author | blanchet |
Tue, 10 Jun 2014 11:38:53 +0200 | |
changeset 57199 | 472360558b22 |
parent 44887 | 7ca82df6e951 |
child 58744 | c434e37f290e |
permissions | -rw-r--r-- |
31795
be3e1cc5005c
standard naming conventions for session and theories;
wenzelm
parents:
29197
diff
changeset
|
1 |
(* Title: HOL/Hahn_Banach/Function_Order.thy |
7566 | 2 |
Author: Gertrud Bauer, TU Munich |
3 |
*) |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
4 |
|
9035 | 5 |
header {* An order on functions *} |
7808 | 6 |
|
31795
be3e1cc5005c
standard naming conventions for session and theories;
wenzelm
parents:
29197
diff
changeset
|
7 |
theory Function_Order |
27612 | 8 |
imports Subspace Linearform |
9 |
begin |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
10 |
|
9035 | 11 |
subsection {* The graph of a function *} |
7808 | 12 |
|
10687 | 13 |
text {* |
14 |
We define the \emph{graph} of a (real) function @{text f} with |
|
15 |
domain @{text F} as the set |
|
16 |
\begin{center} |
|
17 |
@{text "{(x, f x). x \<in> F}"} |
|
18 |
\end{center} |
|
19 |
So we are modeling partial functions by specifying the domain and |
|
20 |
the mapping function. We use the term ``function'' also for its |
|
21 |
graph. |
|
9035 | 22 |
*} |
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
23 |
|
41818 | 24 |
type_synonym 'a graph = "('a \<times> real) set" |
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
25 |
|
44887 | 26 |
definition graph :: "'a set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a graph" |
27 |
where "graph F f = {(x, f x) | x. x \<in> F}" |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
28 |
|
13515 | 29 |
lemma graphI [intro]: "x \<in> F \<Longrightarrow> (x, f x) \<in> graph F f" |
27612 | 30 |
unfolding graph_def by blast |
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
31 |
|
13515 | 32 |
lemma graphI2 [intro?]: "x \<in> F \<Longrightarrow> \<exists>t \<in> graph F f. t = (x, f x)" |
27612 | 33 |
unfolding graph_def by blast |
7566 | 34 |
|
13515 | 35 |
lemma graphE [elim?]: |
44887 | 36 |
assumes "(x, y) \<in> graph F f" |
37 |
obtains "x \<in> F" and "y = f x" |
|
38 |
using assms unfolding graph_def by blast |
|
10687 | 39 |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
40 |
|
9035 | 41 |
subsection {* Functions ordered by domain extension *} |
7917 | 42 |
|
13515 | 43 |
text {* |
44 |
A function @{text h'} is an extension of @{text h}, iff the graph of |
|
45 |
@{text h} is a subset of the graph of @{text h'}. |
|
46 |
*} |
|
7917 | 47 |
|
10687 | 48 |
lemma graph_extI: |
49 |
"(\<And>x. x \<in> H \<Longrightarrow> h x = h' x) \<Longrightarrow> H \<subseteq> H' |
|
13515 | 50 |
\<Longrightarrow> graph H h \<subseteq> graph H' h'" |
27612 | 51 |
unfolding graph_def by blast |
7917 | 52 |
|
44887 | 53 |
lemma graph_extD1 [dest?]: "graph H h \<subseteq> graph H' h' \<Longrightarrow> x \<in> H \<Longrightarrow> h x = h' x" |
27612 | 54 |
unfolding graph_def by blast |
7566 | 55 |
|
44887 | 56 |
lemma graph_extD2 [dest?]: "graph H h \<subseteq> graph H' h' \<Longrightarrow> H \<subseteq> H'" |
27612 | 57 |
unfolding graph_def by blast |
7566 | 58 |
|
13515 | 59 |
|
9035 | 60 |
subsection {* Domain and function of a graph *} |
7917 | 61 |
|
10687 | 62 |
text {* |
13515 | 63 |
The inverse functions to @{text graph} are @{text domain} and @{text |
64 |
funct}. |
|
10687 | 65 |
*} |
7917 | 66 |
|
44887 | 67 |
definition domain :: "'a graph \<Rightarrow> 'a set" |
68 |
where "domain g = {x. \<exists>y. (x, y) \<in> g}" |
|
7917 | 69 |
|
44887 | 70 |
definition funct :: "'a graph \<Rightarrow> ('a \<Rightarrow> real)" |
71 |
where "funct g = (\<lambda>x. (SOME y. (x, y) \<in> g))" |
|
7917 | 72 |
|
10687 | 73 |
text {* |
74 |
The following lemma states that @{text g} is the graph of a function |
|
75 |
if the relation induced by @{text g} is unique. |
|
76 |
*} |
|
7566 | 77 |
|
10687 | 78 |
lemma graph_domain_funct: |
13515 | 79 |
assumes uniq: "\<And>x y z. (x, y) \<in> g \<Longrightarrow> (x, z) \<in> g \<Longrightarrow> z = y" |
80 |
shows "graph (domain g) (funct g) = g" |
|
27612 | 81 |
unfolding domain_def funct_def graph_def |
82 |
proof auto (* FIXME !? *) |
|
23378 | 83 |
fix a b assume g: "(a, b) \<in> g" |
84 |
from g show "(a, SOME y. (a, y) \<in> g) \<in> g" by (rule someI2) |
|
85 |
from g show "\<exists>y. (a, y) \<in> g" .. |
|
86 |
from g show "b = (SOME y. (a, y) \<in> g)" |
|
9969 | 87 |
proof (rule some_equality [symmetric]) |
13515 | 88 |
fix y assume "(a, y) \<in> g" |
23378 | 89 |
with g show "y = b" by (rule uniq) |
9035 | 90 |
qed |
91 |
qed |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
92 |
|
7808 | 93 |
|
9035 | 94 |
subsection {* Norm-preserving extensions of a function *} |
7917 | 95 |
|
10687 | 96 |
text {* |
97 |
Given a linear form @{text f} on the space @{text F} and a seminorm |
|
98 |
@{text p} on @{text E}. The set of all linear extensions of @{text |
|
99 |
f}, to superspaces @{text H} of @{text F}, which are bounded by |
|
100 |
@{text p}, is defined as follows. |
|
101 |
*} |
|
7808 | 102 |
|
19736 | 103 |
definition |
10687 | 104 |
norm_pres_extensions :: |
25762 | 105 |
"'a::{plus, minus, uminus, zero} set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> real) |
44887 | 106 |
\<Rightarrow> 'a graph set" |
107 |
where |
|
108 |
"norm_pres_extensions E p F f |
|
109 |
= {g. \<exists>H h. g = graph H h |
|
110 |
\<and> linearform H h |
|
111 |
\<and> H \<unlhd> E |
|
112 |
\<and> F \<unlhd> H |
|
113 |
\<and> graph F f \<subseteq> graph H h |
|
114 |
\<and> (\<forall>x \<in> H. h x \<le> p x)}" |
|
10687 | 115 |
|
13515 | 116 |
lemma norm_pres_extensionE [elim]: |
44887 | 117 |
assumes "g \<in> norm_pres_extensions E p F f" |
118 |
obtains H h |
|
119 |
where "g = graph H h" |
|
120 |
and "linearform H h" |
|
121 |
and "H \<unlhd> E" |
|
122 |
and "F \<unlhd> H" |
|
123 |
and "graph F f \<subseteq> graph H h" |
|
124 |
and "\<forall>x \<in> H. h x \<le> p x" |
|
125 |
using assms unfolding norm_pres_extensions_def by blast |
|
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
126 |
|
10687 | 127 |
lemma norm_pres_extensionI2 [intro]: |
13515 | 128 |
"linearform H h \<Longrightarrow> H \<unlhd> E \<Longrightarrow> F \<unlhd> H |
129 |
\<Longrightarrow> graph F f \<subseteq> graph H h \<Longrightarrow> \<forall>x \<in> H. h x \<le> p x |
|
130 |
\<Longrightarrow> graph H h \<in> norm_pres_extensions E p F f" |
|
27612 | 131 |
unfolding norm_pres_extensions_def by blast |
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
132 |
|
13515 | 133 |
lemma norm_pres_extensionI: (* FIXME ? *) |
134 |
"\<exists>H h. g = graph H h |
|
135 |
\<and> linearform H h |
|
136 |
\<and> H \<unlhd> E |
|
137 |
\<and> F \<unlhd> H |
|
138 |
\<and> graph F f \<subseteq> graph H h |
|
139 |
\<and> (\<forall>x \<in> H. h x \<le> p x) \<Longrightarrow> g \<in> norm_pres_extensions E p F f" |
|
27612 | 140 |
unfolding norm_pres_extensions_def by blast |
7535
599d3414b51d
The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar)
wenzelm
parents:
diff
changeset
|
141 |
|
10687 | 142 |
end |