|
|
100 |
1. P ==> P
|
|
101 |
2. R ==> P | R
|
|
102 |
- by (resolve_tac [disjI2] 2);
|
|
103 |
Level 5
|
|
104 |
P & Q | R --> P | R
|
|
105 |
1. P ==> P
|
|
106 |
2. R ==> R
|
|
107 |
- by (REPEAT (assume_tac 1));
|
|
108 |
Level 6
|
|
109 |
P & Q | R --> P | R
|
|
110 |
No subgoals!
|
|
111 |
|
|
112 |
|
|
113 |
goal cla_thy "(P | Q) | R --> P | (Q | R)";
|
|
114 |
by (resolve_tac [impI] 1);
|
|
115 |
by (eresolve_tac [disjE] 1);
|
|
116 |
by (eresolve_tac [disjE] 1);
|
|
117 |
by (resolve_tac [disjI1] 1);
|
|
118 |
by (resolve_tac [disjI2] 2);
|
|
119 |
by (resolve_tac [disjI1] 2);
|
|
120 |
by (resolve_tac [disjI2] 3);
|
|
121 |
by (resolve_tac [disjI2] 3);
|
|
122 |
by (REPEAT (assume_tac 1));
|