| 
11448
 | 
     1  | 
(*  Title:      HOL/GroupTheory/FactGroup
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Florian Kammueller, with new proofs by L C Paulson
  | 
| 
 | 
     4  | 
    Copyright   1998-2001  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Factorization of a group
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
Open_locale "factgroup";
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
val H_normal = thm "H_normal";
  | 
| 
 | 
    13  | 
val F_def = thm "F_def";
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
Addsimps [H_normal, F_def,setrcos_def];
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
Goal "carrier F = {* H *}";
 | 
| 
 | 
    18  | 
by (afs [FactGroup_def] 1);
  | 
| 
 | 
    19  | 
qed "F_carrier";
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
Goal "bin_op F = (lam X: {* H *}. lam Y: {* H *}. X <#> Y) ";
 | 
| 
 | 
    22  | 
by (afs [FactGroup_def, setprod_def] 1);
  | 
| 
 | 
    23  | 
qed "F_bin_op";
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
Goal "inverse F = (lam X: {* H *}. I(X))";
 | 
| 
 | 
    26  | 
by (afs [FactGroup_def, setinv_def] 1);
  | 
| 
 | 
    27  | 
qed "F_inverse";
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
Goal "unit F = H";
  | 
| 
 | 
    30  | 
by (afs [FactGroup_def] 1);
  | 
| 
 | 
    31  | 
qed "F_unit";
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
Goal "F = (| carrier = {* H *}, \
 | 
| 
 | 
    34  | 
\            bin_op  = (lam X: {* H *}. lam Y: {* H *}. X <#> Y), \
 | 
| 
 | 
    35  | 
\            inverse = (lam X: {* H *}. I(X)),  unit = H |)";
 | 
| 
 | 
    36  | 
by (afs [FactGroup_def, F_carrier, F_bin_op, F_inverse, F_unit] 1);
  | 
| 
 | 
    37  | 
by (auto_tac (claset() addSIs [restrict_ext], 
  | 
| 
 | 
    38  | 
              simpset() addsimps [set_prod_def, setprod_def, setinv_def])); 
  | 
| 
 | 
    39  | 
qed "F_defI";
  | 
| 
 | 
    40  | 
val F_DefI = export F_defI;
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
Delsimps [setrcos_def];
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
(* MAIN PROOF *)
  | 
| 
 | 
    45  | 
Goal "F \\<in> Group";
  | 
| 
 | 
    46  | 
val l1 = H_normal RS normal_imp_subgroup ;
  | 
| 
 | 
    47  | 
val l2 = l1 RS subgroup_imp_subset;
  | 
| 
 | 
    48  | 
by (stac F_defI 1);
  | 
| 
 | 
    49  | 
by (rtac GroupI 1);
  | 
| 
 | 
    50  | 
(* 1.  *)
  | 
| 
 | 
    51  | 
by (afs [restrictI, setprod_closed] 1);
  | 
| 
 | 
    52  | 
(* 2. *)
  | 
| 
 | 
    53  | 
by (afs [restrictI, setinv_closed] 1);
  | 
| 
 | 
    54  | 
(* 3. H\\<in>{* H *} *)
 | 
| 
 | 
    55  | 
by (rtac (l1 RS setrcos_unit_closed) 1);
  | 
| 
 | 
    56  | 
(* 4. inverse property *)
  | 
| 
 | 
    57  | 
by (simp_tac (simpset() addsimps [setinv_closed, setrcos_inv_prod_eq]) 1);
  | 
| 
 | 
    58  | 
(* 5. unit property *)
  | 
| 
 | 
    59  | 
by (simp_tac (simpset() addsimps [normal_imp_subgroup, 
  | 
| 
 | 
    60  | 
           setrcos_unit_closed, setrcos_prod_eq]) 1);
  | 
| 
 | 
    61  | 
(* 6. associativity *)
  | 
| 
 | 
    62  | 
by (asm_simp_tac
  | 
| 
 | 
    63  | 
    (simpset() addsimps [setprod_closed, H_normal RS setrcos_prod_assoc]) 1);
  | 
| 
 | 
    64  | 
qed "factorgroup_is_group";
  | 
| 
 | 
    65  | 
val FactorGroup_is_Group = export factorgroup_is_group;
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
Delsimps [H_normal, F_def];
  | 
| 
 | 
    69  | 
Close_locale "factgroup";
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
Goalw [FactGroup_def] "FactGroup \\<in> (PI G: Group. {H. H <| G} \\<rightarrow> Group)";
 | 
| 
 | 
    73  | 
by (rtac restrictI 1);
  | 
| 
 | 
    74  | 
by (rtac restrictI 1);
  | 
| 
 | 
    75  | 
by (asm_full_simp_tac
  | 
| 
 | 
    76  | 
    (simpset() addsimps [F_DefI RS sym, FactorGroup_is_Group]) 1); 
  | 
| 
 | 
    77  | 
qed "FactGroup_arity";
  | 
| 
 | 
    78  | 
 
  | 
| 
 | 
    79  | 
Close_locale "coset";
  | 
| 
 | 
    80  | 
Close_locale "group";
  |