| 
62058
 | 
     1  | 
(*  Title:       HOL/Library/Quadratic_Discriminant.thy
  | 
| 
60162
 | 
     2  | 
    Author:      Tim Makarios <tjm1983 at gmail.com>, 2012
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
Originally from the AFP entry Tarskis_Geometry
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
section "Roots of real quadratics"
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Quadratic_Discriminant
  | 
| 
 | 
    10  | 
imports Complex_Main
  | 
| 
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
63465
 | 
    13  | 
definition discrim :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real"
  | 
| 
 | 
    14  | 
  where "discrim a b c \<equiv> b\<^sup>2 - 4 * a * c"
  | 
| 
60162
 | 
    15  | 
  | 
| 
 | 
    16  | 
lemma complete_square:
  | 
| 
68553
 | 
    17  | 
  "a \<noteq> 0 \<Longrightarrow> a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> (2 * a * x + b)\<^sup>2 = discrim a b c"
  | 
| 
 | 
    18  | 
by (simp add: discrim_def) algebra
  | 
| 
60162
 | 
    19  | 
  | 
| 
 | 
    20  | 
lemma discriminant_negative:
  | 
| 
 | 
    21  | 
  fixes a b c x :: real
  | 
| 
 | 
    22  | 
  assumes "a \<noteq> 0"
  | 
| 
63465
 | 
    23  | 
    and "discrim a b c < 0"
  | 
| 
60162
 | 
    24  | 
  shows "a * x\<^sup>2 + b * x + c \<noteq> 0"
  | 
| 
 | 
    25  | 
proof -
  | 
| 
63465
 | 
    26  | 
  have "(2 * a * x + b)\<^sup>2 \<ge> 0"
  | 
| 
 | 
    27  | 
    by simp
  | 
| 
 | 
    28  | 
  with \<open>discrim a b c < 0\<close> have "(2 * a * x + b)\<^sup>2 \<noteq> discrim a b c"
  | 
| 
 | 
    29  | 
    by arith
  | 
| 
 | 
    30  | 
  with complete_square and \<open>a \<noteq> 0\<close> show "a * x\<^sup>2 + b * x + c \<noteq> 0"
  | 
| 
 | 
    31  | 
    by simp
  | 
| 
60162
 | 
    32  | 
qed
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma plus_or_minus_sqrt:
  | 
| 
 | 
    35  | 
  fixes x y :: real
  | 
| 
 | 
    36  | 
  assumes "y \<ge> 0"
  | 
| 
 | 
    37  | 
  shows "x\<^sup>2 = y \<longleftrightarrow> x = sqrt y \<or> x = - sqrt y"
  | 
| 
 | 
    38  | 
proof
  | 
| 
 | 
    39  | 
  assume "x\<^sup>2 = y"
  | 
| 
63465
 | 
    40  | 
  then have "sqrt (x\<^sup>2) = sqrt y"
  | 
| 
 | 
    41  | 
    by simp
  | 
| 
 | 
    42  | 
  then have "sqrt y = \<bar>x\<bar>"
  | 
| 
 | 
    43  | 
    by simp
  | 
| 
 | 
    44  | 
  then show "x = sqrt y \<or> x = - sqrt y"
  | 
| 
 | 
    45  | 
    by auto
  | 
| 
60162
 | 
    46  | 
next
  | 
| 
 | 
    47  | 
  assume "x = sqrt y \<or> x = - sqrt y"
  | 
| 
63465
 | 
    48  | 
  then have "x\<^sup>2 = (sqrt y)\<^sup>2 \<or> x\<^sup>2 = (- sqrt y)\<^sup>2"
  | 
| 
 | 
    49  | 
    by auto
  | 
| 
 | 
    50  | 
  with \<open>y \<ge> 0\<close> show "x\<^sup>2 = y"
  | 
| 
 | 
    51  | 
    by simp
  | 
| 
60162
 | 
    52  | 
qed
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma divide_non_zero:
  | 
| 
 | 
    55  | 
  fixes x y z :: real
  | 
| 
 | 
    56  | 
  assumes "x \<noteq> 0"
  | 
| 
 | 
    57  | 
  shows "x * y = z \<longleftrightarrow> y = z / x"
  | 
| 
 | 
    58  | 
proof
  | 
| 
63465
 | 
    59  | 
  show "y = z / x" if "x * y = z"
  | 
| 
 | 
    60  | 
    using \<open>x \<noteq> 0\<close> that by (simp add: field_simps)
  | 
| 
 | 
    61  | 
  show "x * y = z" if "y = z / x"
  | 
| 
 | 
    62  | 
    using \<open>x \<noteq> 0\<close> that by simp
  | 
| 
60162
 | 
    63  | 
qed
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
lemma discriminant_nonneg:
  | 
| 
 | 
    66  | 
  fixes a b c x :: real
  | 
| 
 | 
    67  | 
  assumes "a \<noteq> 0"
  | 
| 
63465
 | 
    68  | 
    and "discrim a b c \<ge> 0"
  | 
| 
60162
 | 
    69  | 
  shows "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow>
  | 
| 
63465
 | 
    70  | 
    x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
 | 
    71  | 
    x = (-b - sqrt (discrim a b c)) / (2 * a)"
  | 
| 
60162
 | 
    72  | 
proof -
  | 
| 
 | 
    73  | 
  from complete_square and plus_or_minus_sqrt and assms
  | 
| 
 | 
    74  | 
  have "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow>
  | 
| 
 | 
    75  | 
    (2 * a) * x + b = sqrt (discrim a b c) \<or>
  | 
| 
 | 
    76  | 
    (2 * a) * x + b = - sqrt (discrim a b c)"
  | 
| 
 | 
    77  | 
    by simp
  | 
| 
 | 
    78  | 
  also have "\<dots> \<longleftrightarrow> (2 * a) * x = (-b + sqrt (discrim a b c)) \<or>
  | 
| 
 | 
    79  | 
    (2 * a) * x = (-b - sqrt (discrim a b c))"
  | 
| 
 | 
    80  | 
    by auto
  | 
| 
60500
 | 
    81  | 
  also from \<open>a \<noteq> 0\<close> and divide_non_zero [of "2 * a" x]
  | 
| 
60162
 | 
    82  | 
  have "\<dots> \<longleftrightarrow> x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
 | 
    83  | 
    x = (-b - sqrt (discrim a b c)) / (2 * a)"
  | 
| 
 | 
    84  | 
    by simp
  | 
| 
 | 
    85  | 
  finally show "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow>
  | 
| 
 | 
    86  | 
    x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
 | 
    87  | 
    x = (-b - sqrt (discrim a b c)) / (2 * a)" .
  | 
| 
 | 
    88  | 
qed
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
lemma discriminant_zero:
  | 
| 
 | 
    91  | 
  fixes a b c x :: real
  | 
| 
 | 
    92  | 
  assumes "a \<noteq> 0"
  | 
| 
63465
 | 
    93  | 
    and "discrim a b c = 0"
  | 
| 
60162
 | 
    94  | 
  shows "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> x = -b / (2 * a)"
  | 
| 
63465
 | 
    95  | 
  by (simp add: discriminant_nonneg assms)
  | 
| 
60162
 | 
    96  | 
  | 
| 
 | 
    97  | 
theorem discriminant_iff:
  | 
| 
 | 
    98  | 
  fixes a b c x :: real
  | 
| 
 | 
    99  | 
  assumes "a \<noteq> 0"
  | 
| 
 | 
   100  | 
  shows "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow>
  | 
| 
63465
 | 
   101  | 
    discrim a b c \<ge> 0 \<and>
  | 
| 
 | 
   102  | 
    (x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
 | 
   103  | 
     x = (-b - sqrt (discrim a b c)) / (2 * a))"
  | 
| 
60162
 | 
   104  | 
proof
  | 
| 
 | 
   105  | 
  assume "a * x\<^sup>2 + b * x + c = 0"
  | 
| 
63465
 | 
   106  | 
  with discriminant_negative and \<open>a \<noteq> 0\<close> have "\<not>(discrim a b c < 0)"
  | 
| 
 | 
   107  | 
    by auto
  | 
| 
 | 
   108  | 
  then have "discrim a b c \<ge> 0"
  | 
| 
 | 
   109  | 
    by simp
  | 
| 
60500
 | 
   110  | 
  with discriminant_nonneg and \<open>a * x\<^sup>2 + b * x + c = 0\<close> and \<open>a \<noteq> 0\<close>
  | 
| 
60162
 | 
   111  | 
  have "x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
63465
 | 
   112  | 
      x = (-b - sqrt (discrim a b c)) / (2 * a)"
  | 
| 
60162
 | 
   113  | 
    by simp
  | 
| 
60500
 | 
   114  | 
  with \<open>discrim a b c \<ge> 0\<close>
  | 
| 
60162
 | 
   115  | 
  show "discrim a b c \<ge> 0 \<and>
  | 
| 
 | 
   116  | 
    (x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
63465
 | 
   117  | 
     x = (-b - sqrt (discrim a b c)) / (2 * a))" ..
  | 
| 
60162
 | 
   118  | 
next
  | 
| 
 | 
   119  | 
  assume "discrim a b c \<ge> 0 \<and>
  | 
| 
 | 
   120  | 
    (x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
63465
 | 
   121  | 
     x = (-b - sqrt (discrim a b c)) / (2 * a))"
  | 
| 
 | 
   122  | 
  then have "discrim a b c \<ge> 0" and
  | 
| 
60162
 | 
   123  | 
    "x = (-b + sqrt (discrim a b c)) / (2 * a) \<or>
  | 
| 
63465
 | 
   124  | 
     x = (-b - sqrt (discrim a b c)) / (2 * a)"
  | 
| 
60162
 | 
   125  | 
    by simp_all
  | 
| 
63465
 | 
   126  | 
  with discriminant_nonneg and \<open>a \<noteq> 0\<close> show "a * x\<^sup>2 + b * x + c = 0"
  | 
| 
 | 
   127  | 
    by simp
  | 
| 
60162
 | 
   128  | 
qed
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
lemma discriminant_nonneg_ex:
  | 
| 
 | 
   131  | 
  fixes a b c :: real
  | 
| 
 | 
   132  | 
  assumes "a \<noteq> 0"
  | 
| 
63465
 | 
   133  | 
    and "discrim a b c \<ge> 0"
  | 
| 
60162
 | 
   134  | 
  shows "\<exists> x. a * x\<^sup>2 + b * x + c = 0"
  | 
| 
63465
 | 
   135  | 
  by (auto simp: discriminant_nonneg assms)
  | 
| 
60162
 | 
   136  | 
  | 
| 
 | 
   137  | 
lemma discriminant_pos_ex:
  | 
| 
 | 
   138  | 
  fixes a b c :: real
  | 
| 
 | 
   139  | 
  assumes "a \<noteq> 0"
  | 
| 
63465
 | 
   140  | 
    and "discrim a b c > 0"
  | 
| 
 | 
   141  | 
  shows "\<exists>x y. x \<noteq> y \<and> a * x\<^sup>2 + b * x + c = 0 \<and> a * y\<^sup>2 + b * y + c = 0"
  | 
| 
60162
 | 
   142  | 
proof -
  | 
| 
 | 
   143  | 
  let ?x = "(-b + sqrt (discrim a b c)) / (2 * a)"
  | 
| 
 | 
   144  | 
  let ?y = "(-b - sqrt (discrim a b c)) / (2 * a)"
  | 
| 
63465
 | 
   145  | 
  from \<open>discrim a b c > 0\<close> have "sqrt (discrim a b c) \<noteq> 0"
  | 
| 
 | 
   146  | 
    by simp
  | 
| 
 | 
   147  | 
  then have "sqrt (discrim a b c) \<noteq> - sqrt (discrim a b c)"
  | 
| 
 | 
   148  | 
    by arith
  | 
| 
 | 
   149  | 
  with \<open>a \<noteq> 0\<close> have "?x \<noteq> ?y"
  | 
| 
 | 
   150  | 
    by simp
  | 
| 
 | 
   151  | 
  moreover from assms have "a * ?x\<^sup>2 + b * ?x + c = 0" and "a * ?y\<^sup>2 + b * ?y + c = 0"
  | 
| 
 | 
   152  | 
    using discriminant_nonneg [of a b c ?x]
  | 
| 
 | 
   153  | 
      and discriminant_nonneg [of a b c ?y]
  | 
| 
 | 
   154  | 
    by simp_all
  | 
| 
 | 
   155  | 
  ultimately show ?thesis
  | 
| 
 | 
   156  | 
    by blast
  | 
| 
60162
 | 
   157  | 
qed
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma discriminant_pos_distinct:
  | 
| 
 | 
   160  | 
  fixes a b c x :: real
  | 
| 
63465
 | 
   161  | 
  assumes "a \<noteq> 0"
  | 
| 
 | 
   162  | 
    and "discrim a b c > 0"
  | 
| 
60162
 | 
   163  | 
  shows "\<exists> y. x \<noteq> y \<and> a * y\<^sup>2 + b * y + c = 0"
  | 
| 
 | 
   164  | 
proof -
  | 
| 
60500
 | 
   165  | 
  from discriminant_pos_ex and \<open>a \<noteq> 0\<close> and \<open>discrim a b c > 0\<close>
  | 
| 
60162
 | 
   166  | 
  obtain w and z where "w \<noteq> z"
  | 
| 
 | 
   167  | 
    and "a * w\<^sup>2 + b * w + c = 0" and "a * z\<^sup>2 + b * z + c = 0"
  | 
| 
 | 
   168  | 
    by blast
  | 
| 
63465
 | 
   169  | 
  show "\<exists>y. x \<noteq> y \<and> a * y\<^sup>2 + b * y + c = 0"
  | 
| 
 | 
   170  | 
  proof (cases "x = w")
  | 
| 
 | 
   171  | 
    case True
  | 
| 
 | 
   172  | 
    with \<open>w \<noteq> z\<close> have "x \<noteq> z"
  | 
| 
 | 
   173  | 
      by simp
  | 
| 
 | 
   174  | 
    with \<open>a * z\<^sup>2 + b * z + c = 0\<close> show ?thesis
  | 
| 
 | 
   175  | 
      by auto
  | 
| 
60162
 | 
   176  | 
  next
  | 
| 
63465
 | 
   177  | 
    case False
  | 
| 
 | 
   178  | 
    with \<open>a * w\<^sup>2 + b * w + c = 0\<close> show ?thesis
  | 
| 
 | 
   179  | 
      by auto
  | 
| 
60162
 | 
   180  | 
  qed
  | 
| 
 | 
   181  | 
qed
  | 
| 
 | 
   182  | 
  | 
| 
68553
 | 
   183  | 
lemma Rats_solution_QE:
  | 
| 
 | 
   184  | 
  assumes "a \<in> \<rat>" "b \<in> \<rat>" "a \<noteq> 0"
  | 
| 
 | 
   185  | 
  and "a*x^2 + b*x + c = 0"
  | 
| 
 | 
   186  | 
  and "sqrt (discrim a b c) \<in> \<rat>"
  | 
| 
 | 
   187  | 
  shows "x \<in> \<rat>" 
  | 
| 
 | 
   188  | 
using assms(1,2,5) discriminant_iff[THEN iffD1, OF assms(3,4)] by auto
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
lemma Rats_solution_QE_converse:
  | 
| 
 | 
   191  | 
  assumes "a \<in> \<rat>" "b \<in> \<rat>"
  | 
| 
 | 
   192  | 
  and "a*x^2 + b*x + c = 0"
  | 
| 
 | 
   193  | 
  and "x \<in> \<rat>"
  | 
| 
 | 
   194  | 
  shows "sqrt (discrim a b c) \<in> \<rat>"
  | 
| 
 | 
   195  | 
proof -
  | 
| 
 | 
   196  | 
  from assms(3) have "discrim a b c = (2*a*x+b)^2" unfolding discrim_def by algebra
  | 
| 
 | 
   197  | 
  hence "sqrt (discrim a b c) = \<bar>2*a*x+b\<bar>" by (simp)
  | 
| 
 | 
   198  | 
  thus ?thesis using \<open>a \<in> \<rat>\<close> \<open>b \<in> \<rat>\<close> \<open>x \<in> \<rat>\<close> by (simp)
  | 
| 
 | 
   199  | 
qed
  | 
| 
 | 
   200  | 
  | 
| 
60162
 | 
   201  | 
end
  |