70095
|
1 |
section\<open>Homology, III: Brouwer Degree\<close>
|
|
2 |
|
|
3 |
theory Brouwer_Degree
|
|
4 |
imports Homology_Groups
|
|
5 |
|
|
6 |
begin
|
|
7 |
|
|
8 |
subsection\<open>Reduced Homology\<close>
|
|
9 |
|
|
10 |
definition reduced_homology_group :: "int \<Rightarrow> 'a topology \<Rightarrow> 'a chain set monoid"
|
|
11 |
where "reduced_homology_group p X \<equiv>
|
|
12 |
subgroup_generated (homology_group p X)
|
|
13 |
(kernel (homology_group p X) (homology_group p (discrete_topology {()}))
|
|
14 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())))"
|
|
15 |
|
|
16 |
lemma one_reduced_homology_group: "\<one>\<^bsub>reduced_homology_group p X\<^esub> = \<one>\<^bsub>homology_group p X\<^esub>"
|
|
17 |
by (simp add: reduced_homology_group_def)
|
|
18 |
|
|
19 |
lemma group_reduced_homology_group [simp]: "group (reduced_homology_group p X)"
|
|
20 |
by (simp add: reduced_homology_group_def group.group_subgroup_generated)
|
|
21 |
|
|
22 |
lemma carrier_reduced_homology_group:
|
|
23 |
"carrier (reduced_homology_group p X) =
|
|
24 |
kernel (homology_group p X) (homology_group p (discrete_topology {()}))
|
|
25 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ()))"
|
|
26 |
(is "_ = kernel ?G ?H ?h")
|
|
27 |
proof -
|
|
28 |
interpret subgroup "kernel ?G ?H ?h" ?G
|
|
29 |
by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def group_hom.subgroup_kernel)
|
|
30 |
show ?thesis
|
|
31 |
unfolding reduced_homology_group_def
|
|
32 |
using carrier_subgroup_generated_subgroup by blast
|
|
33 |
qed
|
|
34 |
|
|
35 |
lemma carrier_reduced_homology_group_subset:
|
|
36 |
"carrier (reduced_homology_group p X) \<subseteq> carrier (homology_group p X)"
|
|
37 |
by (simp add: group.carrier_subgroup_generated_subset reduced_homology_group_def)
|
|
38 |
|
|
39 |
lemma un_reduced_homology_group:
|
|
40 |
assumes "p \<noteq> 0"
|
|
41 |
shows "reduced_homology_group p X = homology_group p X"
|
|
42 |
proof -
|
|
43 |
have "(kernel (homology_group p X) (homology_group p (discrete_topology {()}))
|
|
44 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())))
|
|
45 |
= carrier (homology_group p X)"
|
|
46 |
proof (rule group_hom.kernel_to_trivial_group)
|
|
47 |
show "group_hom (homology_group p X) (homology_group p (discrete_topology {()}))
|
|
48 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ()))"
|
|
49 |
by (auto simp: hom_induced_empty_hom group_hom_def group_hom_axioms_def)
|
|
50 |
show "trivial_group (homology_group p (discrete_topology {()}))"
|
|
51 |
by (simp add: homology_dimension_axiom [OF _ assms])
|
|
52 |
qed
|
|
53 |
then show ?thesis
|
|
54 |
by (simp add: reduced_homology_group_def group.subgroup_generated_group_carrier)
|
|
55 |
qed
|
|
56 |
|
|
57 |
lemma trivial_reduced_homology_group:
|
|
58 |
"p < 0 \<Longrightarrow> trivial_group(reduced_homology_group p X)"
|
|
59 |
by (simp add: trivial_homology_group un_reduced_homology_group)
|
|
60 |
|
|
61 |
lemma hom_induced_reduced_hom:
|
|
62 |
"(hom_induced p X {} Y {} f) \<in> hom (reduced_homology_group p X) (reduced_homology_group p Y)"
|
|
63 |
proof (cases "continuous_map X Y f")
|
|
64 |
case True
|
|
65 |
have eq: "continuous_map X Y f
|
|
66 |
\<Longrightarrow> hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())
|
|
67 |
= (hom_induced p Y {} (discrete_topology {()}) {} (\<lambda>x. ()) \<circ> hom_induced p X {} Y {} f)"
|
|
68 |
by (simp flip: hom_induced_compose_empty)
|
|
69 |
interpret subgroup "kernel (homology_group p X)
|
|
70 |
(homology_group p (discrete_topology {()}))
|
|
71 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ()))"
|
|
72 |
"homology_group p X"
|
|
73 |
by (meson group_hom.subgroup_kernel group_hom_axioms_def group_hom_def group_relative_homology_group hom_induced)
|
|
74 |
have sb: "hom_induced p X {} Y {} f ` carrier (homology_group p X) \<subseteq> carrier (homology_group p Y)"
|
|
75 |
using hom_induced_carrier by blast
|
|
76 |
show ?thesis
|
|
77 |
using True
|
|
78 |
unfolding reduced_homology_group_def
|
|
79 |
apply (simp add: hom_into_subgroup_eq group_hom.subgroup_kernel hom_induced_empty_hom group.hom_from_subgroup_generated group_hom_def group_hom_axioms_def)
|
|
80 |
unfolding kernel_def using eq sb by auto
|
|
81 |
next
|
|
82 |
case False
|
|
83 |
then have "hom_induced p X {} Y {} f = (\<lambda>c. one(reduced_homology_group p Y))"
|
|
84 |
by (force simp: hom_induced_default reduced_homology_group_def)
|
|
85 |
then show ?thesis
|
|
86 |
by (simp add: trivial_hom)
|
|
87 |
qed
|
|
88 |
|
|
89 |
|
|
90 |
lemma hom_induced_reduced:
|
|
91 |
"c \<in> carrier(reduced_homology_group p X)
|
|
92 |
\<Longrightarrow> hom_induced p X {} Y {} f c \<in> carrier(reduced_homology_group p Y)"
|
|
93 |
by (meson hom_in_carrier hom_induced_reduced_hom)
|
|
94 |
|
|
95 |
lemma hom_boundary_reduced_hom:
|
|
96 |
"hom_boundary p X S
|
|
97 |
\<in> hom (relative_homology_group p X S) (reduced_homology_group (p-1) (subtopology X S))"
|
|
98 |
proof -
|
|
99 |
have *: "continuous_map X (discrete_topology {()}) (\<lambda>x. ())" "(\<lambda>x. ()) ` S \<subseteq> {()}"
|
|
100 |
by auto
|
|
101 |
interpret group_hom "relative_homology_group p (discrete_topology {()}) {()}"
|
|
102 |
"homology_group (p-1) (discrete_topology {()})"
|
|
103 |
"hom_boundary p (discrete_topology {()}) {()}"
|
|
104 |
apply (clarsimp simp: group_hom_def group_hom_axioms_def)
|
|
105 |
by (metis UNIV_unit hom_boundary_hom subtopology_UNIV)
|
|
106 |
have "hom_boundary p X S `
|
|
107 |
carrier (relative_homology_group p X S)
|
|
108 |
\<subseteq> kernel (homology_group (p - 1) (subtopology X S))
|
|
109 |
(homology_group (p - 1) (discrete_topology {()}))
|
|
110 |
(hom_induced (p - 1) (subtopology X S) {}
|
|
111 |
(discrete_topology {()}) {} (\<lambda>x. ()))"
|
|
112 |
proof (clarsimp simp add: kernel_def hom_boundary_carrier)
|
|
113 |
fix c
|
|
114 |
assume c: "c \<in> carrier (relative_homology_group p X S)"
|
|
115 |
have triv: "trivial_group (relative_homology_group p (discrete_topology {()}) {()})"
|
|
116 |
by (metis topspace_discrete_topology trivial_relative_homology_group_topspace)
|
|
117 |
have "hom_boundary p (discrete_topology {()}) {()}
|
|
118 |
(hom_induced p X S (discrete_topology {()}) {()} (\<lambda>x. ()) c)
|
|
119 |
= \<one>\<^bsub>homology_group (p - 1) (discrete_topology {()})\<^esub>"
|
|
120 |
by (metis hom_induced_carrier local.hom_one singletonD triv trivial_group_def)
|
|
121 |
then show "hom_induced (p - 1) (subtopology X S) {} (discrete_topology {()}) {} (\<lambda>x. ()) (hom_boundary p X S c) =
|
|
122 |
\<one>\<^bsub>homology_group (p - 1) (discrete_topology {()})\<^esub>"
|
|
123 |
using naturality_hom_induced [OF *, of p, symmetric] by (simp add: o_def fun_eq_iff)
|
|
124 |
qed
|
|
125 |
then show ?thesis
|
|
126 |
by (simp add: reduced_homology_group_def hom_boundary_hom hom_into_subgroup)
|
|
127 |
qed
|
|
128 |
|
|
129 |
|
|
130 |
lemma homotopy_equivalence_reduced_homology_group_isomorphisms:
|
|
131 |
assumes contf: "continuous_map X Y f" and contg: "continuous_map Y X g"
|
|
132 |
and gf: "homotopic_with (\<lambda>h. True) X X (g \<circ> f) id"
|
|
133 |
and fg: "homotopic_with (\<lambda>k. True) Y Y (f \<circ> g) id"
|
|
134 |
shows "group_isomorphisms (reduced_homology_group p X) (reduced_homology_group p Y)
|
|
135 |
(hom_induced p X {} Y {} f) (hom_induced p Y {} X {} g)"
|
|
136 |
proof (simp add: hom_induced_reduced_hom group_isomorphisms_def, intro conjI ballI)
|
|
137 |
fix a
|
|
138 |
assume "a \<in> carrier (reduced_homology_group p X)"
|
|
139 |
then have "(hom_induced p Y {} X {} g \<circ> hom_induced p X {} Y {} f) a = a"
|
|
140 |
apply (simp add: contf contg flip: hom_induced_compose)
|
|
141 |
using carrier_reduced_homology_group_subset gf hom_induced_id homology_homotopy_empty by fastforce
|
|
142 |
then show "hom_induced p Y {} X {} g (hom_induced p X {} Y {} f a) = a"
|
|
143 |
by simp
|
|
144 |
next
|
|
145 |
fix b
|
|
146 |
assume "b \<in> carrier (reduced_homology_group p Y)"
|
|
147 |
then have "(hom_induced p X {} Y {} f \<circ> hom_induced p Y {} X {} g) b = b"
|
|
148 |
apply (simp add: contf contg flip: hom_induced_compose)
|
|
149 |
using carrier_reduced_homology_group_subset fg hom_induced_id homology_homotopy_empty by fastforce
|
|
150 |
then show "hom_induced p X {} Y {} f (hom_induced p Y {} X {} g b) = b"
|
|
151 |
by (simp add: carrier_reduced_homology_group)
|
|
152 |
qed
|
|
153 |
|
|
154 |
lemma homotopy_equivalence_reduced_homology_group_isomorphism:
|
|
155 |
assumes "continuous_map X Y f" "continuous_map Y X g"
|
|
156 |
and "homotopic_with (\<lambda>h. True) X X (g \<circ> f) id" "homotopic_with (\<lambda>k. True) Y Y (f \<circ> g) id"
|
|
157 |
shows "(hom_induced p X {} Y {} f)
|
|
158 |
\<in> iso (reduced_homology_group p X) (reduced_homology_group p Y)"
|
|
159 |
proof (rule group_isomorphisms_imp_iso)
|
|
160 |
show "group_isomorphisms (reduced_homology_group p X) (reduced_homology_group p Y)
|
|
161 |
(hom_induced p X {} Y {} f) (hom_induced p Y {} X {} g)"
|
|
162 |
by (simp add: assms homotopy_equivalence_reduced_homology_group_isomorphisms)
|
|
163 |
qed
|
|
164 |
|
|
165 |
lemma homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups:
|
|
166 |
"X homotopy_equivalent_space Y
|
|
167 |
\<Longrightarrow> reduced_homology_group p X \<cong> reduced_homology_group p Y"
|
|
168 |
unfolding homotopy_equivalent_space_def
|
|
169 |
using homotopy_equivalence_reduced_homology_group_isomorphism is_isoI by blast
|
|
170 |
|
|
171 |
lemma homeomorphic_space_imp_isomorphic_reduced_homology_groups:
|
|
172 |
"X homeomorphic_space Y \<Longrightarrow> reduced_homology_group p X \<cong> reduced_homology_group p Y"
|
|
173 |
by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups)
|
|
174 |
|
|
175 |
lemma trivial_reduced_homology_group_empty:
|
|
176 |
"topspace X = {} \<Longrightarrow> trivial_group(reduced_homology_group p X)"
|
|
177 |
by (metis carrier_reduced_homology_group_subset group.trivial_group_alt group_reduced_homology_group trivial_group_def trivial_homology_group_empty)
|
|
178 |
|
|
179 |
lemma homology_dimension_reduced:
|
|
180 |
assumes "topspace X = {a}"
|
|
181 |
shows "trivial_group (reduced_homology_group p X)"
|
|
182 |
proof -
|
|
183 |
have iso: "(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ()))
|
|
184 |
\<in> iso (homology_group p X) (homology_group p (discrete_topology {()}))"
|
|
185 |
apply (rule homeomorphic_map_homology_iso)
|
|
186 |
apply (force simp: homeomorphic_map_maps homeomorphic_maps_def assms)
|
|
187 |
done
|
|
188 |
show ?thesis
|
|
189 |
unfolding reduced_homology_group_def
|
|
190 |
by (rule group.trivial_group_subgroup_generated) (use iso in \<open>auto simp: iso_kernel_image\<close>)
|
|
191 |
qed
|
|
192 |
|
|
193 |
|
|
194 |
lemma trivial_reduced_homology_group_contractible_space:
|
|
195 |
"contractible_space X \<Longrightarrow> trivial_group (reduced_homology_group p X)"
|
|
196 |
apply (simp add: contractible_eq_homotopy_equivalent_singleton_subtopology)
|
|
197 |
apply (auto simp: trivial_reduced_homology_group_empty)
|
|
198 |
using isomorphic_group_triviality
|
|
199 |
by (metis (full_types) group_reduced_homology_group homology_dimension_reduced homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups path_connectedin_def path_connectedin_singleton topspace_subtopology_subset)
|
|
200 |
|
|
201 |
|
|
202 |
lemma image_reduced_homology_group:
|
|
203 |
assumes "topspace X \<inter> S \<noteq> {}"
|
|
204 |
shows "hom_induced p X {} X S id ` carrier (reduced_homology_group p X)
|
|
205 |
= hom_induced p X {} X S id ` carrier (homology_group p X)"
|
|
206 |
(is "?h ` carrier ?G = ?h ` carrier ?H")
|
|
207 |
proof -
|
|
208 |
obtain a where a: "a \<in> topspace X" and "a \<in> S"
|
|
209 |
using assms by blast
|
|
210 |
have [simp]: "A \<inter> {x \<in> A. P x} = {x \<in> A. P x}" for A P
|
|
211 |
by blast
|
|
212 |
interpret comm_group "homology_group p X"
|
|
213 |
by (rule abelian_relative_homology_group)
|
|
214 |
have *: "\<exists>x'. ?h y = ?h x' \<and>
|
|
215 |
x' \<in> carrier ?H \<and>
|
|
216 |
hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ()) x'
|
|
217 |
= \<one>\<^bsub>homology_group p (discrete_topology {()})\<^esub>"
|
|
218 |
if "y \<in> carrier ?H" for y
|
|
219 |
proof -
|
|
220 |
let ?f = "hom_induced p (discrete_topology {()}) {} X {} (\<lambda>x. a)"
|
|
221 |
let ?g = "hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())"
|
|
222 |
have bcarr: "?f (?g y) \<in> carrier ?H"
|
|
223 |
by (simp add: hom_induced_carrier)
|
|
224 |
interpret gh1:
|
|
225 |
group_hom "relative_homology_group p X S" "relative_homology_group p (discrete_topology {()}) {()}"
|
|
226 |
"hom_induced p X S (discrete_topology {()}) {()} (\<lambda>x. ())"
|
|
227 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
228 |
interpret gh2:
|
|
229 |
group_hom "relative_homology_group p (discrete_topology {()}) {()}" "relative_homology_group p X S"
|
|
230 |
"hom_induced p (discrete_topology {()}) {()} X S (\<lambda>x. a)"
|
|
231 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
232 |
interpret gh3:
|
|
233 |
group_hom "homology_group p X" "relative_homology_group p X S" "?h"
|
|
234 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
235 |
interpret gh4:
|
|
236 |
group_hom "homology_group p X" "homology_group p (discrete_topology {()})"
|
|
237 |
"?g"
|
|
238 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
239 |
interpret gh5:
|
|
240 |
group_hom "homology_group p (discrete_topology {()})" "homology_group p X"
|
|
241 |
"?f"
|
|
242 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
243 |
interpret gh6:
|
|
244 |
group_hom "homology_group p (discrete_topology {()})" "relative_homology_group p (discrete_topology {()}) {()}"
|
|
245 |
"hom_induced p (discrete_topology {()}) {} (discrete_topology {()}) {()} id"
|
|
246 |
by (meson group_hom_axioms_def group_hom_def hom_induced_hom group_relative_homology_group)
|
|
247 |
show ?thesis
|
|
248 |
proof (intro exI conjI)
|
|
249 |
have "(?h \<circ> ?f \<circ> ?g) y
|
|
250 |
= (hom_induced p (discrete_topology {()}) {()} X S (\<lambda>x. a) \<circ>
|
|
251 |
hom_induced p (discrete_topology {()}) {} (discrete_topology {()}) {()} id \<circ> ?g) y"
|
|
252 |
by (simp add: a \<open>a \<in> S\<close> flip: hom_induced_compose)
|
|
253 |
also have "\<dots> = \<one>\<^bsub>relative_homology_group p X S\<^esub>"
|
|
254 |
using trivial_relative_homology_group_topspace [of p "discrete_topology {()}"]
|
|
255 |
apply simp
|
|
256 |
by (metis (full_types) empty_iff gh1.H.one_closed gh1.H.trivial_group gh2.hom_one hom_induced_carrier insert_iff)
|
|
257 |
finally have "?h (?f (?g y)) = \<one>\<^bsub>relative_homology_group p X S\<^esub>"
|
|
258 |
by simp
|
|
259 |
then show "?h y = ?h (y \<otimes>\<^bsub>?H\<^esub> inv\<^bsub>?H\<^esub> ?f (?g y))"
|
|
260 |
by (simp add: that hom_induced_carrier)
|
|
261 |
show "(y \<otimes>\<^bsub>?H\<^esub> inv\<^bsub>?H\<^esub> ?f (?g y)) \<in> carrier (homology_group p X)"
|
|
262 |
by (simp add: hom_induced_carrier that)
|
|
263 |
have *: "(?g \<circ> hom_induced p X {} X {} (\<lambda>x. a)) y = hom_induced p X {} (discrete_topology {()}) {} (\<lambda>a. ()) y"
|
|
264 |
by (simp add: a \<open>a \<in> S\<close> flip: hom_induced_compose)
|
|
265 |
have "?g (y \<otimes>\<^bsub>?H\<^esub> inv\<^bsub>?H\<^esub> (?f \<circ> ?g) y)
|
|
266 |
= \<one>\<^bsub>homology_group p (discrete_topology {()})\<^esub>"
|
|
267 |
by (simp add: a \<open>a \<in> S\<close> that hom_induced_carrier flip: hom_induced_compose * [unfolded o_def])
|
|
268 |
then show "?g (y \<otimes>\<^bsub>?H\<^esub> inv\<^bsub>?H\<^esub> ?f (?g y))
|
|
269 |
= \<one>\<^bsub>homology_group p (discrete_topology {()})\<^esub>"
|
|
270 |
by simp
|
|
271 |
qed
|
|
272 |
qed
|
|
273 |
show ?thesis
|
|
274 |
apply (auto simp: reduced_homology_group_def carrier_subgroup_generated kernel_def image_iff)
|
|
275 |
apply (metis (no_types, lifting) generate_in_carrier mem_Collect_eq subsetI)
|
|
276 |
apply (force simp: dest: * intro: generate.incl)
|
|
277 |
done
|
|
278 |
qed
|
|
279 |
|
|
280 |
|
|
281 |
lemma homology_exactness_reduced_1:
|
|
282 |
assumes "topspace X \<inter> S \<noteq> {}"
|
|
283 |
shows "exact_seq([reduced_homology_group(p - 1) (subtopology X S),
|
|
284 |
relative_homology_group p X S,
|
|
285 |
reduced_homology_group p X],
|
|
286 |
[hom_boundary p X S, hom_induced p X {} X S id])"
|
|
287 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
|
|
288 |
proof -
|
|
289 |
have *: "?h2 ` carrier (homology_group p X)
|
|
290 |
= kernel ?G2 (homology_group (p - 1) (subtopology X S)) ?h1"
|
|
291 |
using homology_exactness_axiom_1 [of p X S] by simp
|
|
292 |
have gh: "group_hom ?G3 ?G2 ?h2"
|
|
293 |
by (simp add: reduced_homology_group_def group_hom_def group_hom_axioms_def
|
|
294 |
group.group_subgroup_generated group.hom_from_subgroup_generated hom_induced_hom)
|
|
295 |
show ?thesis
|
|
296 |
apply (simp add: hom_boundary_reduced_hom gh * image_reduced_homology_group [OF assms])
|
|
297 |
apply (simp add: kernel_def one_reduced_homology_group)
|
|
298 |
done
|
|
299 |
qed
|
|
300 |
|
|
301 |
|
|
302 |
lemma homology_exactness_reduced_2:
|
|
303 |
"exact_seq([reduced_homology_group(p - 1) X,
|
|
304 |
reduced_homology_group(p - 1) (subtopology X S),
|
|
305 |
relative_homology_group p X S],
|
|
306 |
[hom_induced (p - 1) (subtopology X S) {} X {} id, hom_boundary p X S])"
|
|
307 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
|
|
308 |
using homology_exactness_axiom_2 [of p X S]
|
|
309 |
apply (simp add: group_hom_axioms_def group_hom_def hom_boundary_reduced_hom hom_induced_reduced_hom)
|
|
310 |
apply (simp add: reduced_homology_group_def group_hom.subgroup_kernel group_hom_axioms_def group_hom_def hom_induced_hom)
|
|
311 |
using hom_boundary_reduced_hom [of p X S]
|
|
312 |
apply (auto simp: image_def set_eq_iff)
|
|
313 |
by (metis carrier_reduced_homology_group hom_in_carrier set_eq_iff)
|
|
314 |
|
|
315 |
|
|
316 |
lemma homology_exactness_reduced_3:
|
|
317 |
"exact_seq([relative_homology_group p X S,
|
|
318 |
reduced_homology_group p X,
|
|
319 |
reduced_homology_group p (subtopology X S)],
|
|
320 |
[hom_induced p X {} X S id, hom_induced p (subtopology X S) {} X {} id])"
|
|
321 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
|
|
322 |
proof -
|
|
323 |
have "kernel ?G2 ?G1 ?h1 =
|
|
324 |
?h2 ` carrier ?G3"
|
|
325 |
proof -
|
|
326 |
obtain U where U:
|
|
327 |
"(hom_induced p (subtopology X S) {} X {} id) ` carrier ?G3 \<subseteq> U"
|
|
328 |
"(hom_induced p (subtopology X S) {} X {} id) ` carrier ?G3
|
|
329 |
\<subseteq> (hom_induced p (subtopology X S) {} X {} id) ` carrier (homology_group p (subtopology X S))"
|
|
330 |
"U \<inter> kernel (homology_group p X) ?G1 (hom_induced p X {} X S id)
|
|
331 |
= kernel ?G2 ?G1 (hom_induced p X {} X S id)"
|
|
332 |
"U \<inter> (hom_induced p (subtopology X S) {} X {} id) ` carrier (homology_group p (subtopology X S))
|
|
333 |
\<subseteq> (hom_induced p (subtopology X S) {} X {} id) ` carrier ?G3"
|
|
334 |
proof
|
|
335 |
show "?h2 ` carrier ?G3 \<subseteq> carrier ?G2"
|
|
336 |
by (simp add: hom_induced_reduced image_subset_iff)
|
|
337 |
show "?h2 ` carrier ?G3 \<subseteq> ?h2 ` carrier (homology_group p (subtopology X S))"
|
|
338 |
by (meson carrier_reduced_homology_group_subset image_mono)
|
|
339 |
have "subgroup (kernel (homology_group p X) (homology_group p (discrete_topology {()}))
|
|
340 |
(hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())))
|
|
341 |
(homology_group p X)"
|
|
342 |
by (simp add: group.normal_invE(1) group_hom.normal_kernel group_hom_axioms_def group_hom_def hom_induced_empty_hom)
|
|
343 |
then show "carrier ?G2 \<inter> kernel (homology_group p X) ?G1 ?h1 = kernel ?G2 ?G1 ?h1"
|
|
344 |
unfolding carrier_reduced_homology_group
|
|
345 |
by (auto simp: reduced_homology_group_def)
|
|
346 |
show "carrier ?G2 \<inter> ?h2 ` carrier (homology_group p (subtopology X S))
|
|
347 |
\<subseteq> ?h2 ` carrier ?G3"
|
|
348 |
by (force simp: carrier_reduced_homology_group kernel_def hom_induced_compose')
|
|
349 |
qed
|
|
350 |
with homology_exactness_axiom_3 [of p X S] show ?thesis
|
|
351 |
by (fastforce simp add:)
|
|
352 |
qed
|
|
353 |
then show ?thesis
|
|
354 |
apply (simp add: group_hom_axioms_def group_hom_def hom_boundary_reduced_hom hom_induced_reduced_hom)
|
|
355 |
apply (simp add: group.hom_from_subgroup_generated hom_induced_hom reduced_homology_group_def)
|
|
356 |
done
|
|
357 |
qed
|
|
358 |
|
|
359 |
|
|
360 |
subsection\<open>More homology properties of deformations, retracts, contractible spaces\<close>
|
|
361 |
|
|
362 |
lemma iso_relative_homology_of_contractible:
|
|
363 |
"\<lbrakk>contractible_space X; topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
364 |
\<Longrightarrow> hom_boundary p X S
|
|
365 |
\<in> iso (relative_homology_group p X S) (reduced_homology_group(p - 1) (subtopology X S))"
|
|
366 |
using very_short_exact_sequence
|
|
367 |
[of "reduced_homology_group (p - 1) X"
|
|
368 |
"reduced_homology_group (p - 1) (subtopology X S)"
|
|
369 |
"relative_homology_group p X S"
|
|
370 |
"reduced_homology_group p X"
|
|
371 |
"hom_induced (p - 1) (subtopology X S) {} X {} id"
|
|
372 |
"hom_boundary p X S"
|
|
373 |
"hom_induced p X {} X S id"]
|
|
374 |
by (meson exact_seq_cons_iff homology_exactness_reduced_1 homology_exactness_reduced_2 trivial_reduced_homology_group_contractible_space)
|
|
375 |
|
|
376 |
lemma isomorphic_group_relative_homology_of_contractible:
|
|
377 |
"\<lbrakk>contractible_space X; topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
378 |
\<Longrightarrow> relative_homology_group p X S \<cong>
|
|
379 |
reduced_homology_group(p - 1) (subtopology X S)"
|
|
380 |
by (meson iso_relative_homology_of_contractible is_isoI)
|
|
381 |
|
|
382 |
lemma isomorphic_group_reduced_homology_of_contractible:
|
|
383 |
"\<lbrakk>contractible_space X; topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
384 |
\<Longrightarrow> reduced_homology_group p (subtopology X S) \<cong> relative_homology_group(p + 1) X S"
|
|
385 |
by (metis add.commute add_diff_cancel_left' group.iso_sym group_relative_homology_group isomorphic_group_relative_homology_of_contractible)
|
|
386 |
|
|
387 |
lemma iso_reduced_homology_by_contractible:
|
|
388 |
"\<lbrakk>contractible_space(subtopology X S); topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
389 |
\<Longrightarrow> (hom_induced p X {} X S id) \<in> iso (reduced_homology_group p X) (relative_homology_group p X S)"
|
|
390 |
using very_short_exact_sequence
|
|
391 |
[of "reduced_homology_group (p - 1) (subtopology X S)"
|
|
392 |
"relative_homology_group p X S"
|
|
393 |
"reduced_homology_group p X"
|
|
394 |
"reduced_homology_group p (subtopology X S)"
|
|
395 |
"hom_boundary p X S"
|
|
396 |
"hom_induced p X {} X S id"
|
|
397 |
"hom_induced p (subtopology X S) {} X {} id"]
|
|
398 |
by (meson exact_seq_cons_iff homology_exactness_reduced_1 homology_exactness_reduced_3 trivial_reduced_homology_group_contractible_space)
|
|
399 |
|
|
400 |
lemma isomorphic_reduced_homology_by_contractible:
|
|
401 |
"\<lbrakk>contractible_space(subtopology X S); topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
402 |
\<Longrightarrow> reduced_homology_group p X \<cong> relative_homology_group p X S"
|
|
403 |
using is_isoI iso_reduced_homology_by_contractible by blast
|
|
404 |
|
|
405 |
lemma isomorphic_relative_homology_by_contractible:
|
|
406 |
"\<lbrakk>contractible_space(subtopology X S); topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
407 |
\<Longrightarrow> relative_homology_group p X S \<cong> reduced_homology_group p X"
|
|
408 |
using group.iso_sym group_reduced_homology_group isomorphic_reduced_homology_by_contractible by blast
|
|
409 |
|
|
410 |
lemma isomorphic_reduced_homology_by_singleton:
|
|
411 |
"a \<in> topspace X \<Longrightarrow> reduced_homology_group p X \<cong> relative_homology_group p X ({a})"
|
|
412 |
by (simp add: contractible_space_subtopology_singleton isomorphic_reduced_homology_by_contractible)
|
|
413 |
|
|
414 |
lemma isomorphic_relative_homology_by_singleton:
|
|
415 |
"a \<in> topspace X \<Longrightarrow> relative_homology_group p X ({a}) \<cong> reduced_homology_group p X"
|
|
416 |
by (simp add: group.iso_sym isomorphic_reduced_homology_by_singleton)
|
|
417 |
|
|
418 |
lemma reduced_homology_group_pair:
|
|
419 |
assumes "t1_space X" and a: "a \<in> topspace X" and b: "b \<in> topspace X" and "a \<noteq> b"
|
|
420 |
shows "reduced_homology_group p (subtopology X {a,b}) \<cong> homology_group p (subtopology X {a})"
|
|
421 |
(is "?lhs \<cong> ?rhs")
|
|
422 |
proof -
|
|
423 |
have "?lhs \<cong> relative_homology_group p (subtopology X {a,b}) {b}"
|
|
424 |
by (simp add: b isomorphic_reduced_homology_by_singleton topspace_subtopology)
|
|
425 |
also have "\<dots> \<cong> ?rhs"
|
|
426 |
proof -
|
|
427 |
have sub: "subtopology X {a, b} closure_of {b} \<subseteq> subtopology X {a, b} interior_of {b}"
|
|
428 |
by (simp add: assms t1_space_subtopology closure_of_singleton subtopology_eq_discrete_topology_finite discrete_topology_closure_of)
|
|
429 |
show ?thesis
|
|
430 |
using homology_excision_axiom [OF sub, of "{a,b}" p]
|
|
431 |
by (simp add: assms(4) group.iso_sym is_isoI subtopology_subtopology)
|
|
432 |
qed
|
|
433 |
finally show ?thesis .
|
|
434 |
qed
|
|
435 |
|
|
436 |
|
|
437 |
lemma deformation_retraction_relative_homology_group_isomorphisms:
|
|
438 |
"\<lbrakk>retraction_maps X Y r s; r ` U \<subseteq> V; s ` V \<subseteq> U; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X (s \<circ> r) id\<rbrakk>
|
|
439 |
\<Longrightarrow> group_isomorphisms (relative_homology_group p X U) (relative_homology_group p Y V)
|
|
440 |
(hom_induced p X U Y V r) (hom_induced p Y V X U s)"
|
|
441 |
apply (simp add: retraction_maps_def)
|
|
442 |
apply (rule homotopy_equivalence_relative_homology_group_isomorphisms)
|
|
443 |
apply (auto simp: image_subset_iff continuous_map_compose homotopic_with_equal)
|
|
444 |
done
|
|
445 |
|
|
446 |
|
|
447 |
lemma deformation_retract_relative_homology_group_isomorphisms:
|
|
448 |
"\<lbrakk>retraction_maps X Y r id; V \<subseteq> U; r ` U \<subseteq> V; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X r id\<rbrakk>
|
|
449 |
\<Longrightarrow> group_isomorphisms (relative_homology_group p X U) (relative_homology_group p Y V)
|
|
450 |
(hom_induced p X U Y V r) (hom_induced p Y V X U id)"
|
|
451 |
by (simp add: deformation_retraction_relative_homology_group_isomorphisms)
|
|
452 |
|
|
453 |
lemma deformation_retract_relative_homology_group_isomorphism:
|
|
454 |
"\<lbrakk>retraction_maps X Y r id; V \<subseteq> U; r ` U \<subseteq> V; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X r id\<rbrakk>
|
|
455 |
\<Longrightarrow> (hom_induced p X U Y V r) \<in> iso (relative_homology_group p X U) (relative_homology_group p Y V)"
|
|
456 |
by (metis deformation_retract_relative_homology_group_isomorphisms group_isomorphisms_imp_iso)
|
|
457 |
|
|
458 |
lemma deformation_retract_relative_homology_group_isomorphism_id:
|
|
459 |
"\<lbrakk>retraction_maps X Y r id; V \<subseteq> U; r ` U \<subseteq> V; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X r id\<rbrakk>
|
|
460 |
\<Longrightarrow> (hom_induced p Y V X U id) \<in> iso (relative_homology_group p Y V) (relative_homology_group p X U)"
|
|
461 |
by (metis deformation_retract_relative_homology_group_isomorphisms group_isomorphisms_imp_iso group_isomorphisms_sym)
|
|
462 |
|
|
463 |
lemma deformation_retraction_imp_isomorphic_relative_homology_groups:
|
|
464 |
"\<lbrakk>retraction_maps X Y r s; r ` U \<subseteq> V; s ` V \<subseteq> U; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X (s \<circ> r) id\<rbrakk>
|
|
465 |
\<Longrightarrow> relative_homology_group p X U \<cong> relative_homology_group p Y V"
|
|
466 |
by (blast intro: is_isoI group_isomorphisms_imp_iso deformation_retraction_relative_homology_group_isomorphisms)
|
|
467 |
|
|
468 |
lemma deformation_retraction_imp_isomorphic_homology_groups:
|
|
469 |
"\<lbrakk>retraction_maps X Y r s; homotopic_with (\<lambda>h. True) X X (s \<circ> r) id\<rbrakk>
|
|
470 |
\<Longrightarrow> homology_group p X \<cong> homology_group p Y"
|
|
471 |
by (simp add: deformation_retraction_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_homology_groups)
|
|
472 |
|
|
473 |
lemma deformation_retract_imp_isomorphic_relative_homology_groups:
|
|
474 |
"\<lbrakk>retraction_maps X X' r id; V \<subseteq> U; r ` U \<subseteq> V; homotopic_with (\<lambda>h. h ` U \<subseteq> U) X X r id\<rbrakk>
|
|
475 |
\<Longrightarrow> relative_homology_group p X U \<cong> relative_homology_group p X' V"
|
|
476 |
by (simp add: deformation_retraction_imp_isomorphic_relative_homology_groups)
|
|
477 |
|
|
478 |
lemma deformation_retract_imp_isomorphic_homology_groups:
|
|
479 |
"\<lbrakk>retraction_maps X X' r id; homotopic_with (\<lambda>h. True) X X r id\<rbrakk>
|
|
480 |
\<Longrightarrow> homology_group p X \<cong> homology_group p X'"
|
|
481 |
by (simp add: deformation_retraction_imp_isomorphic_homology_groups)
|
|
482 |
|
|
483 |
|
|
484 |
lemma epi_hom_induced_inclusion:
|
|
485 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
486 |
shows "(hom_induced p (subtopology X S) {} X {} id)
|
|
487 |
\<in> epi (homology_group p (subtopology X S)) (homology_group p X)"
|
|
488 |
proof (rule epi_right_invertible)
|
|
489 |
show "hom_induced p (subtopology X S) {} X {} id
|
|
490 |
\<in> hom (homology_group p (subtopology X S)) (homology_group p X)"
|
|
491 |
by (simp add: hom_induced_empty_hom)
|
|
492 |
show "hom_induced p X {} (subtopology X S) {} f
|
|
493 |
\<in> carrier (homology_group p X) \<rightarrow> carrier (homology_group p (subtopology X S))"
|
|
494 |
by (simp add: hom_induced_carrier)
|
|
495 |
fix x
|
|
496 |
assume "x \<in> carrier (homology_group p X)"
|
|
497 |
then show "hom_induced p (subtopology X S) {} X {} id (hom_induced p X {} (subtopology X S) {} f x) = x"
|
|
498 |
by (metis assms continuous_map_id_subt continuous_map_in_subtopology hom_induced_compose' hom_induced_id homology_homotopy_empty homotopic_with_imp_continuous_maps image_empty order_refl)
|
|
499 |
qed
|
|
500 |
|
|
501 |
|
|
502 |
lemma trivial_homomorphism_hom_induced_relativization:
|
|
503 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
504 |
shows "trivial_homomorphism (homology_group p X) (relative_homology_group p X S)
|
|
505 |
(hom_induced p X {} X S id)"
|
|
506 |
proof -
|
|
507 |
have "(hom_induced p (subtopology X S) {} X {} id)
|
|
508 |
\<in> epi (homology_group p (subtopology X S)) (homology_group p X)"
|
|
509 |
by (metis assms epi_hom_induced_inclusion)
|
|
510 |
then show ?thesis
|
|
511 |
using homology_exactness_axiom_3 [of p X S] homology_exactness_axiom_1 [of p X S]
|
|
512 |
by (simp add: epi_def group.trivial_homomorphism_image group_hom.trivial_hom_iff)
|
|
513 |
qed
|
|
514 |
|
|
515 |
|
|
516 |
lemma mon_hom_boundary_inclusion:
|
|
517 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
518 |
shows "(hom_boundary p X S) \<in> mon
|
|
519 |
(relative_homology_group p X S) (homology_group (p - 1) (subtopology X S))"
|
|
520 |
proof -
|
|
521 |
have "(hom_induced p (subtopology X S) {} X {} id)
|
|
522 |
\<in> epi (homology_group p (subtopology X S)) (homology_group p X)"
|
|
523 |
by (metis assms epi_hom_induced_inclusion)
|
|
524 |
then show ?thesis
|
|
525 |
using homology_exactness_axiom_3 [of p X S] homology_exactness_axiom_1 [of p X S]
|
|
526 |
apply (simp add: mon_def epi_def hom_boundary_hom)
|
|
527 |
by (metis (no_types, hide_lams) group_hom.trivial_hom_iff group_hom.trivial_ker_imp_inj group_hom_axioms_def group_hom_def group_relative_homology_group hom_boundary_hom)
|
|
528 |
qed
|
|
529 |
|
|
530 |
lemma short_exact_sequence_hom_induced_relativization:
|
|
531 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
532 |
shows "short_exact_sequence (homology_group (p-1) X) (homology_group (p-1) (subtopology X S)) (relative_homology_group p X S)
|
|
533 |
(hom_induced (p-1) (subtopology X S) {} X {} id) (hom_boundary p X S)"
|
|
534 |
unfolding short_exact_sequence_iff
|
|
535 |
by (intro conjI homology_exactness_axiom_2 epi_hom_induced_inclusion [OF assms] mon_hom_boundary_inclusion [OF assms])
|
|
536 |
|
|
537 |
|
|
538 |
lemma group_isomorphisms_homology_group_prod_deformation:
|
|
539 |
fixes p::int
|
|
540 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
541 |
obtains H K where
|
|
542 |
"subgroup H (homology_group p (subtopology X S))"
|
|
543 |
"subgroup K (homology_group p (subtopology X S))"
|
|
544 |
"(\<lambda>(x, y). x \<otimes>\<^bsub>homology_group p (subtopology X S)\<^esub> y)
|
|
545 |
\<in> Group.iso (subgroup_generated (homology_group p (subtopology X S)) H \<times>\<times>
|
|
546 |
subgroup_generated (homology_group p (subtopology X S)) K)
|
|
547 |
(homology_group p (subtopology X S))"
|
|
548 |
"hom_boundary (p + 1) X S
|
|
549 |
\<in> Group.iso (relative_homology_group (p + 1) X S)
|
|
550 |
(subgroup_generated (homology_group p (subtopology X S)) H)"
|
|
551 |
"hom_induced p (subtopology X S) {} X {} id
|
|
552 |
\<in> Group.iso
|
|
553 |
(subgroup_generated (homology_group p (subtopology X S)) K)
|
|
554 |
(homology_group p X)"
|
|
555 |
proof -
|
|
556 |
let ?rhs = "relative_homology_group (p + 1) X S"
|
|
557 |
let ?pXS = "homology_group p (subtopology X S)"
|
|
558 |
let ?pX = "homology_group p X"
|
|
559 |
let ?hb = "hom_boundary (p + 1) X S"
|
|
560 |
let ?hi = "hom_induced p (subtopology X S) {} X {} id"
|
|
561 |
have x: "short_exact_sequence (?pX) ?pXS ?rhs ?hi ?hb"
|
|
562 |
using short_exact_sequence_hom_induced_relativization [OF assms, of "p + 1"] by simp
|
|
563 |
have contf: "continuous_map X (subtopology X S) f"
|
|
564 |
by (meson assms continuous_map_in_subtopology homotopic_with_imp_continuous_maps)
|
|
565 |
obtain H K where HK: "H \<lhd> ?pXS" "subgroup K ?pXS" "H \<inter> K \<subseteq> {one ?pXS}" "set_mult ?pXS H K = carrier ?pXS"
|
|
566 |
and iso: "?hb \<in> iso ?rhs (subgroup_generated ?pXS H)" "?hi \<in> iso (subgroup_generated ?pXS K) ?pX"
|
|
567 |
apply (rule splitting_lemma_right [OF x, where g' = "hom_induced p X {} (subtopology X S) {} f"])
|
|
568 |
apply (simp add: hom_induced_empty_hom)
|
|
569 |
apply (simp add: contf hom_induced_compose')
|
|
570 |
apply (metis (full_types) assms(1) hom_induced_id homology_homotopy_empty)
|
|
571 |
apply blast
|
|
572 |
done
|
|
573 |
show ?thesis
|
|
574 |
proof
|
|
575 |
show "subgroup H ?pXS"
|
|
576 |
using HK(1) normal_imp_subgroup by blast
|
|
577 |
then show "(\<lambda>(x, y). x \<otimes>\<^bsub>?pXS\<^esub> y)
|
|
578 |
\<in> Group.iso (subgroup_generated (?pXS) H \<times>\<times> subgroup_generated (?pXS) K) (?pXS)"
|
|
579 |
by (meson HK abelian_relative_homology_group group_disjoint_sum.iso_group_mul group_disjoint_sum_def group_relative_homology_group)
|
|
580 |
show "subgroup K ?pXS"
|
|
581 |
by (rule HK)
|
|
582 |
show "hom_boundary (p + 1) X S \<in> Group.iso ?rhs (subgroup_generated (?pXS) H)"
|
|
583 |
using iso int_ops(4) by presburger
|
|
584 |
show "hom_induced p (subtopology X S) {} X {} id \<in> Group.iso (subgroup_generated (?pXS) K) (?pX)"
|
|
585 |
by (simp add: iso(2))
|
|
586 |
qed
|
|
587 |
qed
|
|
588 |
|
|
589 |
lemma iso_homology_group_prod_deformation:
|
|
590 |
assumes "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
591 |
shows "homology_group p (subtopology X S)
|
|
592 |
\<cong> DirProd (homology_group p X) (relative_homology_group(p + 1) X S)"
|
|
593 |
(is "?G \<cong> DirProd ?H ?R")
|
|
594 |
proof -
|
|
595 |
obtain H K where HK:
|
|
596 |
"(\<lambda>(x, y). x \<otimes>\<^bsub>?G\<^esub> y)
|
|
597 |
\<in> Group.iso (subgroup_generated (?G) H \<times>\<times> subgroup_generated (?G) K) (?G)"
|
|
598 |
"hom_boundary (p + 1) X S \<in> Group.iso (?R) (subgroup_generated (?G) H)"
|
|
599 |
"hom_induced p (subtopology X S) {} X {} id \<in> Group.iso (subgroup_generated (?G) K) (?H)"
|
|
600 |
by (blast intro: group_isomorphisms_homology_group_prod_deformation [OF assms])
|
|
601 |
have "?G \<cong> DirProd (subgroup_generated (?G) H) (subgroup_generated (?G) K)"
|
|
602 |
by (meson DirProd_group HK(1) group.group_subgroup_generated group.iso_sym group_relative_homology_group is_isoI)
|
|
603 |
also have "\<dots> \<cong> DirProd ?R ?H"
|
|
604 |
by (meson HK group.DirProd_iso_trans group.group_subgroup_generated group.iso_sym group_relative_homology_group is_isoI)
|
|
605 |
also have "\<dots> \<cong> DirProd ?H ?R"
|
|
606 |
by (simp add: DirProd_commute_iso)
|
|
607 |
finally show ?thesis .
|
|
608 |
qed
|
|
609 |
|
|
610 |
|
|
611 |
|
|
612 |
lemma iso_homology_contractible_space_subtopology1:
|
|
613 |
assumes "contractible_space X" "S \<subseteq> topspace X" "S \<noteq> {}"
|
|
614 |
shows "homology_group 0 (subtopology X S) \<cong> DirProd integer_group (relative_homology_group(1) X S)"
|
|
615 |
proof -
|
|
616 |
obtain f where "homotopic_with (\<lambda>x. True) X X id f" and "f ` (topspace X) \<subseteq> S"
|
|
617 |
using assms contractible_space_alt by fastforce
|
|
618 |
then have "homology_group 0 (subtopology X S) \<cong> homology_group 0 X \<times>\<times> relative_homology_group 1 X S"
|
|
619 |
using iso_homology_group_prod_deformation [of X _ S 0] by auto
|
|
620 |
also have "\<dots> \<cong> integer_group \<times>\<times> relative_homology_group 1 X S"
|
|
621 |
using assms contractible_imp_path_connected_space group.DirProd_iso_trans group_relative_homology_group iso_refl isomorphic_integer_zeroth_homology_group by blast
|
|
622 |
finally show ?thesis .
|
|
623 |
qed
|
|
624 |
|
|
625 |
lemma iso_homology_contractible_space_subtopology2:
|
|
626 |
"\<lbrakk>contractible_space X; S \<subseteq> topspace X; p \<noteq> 0; S \<noteq> {}\<rbrakk>
|
|
627 |
\<Longrightarrow> homology_group p (subtopology X S) \<cong> relative_homology_group (p + 1) X S"
|
|
628 |
by (metis (no_types, hide_lams) add.commute isomorphic_group_reduced_homology_of_contractible topspace_subtopology topspace_subtopology_subset un_reduced_homology_group)
|
|
629 |
|
|
630 |
lemma trivial_relative_homology_group_contractible_spaces:
|
|
631 |
"\<lbrakk>contractible_space X; contractible_space(subtopology X S); topspace X \<inter> S \<noteq> {}\<rbrakk>
|
|
632 |
\<Longrightarrow> trivial_group(relative_homology_group p X S)"
|
|
633 |
using group_reduced_homology_group group_relative_homology_group isomorphic_group_triviality isomorphic_relative_homology_by_contractible trivial_reduced_homology_group_contractible_space by blast
|
|
634 |
|
|
635 |
lemma trivial_relative_homology_group_alt:
|
|
636 |
assumes contf: "continuous_map X (subtopology X S) f" and hom: "homotopic_with (\<lambda>k. k ` S \<subseteq> S) X X f id"
|
|
637 |
shows "trivial_group (relative_homology_group p X S)"
|
|
638 |
proof (rule trivial_relative_homology_group_gen [OF contf])
|
|
639 |
show "homotopic_with (\<lambda>h. True) (subtopology X S) (subtopology X S) f id"
|
|
640 |
using hom unfolding homotopic_with_def
|
|
641 |
apply (rule ex_forward)
|
|
642 |
apply (auto simp: prod_topology_subtopology continuous_map_in_subtopology continuous_map_from_subtopology image_subset_iff topspace_subtopology)
|
|
643 |
done
|
|
644 |
show "homotopic_with (\<lambda>k. True) X X f id"
|
|
645 |
using assms by (force simp: homotopic_with_def)
|
|
646 |
qed
|
|
647 |
|
|
648 |
|
|
649 |
lemma iso_hom_induced_relativization_contractible:
|
|
650 |
assumes "contractible_space(subtopology X S)" "contractible_space(subtopology X T)" "T \<subseteq> S" "topspace X \<inter> T \<noteq> {}"
|
|
651 |
shows "(hom_induced p X T X S id) \<in> iso (relative_homology_group p X T) (relative_homology_group p X S)"
|
|
652 |
proof (rule very_short_exact_sequence)
|
|
653 |
show "exact_seq
|
|
654 |
([relative_homology_group(p - 1) (subtopology X S) T, relative_homology_group p X S, relative_homology_group p X T, relative_homology_group p (subtopology X S) T],
|
|
655 |
[hom_relboundary p X S T, hom_induced p X T X S id, hom_induced p (subtopology X S) T X T id])"
|
|
656 |
using homology_exactness_triple_1 [OF \<open>T \<subseteq> S\<close>] homology_exactness_triple_3 [OF \<open>T \<subseteq> S\<close>]
|
|
657 |
by fastforce
|
|
658 |
show "trivial_group (relative_homology_group p (subtopology X S) T)" "trivial_group (relative_homology_group(p - 1) (subtopology X S) T)"
|
|
659 |
using assms
|
|
660 |
by (force simp: inf.absorb_iff2 subtopology_subtopology topspace_subtopology intro!: trivial_relative_homology_group_contractible_spaces)+
|
|
661 |
qed
|
|
662 |
|
|
663 |
corollary isomorphic_relative_homology_groups_relativization_contractible:
|
|
664 |
assumes "contractible_space(subtopology X S)" "contractible_space(subtopology X T)" "T \<subseteq> S" "topspace X \<inter> T \<noteq> {}"
|
|
665 |
shows "relative_homology_group p X T \<cong> relative_homology_group p X S"
|
|
666 |
by (rule is_isoI) (rule iso_hom_induced_relativization_contractible [OF assms])
|
|
667 |
|
|
668 |
lemma iso_hom_induced_inclusion_contractible:
|
|
669 |
assumes "contractible_space X" "contractible_space(subtopology X S)" "T \<subseteq> S" "topspace X \<inter> S \<noteq> {}"
|
|
670 |
shows "(hom_induced p (subtopology X S) T X T id)
|
|
671 |
\<in> iso (relative_homology_group p (subtopology X S) T) (relative_homology_group p X T)"
|
|
672 |
proof (rule very_short_exact_sequence)
|
|
673 |
show "exact_seq
|
|
674 |
([relative_homology_group p X S, relative_homology_group p X T,
|
|
675 |
relative_homology_group p (subtopology X S) T, relative_homology_group (p+1) X S],
|
|
676 |
[hom_induced p X T X S id, hom_induced p (subtopology X S) T X T id, hom_relboundary (p+1) X S T])"
|
|
677 |
using homology_exactness_triple_2 [OF \<open>T \<subseteq> S\<close>] homology_exactness_triple_3 [OF \<open>T \<subseteq> S\<close>]
|
|
678 |
by (metis add_diff_cancel_left' diff_add_cancel exact_seq_cons_iff)
|
|
679 |
show "trivial_group (relative_homology_group (p+1) X S)" "trivial_group (relative_homology_group p X S)"
|
|
680 |
using assms
|
|
681 |
by (auto simp: subtopology_subtopology topspace_subtopology intro!: trivial_relative_homology_group_contractible_spaces)
|
|
682 |
qed
|
|
683 |
|
|
684 |
corollary isomorphic_relative_homology_groups_inclusion_contractible:
|
|
685 |
assumes "contractible_space X" "contractible_space(subtopology X S)" "T \<subseteq> S" "topspace X \<inter> S \<noteq> {}"
|
|
686 |
shows "relative_homology_group p (subtopology X S) T \<cong> relative_homology_group p X T"
|
|
687 |
by (rule is_isoI) (rule iso_hom_induced_inclusion_contractible [OF assms])
|
|
688 |
|
|
689 |
lemma iso_hom_relboundary_contractible:
|
|
690 |
assumes "contractible_space X" "contractible_space(subtopology X T)" "T \<subseteq> S" "topspace X \<inter> T \<noteq> {}"
|
|
691 |
shows "hom_relboundary p X S T
|
|
692 |
\<in> iso (relative_homology_group p X S) (relative_homology_group (p - 1) (subtopology X S) T)"
|
|
693 |
proof (rule very_short_exact_sequence)
|
|
694 |
show "exact_seq
|
|
695 |
([relative_homology_group (p - 1) X T, relative_homology_group (p - 1) (subtopology X S) T, relative_homology_group p X S, relative_homology_group p X T],
|
|
696 |
[hom_induced (p - 1) (subtopology X S) T X T id, hom_relboundary p X S T, hom_induced p X T X S id])"
|
|
697 |
using homology_exactness_triple_1 [OF \<open>T \<subseteq> S\<close>] homology_exactness_triple_2 [OF \<open>T \<subseteq> S\<close>] by simp
|
|
698 |
show "trivial_group (relative_homology_group p X T)" "trivial_group (relative_homology_group (p - 1) X T)"
|
|
699 |
using assms
|
|
700 |
by (auto simp: subtopology_subtopology topspace_subtopology intro!: trivial_relative_homology_group_contractible_spaces)
|
|
701 |
qed
|
|
702 |
|
|
703 |
corollary isomorphic_relative_homology_groups_relboundary_contractible:
|
|
704 |
assumes "contractible_space X" "contractible_space(subtopology X T)" "T \<subseteq> S" "topspace X \<inter> T \<noteq> {}"
|
|
705 |
shows "relative_homology_group p X S \<cong> relative_homology_group (p - 1) (subtopology X S) T"
|
|
706 |
by (rule is_isoI) (rule iso_hom_relboundary_contractible [OF assms])
|
|
707 |
|
|
708 |
lemma isomorphic_relative_contractible_space_imp_homology_groups:
|
|
709 |
assumes "contractible_space X" "contractible_space Y" "S \<subseteq> topspace X" "T \<subseteq> topspace Y"
|
|
710 |
and ST: "S = {} \<longleftrightarrow> T = {}"
|
|
711 |
and iso: "\<And>p. relative_homology_group p X S \<cong> relative_homology_group p Y T"
|
|
712 |
shows "homology_group p (subtopology X S) \<cong> homology_group p (subtopology Y T)"
|
|
713 |
proof (cases "T = {}")
|
|
714 |
case True
|
|
715 |
have "homology_group p (subtopology X {}) \<cong> homology_group p (subtopology Y {})"
|
|
716 |
by (simp add: homeomorphic_empty_space_eq homeomorphic_space_imp_isomorphic_homology_groups)
|
|
717 |
then show ?thesis
|
|
718 |
using ST True by blast
|
|
719 |
next
|
|
720 |
case False
|
|
721 |
show ?thesis
|
|
722 |
proof (cases "p = 0")
|
|
723 |
case True
|
|
724 |
have "homology_group p (subtopology X S) \<cong> integer_group \<times>\<times> relative_homology_group 1 X S"
|
|
725 |
using assms True \<open>T \<noteq> {}\<close>
|
|
726 |
by (simp add: iso_homology_contractible_space_subtopology1)
|
|
727 |
also have "\<dots> \<cong> integer_group \<times>\<times> relative_homology_group 1 Y T"
|
|
728 |
by (simp add: assms group.DirProd_iso_trans iso_refl)
|
|
729 |
also have "\<dots> \<cong> homology_group p (subtopology Y T)"
|
|
730 |
by (simp add: True \<open>T \<noteq> {}\<close> assms group.iso_sym iso_homology_contractible_space_subtopology1)
|
|
731 |
finally show ?thesis .
|
|
732 |
next
|
|
733 |
case False
|
|
734 |
have "homology_group p (subtopology X S) \<cong> relative_homology_group (p+1) X S"
|
|
735 |
using assms False \<open>T \<noteq> {}\<close>
|
|
736 |
by (simp add: iso_homology_contractible_space_subtopology2)
|
|
737 |
also have "\<dots> \<cong> relative_homology_group (p+1) Y T"
|
|
738 |
by (simp add: assms)
|
|
739 |
also have "\<dots> \<cong> homology_group p (subtopology Y T)"
|
|
740 |
by (simp add: False \<open>T \<noteq> {}\<close> assms group.iso_sym iso_homology_contractible_space_subtopology2)
|
|
741 |
finally show ?thesis .
|
|
742 |
qed
|
|
743 |
qed
|
|
744 |
|
|
745 |
|
|
746 |
subsection\<open>Homology groups of spheres\<close>
|
|
747 |
|
|
748 |
lemma iso_reduced_homology_group_lower_hemisphere:
|
|
749 |
assumes "k \<le> n"
|
|
750 |
shows "hom_induced p (nsphere n) {} (nsphere n) {x. x k \<le> 0} id
|
|
751 |
\<in> iso (reduced_homology_group p (nsphere n)) (relative_homology_group p (nsphere n) {x. x k \<le> 0})"
|
|
752 |
proof (rule iso_reduced_homology_by_contractible)
|
|
753 |
show "contractible_space (subtopology (nsphere n) {x. x k \<le> 0})"
|
|
754 |
by (simp add: assms contractible_space_lower_hemisphere)
|
|
755 |
have "(\<lambda>i. if i = k then -1 else 0) \<in> topspace (nsphere n) \<inter> {x. x k \<le> 0}"
|
|
756 |
using assms by (simp add: nsphere if_distrib [of "\<lambda>x. x ^ 2"] cong: if_cong)
|
|
757 |
then show "topspace (nsphere n) \<inter> {x. x k \<le> 0} \<noteq> {}"
|
|
758 |
by blast
|
|
759 |
qed
|
|
760 |
|
|
761 |
|
|
762 |
lemma topspace_nsphere_1:
|
|
763 |
assumes "x \<in> topspace (nsphere n)" shows "(x k)\<^sup>2 \<le> 1"
|
|
764 |
proof (cases "k \<le> n")
|
|
765 |
case True
|
|
766 |
have "(\<Sum>i \<in> {..n} - {k}. (x i)\<^sup>2) = (\<Sum>i\<le>n. (x i)\<^sup>2) - (x k)\<^sup>2"
|
|
767 |
using \<open>k \<le> n\<close> by (simp add: sum_diff)
|
|
768 |
then show ?thesis
|
|
769 |
using assms
|
|
770 |
apply (simp add: nsphere)
|
|
771 |
by (metis diff_ge_0_iff_ge sum_nonneg zero_le_power2)
|
|
772 |
next
|
|
773 |
case False
|
|
774 |
then show ?thesis
|
|
775 |
using assms by (simp add: nsphere)
|
|
776 |
qed
|
|
777 |
|
|
778 |
lemma topspace_nsphere_1_eq_0:
|
|
779 |
fixes x :: "nat \<Rightarrow> real"
|
|
780 |
assumes x: "x \<in> topspace (nsphere n)" and xk: "(x k)\<^sup>2 = 1" and "i \<noteq> k"
|
|
781 |
shows "x i = 0"
|
|
782 |
proof (cases "i \<le> n")
|
|
783 |
case True
|
|
784 |
have "k \<le> n"
|
|
785 |
using x
|
|
786 |
by (simp add: nsphere) (metis not_less xk zero_neq_one zero_power2)
|
|
787 |
have "(\<Sum>i \<in> {..n} - {k}. (x i)\<^sup>2) = (\<Sum>i\<le>n. (x i)\<^sup>2) - (x k)\<^sup>2"
|
|
788 |
using \<open>k \<le> n\<close> by (simp add: sum_diff)
|
|
789 |
also have "\<dots> = 0"
|
|
790 |
using assms by (simp add: nsphere)
|
|
791 |
finally have "\<forall>i\<in>{..n} - {k}. (x i)\<^sup>2 = 0"
|
|
792 |
by (simp add: sum_nonneg_eq_0_iff)
|
|
793 |
then show ?thesis
|
|
794 |
using True \<open>i \<noteq> k\<close> by auto
|
|
795 |
next
|
|
796 |
case False
|
|
797 |
with x show ?thesis
|
|
798 |
by (simp add: nsphere)
|
|
799 |
qed
|
|
800 |
|
|
801 |
|
|
802 |
proposition iso_relative_homology_group_upper_hemisphere:
|
|
803 |
"(hom_induced p (subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0} (nsphere n) {x. x k \<le> 0} id)
|
|
804 |
\<in> iso (relative_homology_group p (subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0})
|
|
805 |
(relative_homology_group p (nsphere n) {x. x k \<le> 0})" (is "?h \<in> iso ?G ?H")
|
|
806 |
proof -
|
|
807 |
have "topspace (nsphere n) \<inter> {x. x k < - 1 / 2} \<subseteq> {x \<in> topspace (nsphere n). x k \<in> {y. y \<le> - 1 / 2}}"
|
|
808 |
by force
|
|
809 |
moreover have "closedin (nsphere n) {x \<in> topspace (nsphere n). x k \<in> {y. y \<le> - 1 / 2}}"
|
|
810 |
apply (rule closedin_continuous_map_preimage [OF continuous_map_nsphere_projection])
|
|
811 |
using closed_Collect_le [of id "\<lambda>x::real. -1/2"] apply simp
|
|
812 |
done
|
|
813 |
ultimately have "nsphere n closure_of {x. x k < -1/2} \<subseteq> {x \<in> topspace (nsphere n). x k \<in> {y. y \<le> -1/2}}"
|
|
814 |
by (metis (no_types, lifting) closure_of_eq closure_of_mono closure_of_restrict)
|
|
815 |
also have "\<dots> \<subseteq> {x \<in> topspace (nsphere n). x k \<in> {y. y < 0}}"
|
|
816 |
by force
|
|
817 |
also have "\<dots> \<subseteq> nsphere n interior_of {x. x k \<le> 0}"
|
|
818 |
proof (rule interior_of_maximal)
|
|
819 |
show "{x \<in> topspace (nsphere n). x k \<in> {y. y < 0}} \<subseteq> {x. x k \<le> 0}"
|
|
820 |
by force
|
|
821 |
show "openin (nsphere n) {x \<in> topspace (nsphere n). x k \<in> {y. y < 0}}"
|
|
822 |
apply (rule openin_continuous_map_preimage [OF continuous_map_nsphere_projection])
|
|
823 |
using open_Collect_less [of id "\<lambda>x::real. 0"] apply simp
|
|
824 |
done
|
|
825 |
qed
|
|
826 |
finally have nn: "nsphere n closure_of {x. x k < -1/2} \<subseteq> nsphere n interior_of {x. x k \<le> 0}" .
|
|
827 |
have [simp]: "{x::nat\<Rightarrow>real. x k \<le> 0} - {x. x k < - (1/2)} = {x. -1/2 \<le> x k \<and> x k \<le> 0}"
|
|
828 |
"UNIV - {x::nat\<Rightarrow>real. x k < a} = {x. a \<le> x k}" for a
|
|
829 |
by auto
|
|
830 |
let ?T01 = "top_of_set {0..1::real}"
|
|
831 |
let ?X12 = "subtopology (nsphere n) {x. -1/2 \<le> x k}"
|
|
832 |
have 1: "hom_induced p ?X12 {x. -1/2 \<le> x k \<and> x k \<le> 0} (nsphere n) {x. x k \<le> 0} id
|
|
833 |
\<in> iso (relative_homology_group p ?X12 {x. -1/2 \<le> x k \<and> x k \<le> 0})
|
|
834 |
?H"
|
|
835 |
using homology_excision_axiom [OF nn subset_UNIV, of p] by simp
|
|
836 |
define h where "h \<equiv> \<lambda>(T,x). let y = max (x k) (-T) in
|
|
837 |
(\<lambda>i. if i = k then y else sqrt(1 - y ^ 2) / sqrt(1 - x k ^ 2) * x i)"
|
|
838 |
have h: "h(T,x) = x" if "0 \<le> T" "T \<le> 1" "(\<Sum>i\<le>n. (x i)\<^sup>2) = 1" and 0: "\<forall>i>n. x i = 0" "-T \<le> x k" for T x
|
|
839 |
using that by (force simp: nsphere h_def Let_def max_def intro!: topspace_nsphere_1_eq_0)
|
|
840 |
have "continuous_map (prod_topology ?T01 ?X12) euclideanreal (\<lambda>x. h x i)" for i
|
|
841 |
proof -
|
|
842 |
show ?thesis
|
|
843 |
proof (rule continuous_map_eq)
|
|
844 |
show "continuous_map (prod_topology ?T01 ?X12)
|
|
845 |
euclideanreal (\<lambda>(T, x). if 0 \<le> x k then x i else h (T, x) i)"
|
|
846 |
unfolding case_prod_unfold
|
|
847 |
proof (rule continuous_map_cases_le)
|
|
848 |
show "continuous_map (prod_topology ?T01 ?X12) euclideanreal (\<lambda>x. snd x k)"
|
|
849 |
apply (subst continuous_map_of_snd [unfolded o_def])
|
|
850 |
by (simp add: continuous_map_from_subtopology continuous_map_nsphere_projection)
|
|
851 |
next
|
|
852 |
show "continuous_map (subtopology (prod_topology ?T01 ?X12) {p \<in> topspace (prod_topology ?T01 ?X12). 0 \<le> snd p k})
|
|
853 |
euclideanreal (\<lambda>x. snd x i)"
|
|
854 |
apply (rule continuous_map_from_subtopology)
|
|
855 |
apply (subst continuous_map_of_snd [unfolded o_def])
|
|
856 |
by (simp add: continuous_map_from_subtopology continuous_map_nsphere_projection)
|
|
857 |
next
|
|
858 |
note fst = continuous_map_into_fulltopology [OF continuous_map_subtopology_fst]
|
|
859 |
have snd: "continuous_map (subtopology (prod_topology ?T01 (subtopology (nsphere n) T)) S) euclideanreal (\<lambda>x. snd x k)" for k S T
|
|
860 |
apply (simp add: nsphere)
|
|
861 |
apply (rule continuous_map_from_subtopology)
|
|
862 |
apply (subst continuous_map_of_snd [unfolded o_def])
|
|
863 |
using continuous_map_from_subtopology continuous_map_nsphere_projection nsphere by fastforce
|
|
864 |
show "continuous_map (subtopology (prod_topology ?T01 ?X12) {p \<in> topspace (prod_topology ?T01 ?X12). snd p k \<le> 0})
|
|
865 |
euclideanreal (\<lambda>x. h (fst x, snd x) i)"
|
|
866 |
apply (simp add: h_def case_prod_unfold Let_def)
|
|
867 |
apply (intro conjI impI fst snd continuous_intros)
|
|
868 |
apply (auto simp: nsphere power2_eq_1_iff)
|
|
869 |
done
|
|
870 |
qed (auto simp: nsphere h)
|
|
871 |
qed (auto simp: nsphere h)
|
|
872 |
qed
|
|
873 |
moreover
|
|
874 |
have "h ` ({0..1} \<times> (topspace (nsphere n) \<inter> {x. - (1/2) \<le> x k}))
|
|
875 |
\<subseteq> {x. (\<Sum>i\<le>n. (x i)\<^sup>2) = 1 \<and> (\<forall>i>n. x i = 0)}"
|
|
876 |
proof -
|
|
877 |
have "(\<Sum>i\<le>n. (h (T,x) i)\<^sup>2) = 1"
|
|
878 |
if x: "x \<in> topspace (nsphere n)" and xk: "- (1/2) \<le> x k" and T: "0 \<le> T" "T \<le> 1" for T x
|
|
879 |
proof (cases "-T \<le> x k ")
|
|
880 |
case True
|
|
881 |
then show ?thesis
|
|
882 |
using that by (auto simp: nsphere h)
|
|
883 |
next
|
|
884 |
case False
|
|
885 |
with x \<open>0 \<le> T\<close> have "k \<le> n"
|
|
886 |
apply (simp add: nsphere)
|
|
887 |
by (metis neg_le_0_iff_le not_le)
|
|
888 |
have "1 - (x k)\<^sup>2 \<ge> 0"
|
|
889 |
using topspace_nsphere_1 x by auto
|
|
890 |
with False T \<open>k \<le> n\<close>
|
|
891 |
have "(\<Sum>i\<le>n. (h (T,x) i)\<^sup>2) = T\<^sup>2 + (1 - T\<^sup>2) * (\<Sum>i\<in>{..n} - {k}. (x i)\<^sup>2 / (1 - (x k)\<^sup>2))"
|
|
892 |
unfolding h_def Let_def max_def
|
|
893 |
by (simp add: not_le square_le_1 power_mult_distrib power_divide if_distrib [of "\<lambda>x. x ^ 2"]
|
|
894 |
sum.delta_remove sum_distrib_left)
|
|
895 |
also have "\<dots> = 1"
|
|
896 |
using x False xk \<open>0 \<le> T\<close>
|
|
897 |
by (simp add: nsphere sum_diff not_le \<open>k \<le> n\<close> power2_eq_1_iff flip: sum_divide_distrib)
|
|
898 |
finally show ?thesis .
|
|
899 |
qed
|
|
900 |
moreover
|
|
901 |
have "h (T,x) i = 0"
|
|
902 |
if "x \<in> topspace (nsphere n)" "- (1/2) \<le> x k" and "n < i" "0 \<le> T" "T \<le> 1"
|
|
903 |
for T x i
|
|
904 |
proof (cases "-T \<le> x k ")
|
|
905 |
case False
|
|
906 |
then show ?thesis
|
|
907 |
using that by (auto simp: nsphere h_def Let_def not_le max_def)
|
|
908 |
qed (use that in \<open>auto simp: nsphere h\<close>)
|
|
909 |
ultimately show ?thesis
|
|
910 |
by auto
|
|
911 |
qed
|
|
912 |
ultimately
|
|
913 |
have cmh: "continuous_map (prod_topology ?T01 ?X12) (nsphere n) h"
|
|
914 |
by (subst (2) nsphere) (simp add: continuous_map_in_subtopology continuous_map_componentwise_UNIV)
|
|
915 |
have "hom_induced p (subtopology (nsphere n) {x. 0 \<le> x k})
|
|
916 |
(topspace (subtopology (nsphere n) {x. 0 \<le> x k}) \<inter> {x. x k = 0}) ?X12
|
|
917 |
(topspace ?X12 \<inter> {x. - 1/2 \<le> x k \<and> x k \<le> 0}) id
|
|
918 |
\<in> iso (relative_homology_group p (subtopology (nsphere n) {x. 0 \<le> x k})
|
|
919 |
(topspace (subtopology (nsphere n) {x. 0 \<le> x k}) \<inter> {x. x k = 0}))
|
|
920 |
(relative_homology_group p ?X12 (topspace ?X12 \<inter> {x. - 1/2 \<le> x k \<and> x k \<le> 0}))"
|
|
921 |
proof (rule deformation_retract_relative_homology_group_isomorphism_id)
|
|
922 |
show "retraction_maps ?X12 (subtopology (nsphere n) {x. 0 \<le> x k}) (h \<circ> (\<lambda>x. (0,x))) id"
|
|
923 |
unfolding retraction_maps_def
|
|
924 |
proof (intro conjI ballI)
|
|
925 |
show "continuous_map ?X12 (subtopology (nsphere n) {x. 0 \<le> x k}) (h \<circ> Pair 0)"
|
|
926 |
apply (simp add: continuous_map_in_subtopology)
|
|
927 |
apply (intro conjI continuous_map_compose [OF _ cmh] continuous_intros)
|
|
928 |
apply (auto simp: h_def Let_def)
|
|
929 |
done
|
|
930 |
show "continuous_map (subtopology (nsphere n) {x. 0 \<le> x k}) ?X12 id"
|
|
931 |
by (simp add: continuous_map_in_subtopology) (auto simp: nsphere)
|
|
932 |
qed (simp add: nsphere h)
|
|
933 |
next
|
|
934 |
have h0: "\<And>xa. \<lbrakk>xa \<in> topspace (nsphere n); - (1/2) \<le> xa k; xa k \<le> 0\<rbrakk> \<Longrightarrow> h (0, xa) k = 0"
|
|
935 |
by (simp add: h_def Let_def)
|
|
936 |
show "(h \<circ> (\<lambda>x. (0,x))) ` (topspace ?X12 \<inter> {x. - 1 / 2 \<le> x k \<and> x k \<le> 0})
|
|
937 |
\<subseteq> topspace (subtopology (nsphere n) {x. 0 \<le> x k}) \<inter> {x. x k = 0}"
|
|
938 |
apply (auto simp: h0)
|
|
939 |
apply (rule subsetD [OF continuous_map_image_subset_topspace [OF cmh]])
|
|
940 |
apply (force simp: nsphere)
|
|
941 |
done
|
|
942 |
have hin: "\<And>t x. \<lbrakk>x \<in> topspace (nsphere n); - (1/2) \<le> x k; 0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> h (t,x) \<in> topspace (nsphere n)"
|
|
943 |
apply (rule subsetD [OF continuous_map_image_subset_topspace [OF cmh]])
|
|
944 |
apply (force simp: nsphere)
|
|
945 |
done
|
|
946 |
have h1: "\<And>x. \<lbrakk>x \<in> topspace (nsphere n); - (1/2) \<le> x k\<rbrakk> \<Longrightarrow> h (1, x) = x"
|
|
947 |
by (simp add: h nsphere)
|
|
948 |
have "continuous_map (prod_topology ?T01 ?X12) (nsphere n) h"
|
|
949 |
using cmh by force
|
|
950 |
then show "homotopic_with
|
|
951 |
(\<lambda>h. h ` (topspace ?X12 \<inter> {x. - 1 / 2 \<le> x k \<and> x k \<le> 0}) \<subseteq> topspace ?X12 \<inter> {x. - 1 / 2 \<le> x k \<and> x k \<le> 0})
|
|
952 |
?X12 ?X12 (h \<circ> (\<lambda>x. (0,x))) id"
|
|
953 |
apply (subst homotopic_with, force)
|
|
954 |
apply (rule_tac x=h in exI)
|
|
955 |
apply (auto simp: hin h1 continuous_map_in_subtopology)
|
|
956 |
apply (auto simp: h_def Let_def max_def)
|
|
957 |
done
|
|
958 |
qed auto
|
|
959 |
then have 2: "hom_induced p (subtopology (nsphere n) {x. 0 \<le> x k}) {x. x k = 0}
|
|
960 |
?X12 {x. - 1/2 \<le> x k \<and> x k \<le> 0} id
|
|
961 |
\<in> Group.iso
|
|
962 |
(relative_homology_group p (subtopology (nsphere n) {x. 0 \<le> x k}) {x. x k = 0})
|
|
963 |
(relative_homology_group p ?X12 {x. - 1/2 \<le> x k \<and> x k \<le> 0})"
|
|
964 |
by (metis hom_induced_restrict relative_homology_group_restrict topspace_subtopology)
|
|
965 |
show ?thesis
|
|
966 |
using iso_set_trans [OF 2 1]
|
|
967 |
by (simp add: subset_iff continuous_map_in_subtopology flip: hom_induced_compose)
|
|
968 |
qed
|
|
969 |
|
|
970 |
|
|
971 |
corollary iso_upper_hemisphere_reduced_homology_group:
|
|
972 |
"(hom_boundary (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) \<ge> 0}) {x. x(Suc n) = 0})
|
|
973 |
\<in> iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) \<ge> 0}) {x. x(Suc n) = 0})
|
|
974 |
(reduced_homology_group p (nsphere n))"
|
|
975 |
proof -
|
|
976 |
have "{x. 0 \<le> x (Suc n)} \<inter> {x. x (Suc n) = 0} = {x. x (Suc n) = (0::real)}"
|
|
977 |
by auto
|
|
978 |
then have n: "nsphere n = subtopology (subtopology (nsphere (Suc n)) {x. x(Suc n) \<ge> 0}) {x. x(Suc n) = 0}"
|
|
979 |
by (simp add: subtopology_nsphere_equator subtopology_subtopology)
|
|
980 |
have ne: "(\<lambda>i. if i = n then 1 else 0) \<in> topspace (subtopology (nsphere (Suc n)) {x. 0 \<le> x (Suc n)}) \<inter> {x. x (Suc n) = 0}"
|
|
981 |
by (simp add: nsphere if_distrib [of "\<lambda>x. x ^ 2"] cong: if_cong)
|
|
982 |
show ?thesis
|
|
983 |
unfolding n
|
|
984 |
apply (rule iso_relative_homology_of_contractible [where p = "1 + p", simplified])
|
|
985 |
using contractible_space_upper_hemisphere ne apply blast+
|
|
986 |
done
|
|
987 |
qed
|
|
988 |
|
|
989 |
corollary iso_reduced_homology_group_upper_hemisphere:
|
|
990 |
assumes "k \<le> n"
|
|
991 |
shows "hom_induced p (nsphere n) {} (nsphere n) {x. x k \<ge> 0} id
|
|
992 |
\<in> iso (reduced_homology_group p (nsphere n)) (relative_homology_group p (nsphere n) {x. x k \<ge> 0})"
|
|
993 |
proof (rule iso_reduced_homology_by_contractible [OF contractible_space_upper_hemisphere [OF assms]])
|
|
994 |
have "(\<lambda>i. if i = k then 1 else 0) \<in> topspace (nsphere n) \<inter> {x. 0 \<le> x k}"
|
|
995 |
using assms by (simp add: nsphere if_distrib [of "\<lambda>x. x ^ 2"] cong: if_cong)
|
|
996 |
then show "topspace (nsphere n) \<inter> {x. 0 \<le> x k} \<noteq> {}"
|
|
997 |
by blast
|
|
998 |
qed
|
|
999 |
|
|
1000 |
|
|
1001 |
lemma iso_relative_homology_group_lower_hemisphere:
|
|
1002 |
"hom_induced p (subtopology (nsphere n) {x. x k \<le> 0}) {x. x k = 0} (nsphere n) {x. x k \<ge> 0} id
|
|
1003 |
\<in> iso (relative_homology_group p (subtopology (nsphere n) {x. x k \<le> 0}) {x. x k = 0})
|
|
1004 |
(relative_homology_group p (nsphere n) {x. x k \<ge> 0})" (is "?k \<in> iso ?G ?H")
|
|
1005 |
proof -
|
|
1006 |
define r where "r \<equiv> \<lambda>x i. if i = k then -x i else (x i::real)"
|
|
1007 |
then have [simp]: "r \<circ> r = id"
|
|
1008 |
by force
|
|
1009 |
have cmr: "continuous_map (subtopology (nsphere n) S) (nsphere n) r" for S
|
|
1010 |
using continuous_map_nsphere_reflection [of n k]
|
|
1011 |
by (simp add: continuous_map_from_subtopology r_def)
|
|
1012 |
let ?f = "hom_induced p (subtopology (nsphere n) {x. x k \<le> 0}) {x. x k = 0}
|
|
1013 |
(subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0} r"
|
|
1014 |
let ?g = "hom_induced p (subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0} (nsphere n) {x. x k \<le> 0} id"
|
|
1015 |
let ?h = "hom_induced p (nsphere n) {x. x k \<le> 0} (nsphere n) {x. x k \<ge> 0} r"
|
|
1016 |
obtain f h where
|
|
1017 |
f: "f \<in> iso ?G (relative_homology_group p (subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0})"
|
|
1018 |
and h: "h \<in> iso (relative_homology_group p (nsphere n) {x. x k \<le> 0}) ?H"
|
|
1019 |
and eq: "h \<circ> ?g \<circ> f = ?k"
|
|
1020 |
proof
|
|
1021 |
have hmr: "homeomorphic_map (nsphere n) (nsphere n) r"
|
|
1022 |
unfolding homeomorphic_map_maps
|
|
1023 |
by (metis \<open>r \<circ> r = id\<close> cmr homeomorphic_maps_involution pointfree_idE subtopology_topspace)
|
|
1024 |
then have hmrs: "homeomorphic_map (subtopology (nsphere n) {x. x k \<le> 0}) (subtopology (nsphere n) {x. x k \<ge> 0}) r"
|
|
1025 |
by (simp add: homeomorphic_map_subtopologies_alt r_def)
|
|
1026 |
have rimeq: "r ` (topspace (subtopology (nsphere n) {x. x k \<le> 0}) \<inter> {x. x k = 0})
|
|
1027 |
= topspace (subtopology (nsphere n) {x. 0 \<le> x k}) \<inter> {x. x k = 0}"
|
|
1028 |
using continuous_map_eq_topcontinuous_at continuous_map_nsphere_reflection topcontinuous_at_atin
|
|
1029 |
by (fastforce simp: r_def)
|
|
1030 |
show "?f \<in> iso ?G (relative_homology_group p (subtopology (nsphere n) {x. x k \<ge> 0}) {x. x k = 0})"
|
|
1031 |
using homeomorphic_map_relative_homology_iso [OF hmrs Int_lower1 rimeq]
|
|
1032 |
by (metis hom_induced_restrict relative_homology_group_restrict)
|
|
1033 |
have rimeq: "r ` (topspace (nsphere n) \<inter> {x. x k \<le> 0}) = topspace (nsphere n) \<inter> {x. 0 \<le> x k}"
|
|
1034 |
by (metis hmrs homeomorphic_imp_surjective_map topspace_subtopology)
|
|
1035 |
show "?h \<in> Group.iso (relative_homology_group p (nsphere n) {x. x k \<le> 0}) ?H"
|
|
1036 |
using homeomorphic_map_relative_homology_iso [OF hmr Int_lower1 rimeq] by simp
|
|
1037 |
have [simp]: "\<And>x. x k = 0 \<Longrightarrow> r x k = 0"
|
|
1038 |
by (auto simp: r_def)
|
|
1039 |
have "?h \<circ> ?g \<circ> ?f
|
|
1040 |
= hom_induced p (subtopology (nsphere n) {x. 0 \<le> x k}) {x. x k = 0} (nsphere n) {x. 0 \<le> x k} r \<circ>
|
|
1041 |
hom_induced p (subtopology (nsphere n) {x. x k \<le> 0}) {x. x k = 0} (subtopology (nsphere n) {x. 0 \<le> x k}) {x. x k = 0} r"
|
|
1042 |
apply (subst hom_induced_compose [symmetric])
|
|
1043 |
using continuous_map_nsphere_reflection apply (force simp: r_def)+
|
|
1044 |
done
|
|
1045 |
also have "\<dots> = ?k"
|
|
1046 |
apply (subst hom_induced_compose [symmetric])
|
|
1047 |
apply (simp_all add: image_subset_iff cmr)
|
|
1048 |
using hmrs homeomorphic_imp_continuous_map apply blast
|
|
1049 |
done
|
|
1050 |
finally show "?h \<circ> ?g \<circ> ?f = ?k" .
|
|
1051 |
qed
|
|
1052 |
with iso_relative_homology_group_upper_hemisphere [of p n k]
|
|
1053 |
have "h \<circ> hom_induced p (subtopology (nsphere n) {f. 0 \<le> f k}) {f. f k = 0} (nsphere n) {f. f k \<le> 0} id \<circ> f
|
|
1054 |
\<in> Group.iso ?G (relative_homology_group p (nsphere n) {f. 0 \<le> f k})"
|
|
1055 |
using f h iso_set_trans by blast
|
|
1056 |
then show ?thesis
|
|
1057 |
by (simp add: eq)
|
|
1058 |
qed
|
|
1059 |
|
|
1060 |
|
|
1061 |
lemma iso_lower_hemisphere_reduced_homology_group:
|
|
1062 |
"hom_boundary (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) \<le> 0}) {x. x(Suc n) = 0}
|
|
1063 |
\<in> iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) \<le> 0})
|
|
1064 |
{x. x(Suc n) = 0})
|
|
1065 |
(reduced_homology_group p (nsphere n))"
|
|
1066 |
proof -
|
|
1067 |
have "{x. (\<Sum>i\<le>n. (x i)\<^sup>2) = 1 \<and> (\<forall>i>n. x i = 0)} =
|
|
1068 |
({x. (\<Sum>i\<le>n. (x i)\<^sup>2) + (x (Suc n))\<^sup>2 = 1 \<and> (\<forall>i>Suc n. x i = 0)} \<inter> {x. x (Suc n) \<le> 0} \<inter>
|
|
1069 |
{x. x (Suc n) = (0::real)})"
|
|
1070 |
by (force simp: dest: Suc_lessI)
|
|
1071 |
then have n: "nsphere n = subtopology (subtopology (nsphere (Suc n)) {x. x(Suc n) \<le> 0}) {x. x(Suc n) = 0}"
|
|
1072 |
by (simp add: nsphere subtopology_subtopology)
|
|
1073 |
have ne: "(\<lambda>i. if i = n then 1 else 0) \<in> topspace (subtopology (nsphere (Suc n)) {x. x (Suc n) \<le> 0}) \<inter> {x. x (Suc n) = 0}"
|
|
1074 |
by (simp add: nsphere if_distrib [of "\<lambda>x. x ^ 2"] cong: if_cong)
|
|
1075 |
show ?thesis
|
|
1076 |
unfolding n
|
|
1077 |
apply (rule iso_relative_homology_of_contractible [where p = "1 + p", simplified])
|
|
1078 |
using contractible_space_lower_hemisphere ne apply blast+
|
|
1079 |
done
|
|
1080 |
qed
|
|
1081 |
|
|
1082 |
lemma isomorphism_sym:
|
|
1083 |
"\<lbrakk>f \<in> iso G1 G2; \<And>x. x \<in> carrier G1 \<Longrightarrow> r'(f x) = f(r x);
|
|
1084 |
\<And>x. x \<in> carrier G1 \<Longrightarrow> r x \<in> carrier G1; group G1; group G2\<rbrakk>
|
|
1085 |
\<Longrightarrow> \<exists>f \<in> iso G2 G1. \<forall>x \<in> carrier G2. r(f x) = f(r' x)"
|
|
1086 |
apply (clarsimp simp add: group.iso_iff_group_isomorphisms Bex_def)
|
|
1087 |
by (metis (full_types) group_isomorphisms_def group_isomorphisms_sym hom_in_carrier)
|
|
1088 |
|
|
1089 |
lemma isomorphism_trans:
|
|
1090 |
"\<lbrakk>\<exists>f \<in> iso G1 G2. \<forall>x \<in> carrier G1. r2(f x) = f(r1 x); \<exists>f \<in> iso G2 G3. \<forall>x \<in> carrier G2. r3(f x) = f(r2 x)\<rbrakk>
|
|
1091 |
\<Longrightarrow> \<exists>f \<in> iso G1 G3. \<forall>x \<in> carrier G1. r3(f x) = f(r1 x)"
|
|
1092 |
apply clarify
|
|
1093 |
apply (rename_tac g f)
|
|
1094 |
apply (rule_tac x="f \<circ> g" in bexI)
|
|
1095 |
apply (metis iso_iff comp_apply hom_in_carrier)
|
|
1096 |
using iso_set_trans by blast
|
|
1097 |
|
|
1098 |
lemma reduced_homology_group_nsphere_step:
|
|
1099 |
"\<exists>f \<in> iso(reduced_homology_group p (nsphere n))
|
|
1100 |
(reduced_homology_group (1 + p) (nsphere (Suc n))).
|
|
1101 |
\<forall>c \<in> carrier(reduced_homology_group p (nsphere n)).
|
|
1102 |
hom_induced (1 + p) (nsphere(Suc n)) {} (nsphere(Suc n)) {}
|
|
1103 |
(\<lambda>x i. if i = 0 then -x i else x i) (f c)
|
|
1104 |
= f (hom_induced p (nsphere n) {} (nsphere n) {} (\<lambda>x i. if i = 0 then -x i else x i) c)"
|
|
1105 |
proof -
|
|
1106 |
define r where "r \<equiv> \<lambda>x::nat\<Rightarrow>real. \<lambda>i. if i = 0 then -x i else x i"
|
|
1107 |
have cmr: "continuous_map (nsphere n) (nsphere n) r" for n
|
|
1108 |
unfolding r_def by (rule continuous_map_nsphere_reflection)
|
|
1109 |
have rsub: "r ` {x. 0 \<le> x (Suc n)} \<subseteq> {x. 0 \<le> x (Suc n)}" "r ` {x. x (Suc n) \<le> 0} \<subseteq> {x. x (Suc n) \<le> 0}" "r ` {x. x (Suc n) = 0} \<subseteq> {x. x (Suc n) = 0}"
|
|
1110 |
by (force simp: r_def)+
|
|
1111 |
let ?sub = "subtopology (nsphere (Suc n)) {x. x (Suc n) \<ge> 0}"
|
|
1112 |
let ?G2 = "relative_homology_group (1 + p) ?sub {x. x (Suc n) = 0}"
|
|
1113 |
let ?r2 = "hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0} r"
|
|
1114 |
let ?j = "\<lambda>p n. hom_induced p (nsphere n) {} (nsphere n) {} r"
|
|
1115 |
show ?thesis
|
|
1116 |
unfolding r_def [symmetric]
|
|
1117 |
proof (rule isomorphism_trans)
|
|
1118 |
let ?f = "hom_boundary (1 + p) ?sub {x. x (Suc n) = 0}"
|
|
1119 |
show "\<exists>f\<in>Group.iso (reduced_homology_group p (nsphere n)) ?G2.
|
|
1120 |
\<forall>c\<in>carrier (reduced_homology_group p (nsphere n)). ?r2 (f c) = f (?j p n c)"
|
|
1121 |
proof (rule isomorphism_sym)
|
|
1122 |
show "?f \<in> Group.iso ?G2 (reduced_homology_group p (nsphere n))"
|
|
1123 |
using iso_upper_hemisphere_reduced_homology_group
|
|
1124 |
by (metis add.commute)
|
|
1125 |
next
|
|
1126 |
fix c
|
|
1127 |
assume "c \<in> carrier ?G2"
|
|
1128 |
have cmrs: "continuous_map ?sub ?sub r"
|
|
1129 |
by (metis (mono_tags, lifting) IntE cmr continuous_map_from_subtopology continuous_map_in_subtopology image_subset_iff rsub(1) topspace_subtopology)
|
|
1130 |
have "hom_induced p (nsphere n) {} (nsphere n) {} r \<circ> hom_boundary (1 + p) ?sub {x. x (Suc n) = 0}
|
|
1131 |
= hom_boundary (1 + p) ?sub {x. x (Suc n) = 0} \<circ>
|
|
1132 |
hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0} r"
|
|
1133 |
using naturality_hom_induced [OF cmrs rsub(3), symmetric, of "1+p", simplified]
|
|
1134 |
by (simp add: subtopology_subtopology subtopology_nsphere_equator flip: Collect_conj_eq cong: rev_conj_cong)
|
|
1135 |
then show "?j p n (?f c) = ?f (hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0} r c)"
|
|
1136 |
by (metis comp_def)
|
|
1137 |
next
|
|
1138 |
fix c
|
|
1139 |
assume "c \<in> carrier ?G2"
|
|
1140 |
show "hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0} r c \<in> carrier ?G2"
|
|
1141 |
using hom_induced_carrier by blast
|
|
1142 |
qed auto
|
|
1143 |
next
|
|
1144 |
let ?H2 = "relative_homology_group (1 + p) (nsphere (Suc n)) {x. x (Suc n) \<le> 0}"
|
|
1145 |
let ?s2 = "hom_induced (1 + p) (nsphere (Suc n)) {x. x (Suc n) \<le> 0} (nsphere (Suc n)) {x. x (Suc n) \<le> 0} r"
|
|
1146 |
show "\<exists>f\<in>Group.iso ?G2 (reduced_homology_group (1 + p) (nsphere (Suc n))). \<forall>c\<in>carrier ?G2. ?j (1 + p) (Suc n) (f c)
|
|
1147 |
= f (?r2 c)"
|
|
1148 |
proof (rule isomorphism_trans)
|
|
1149 |
show "\<exists>f\<in>Group.iso ?G2 ?H2.
|
|
1150 |
\<forall>c\<in>carrier ?G2.
|
|
1151 |
?s2 (f c) = f (hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0} r c)"
|
|
1152 |
proof (intro ballI bexI)
|
|
1153 |
fix c
|
|
1154 |
assume "c \<in> carrier (relative_homology_group (1 + p) ?sub {x. x (Suc n) = 0})"
|
|
1155 |
show "?s2 (hom_induced (1 + p) ?sub {x. x (Suc n) = 0} (nsphere (Suc n)) {x. x (Suc n) \<le> 0} id c)
|
|
1156 |
= hom_induced (1 + p) ?sub {x. x (Suc n) = 0} (nsphere (Suc n)) {x. x (Suc n) \<le> 0} id (?r2 c)"
|
|
1157 |
apply (simp add: rsub hom_induced_compose' Collect_mono_iff cmr)
|
|
1158 |
apply (subst hom_induced_compose')
|
|
1159 |
apply (simp_all add: continuous_map_in_subtopology continuous_map_from_subtopology [OF cmr] rsub)
|
|
1160 |
apply (auto simp: r_def)
|
|
1161 |
done
|
|
1162 |
qed (simp add: iso_relative_homology_group_upper_hemisphere)
|
|
1163 |
next
|
|
1164 |
let ?h = "hom_induced (1 + p) (nsphere(Suc n)) {} (nsphere (Suc n)) {x. x(Suc n) \<le> 0} id"
|
|
1165 |
show "\<exists>f\<in>Group.iso ?H2 (reduced_homology_group (1 + p) (nsphere (Suc n))).
|
|
1166 |
\<forall>c\<in>carrier ?H2. ?j (1 + p) (Suc n) (f c) = f (?s2 c)"
|
|
1167 |
proof (rule isomorphism_sym)
|
|
1168 |
show "?h \<in> Group.iso (reduced_homology_group (1 + p) (nsphere (Suc n)))
|
|
1169 |
(relative_homology_group (1 + p) (nsphere (Suc n)) {x. x (Suc n) \<le> 0})"
|
|
1170 |
using iso_reduced_homology_group_lower_hemisphere by blast
|
|
1171 |
next
|
|
1172 |
fix c
|
|
1173 |
assume "c \<in> carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))"
|
|
1174 |
show "?s2 (?h c) = ?h (?j (1 + p) (Suc n) c)"
|
|
1175 |
by (simp add: hom_induced_compose' cmr rsub)
|
|
1176 |
next
|
|
1177 |
fix c
|
|
1178 |
assume "c \<in> carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))"
|
|
1179 |
then show "hom_induced (1 + p) (nsphere (Suc n)) {} (nsphere (Suc n)) {} r c
|
|
1180 |
\<in> carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))"
|
|
1181 |
by (simp add: hom_induced_reduced)
|
|
1182 |
qed auto
|
|
1183 |
qed
|
|
1184 |
qed
|
|
1185 |
qed
|
|
1186 |
|
|
1187 |
|
|
1188 |
lemma reduced_homology_group_nsphere_aux:
|
|
1189 |
"if p = int n then reduced_homology_group n (nsphere n) \<cong> integer_group
|
|
1190 |
else trivial_group(reduced_homology_group p (nsphere n))"
|
|
1191 |
proof (induction n arbitrary: p)
|
|
1192 |
case 0
|
|
1193 |
let ?a = "\<lambda>i::nat. if i = 0 then 1 else (0::real)"
|
|
1194 |
let ?b = "\<lambda>i::nat. if i = 0 then -1 else (0::real)"
|
|
1195 |
have st: "subtopology (powertop_real UNIV) {?a, ?b} = nsphere 0"
|
|
1196 |
proof -
|
|
1197 |
have "{?a, ?b} = {x. (x 0)\<^sup>2 = 1 \<and> (\<forall>i>0. x i = 0)}"
|
|
1198 |
using power2_eq_iff by fastforce
|
|
1199 |
then show ?thesis
|
|
1200 |
by (simp add: nsphere)
|
|
1201 |
qed
|
|
1202 |
have *: "reduced_homology_group p (subtopology (powertop_real UNIV) {?a, ?b}) \<cong>
|
|
1203 |
homology_group p (subtopology (powertop_real UNIV) {?a})"
|
|
1204 |
apply (rule reduced_homology_group_pair)
|
|
1205 |
apply (simp_all add: fun_eq_iff)
|
|
1206 |
apply (simp add: open_fun_def separation_t1 t1_space_def)
|
|
1207 |
done
|
|
1208 |
have "reduced_homology_group 0 (nsphere 0) \<cong> integer_group" if "p=0"
|
|
1209 |
proof -
|
|
1210 |
have "reduced_homology_group 0 (nsphere 0) \<cong> homology_group 0 (top_of_set {?a})" if "p=0"
|
|
1211 |
by (metis * euclidean_product_topology st that)
|
|
1212 |
also have "\<dots> \<cong> integer_group"
|
|
1213 |
by (simp add: homology_coefficients)
|
|
1214 |
finally show ?thesis
|
|
1215 |
using that by blast
|
|
1216 |
qed
|
|
1217 |
moreover have "trivial_group (reduced_homology_group p (nsphere 0))" if "p\<noteq>0"
|
|
1218 |
using * that homology_dimension_axiom [of "subtopology (powertop_real UNIV) {?a}" ?a p]
|
|
1219 |
using isomorphic_group_triviality st by force
|
|
1220 |
ultimately show ?case
|
|
1221 |
by auto
|
|
1222 |
next
|
|
1223 |
case (Suc n)
|
|
1224 |
have eq: "reduced_homology_group (int n) (nsphere n) \<cong> integer_group" if "p-1 = n"
|
|
1225 |
by (simp add: Suc.IH)
|
|
1226 |
have neq: "trivial_group (reduced_homology_group (p-1) (nsphere n))" if "p-1 \<noteq> n"
|
|
1227 |
by (simp add: Suc.IH that)
|
|
1228 |
have iso: "reduced_homology_group p (nsphere (Suc n)) \<cong> reduced_homology_group (p-1) (nsphere n)"
|
|
1229 |
using reduced_homology_group_nsphere_step [of "p-1" n] group.iso_sym [OF _ is_isoI] group_reduced_homology_group
|
|
1230 |
by fastforce
|
|
1231 |
then show ?case
|
|
1232 |
using eq iso_trans iso isomorphic_group_triviality neq
|
|
1233 |
by (metis (no_types, hide_lams) add.commute add_left_cancel diff_add_cancel group_reduced_homology_group of_nat_Suc)
|
|
1234 |
qed
|
|
1235 |
|
|
1236 |
|
|
1237 |
lemma reduced_homology_group_nsphere:
|
|
1238 |
"reduced_homology_group n (nsphere n) \<cong> integer_group"
|
|
1239 |
"p \<noteq> n \<Longrightarrow> trivial_group(reduced_homology_group p (nsphere n))"
|
|
1240 |
using reduced_homology_group_nsphere_aux by auto
|
|
1241 |
|
|
1242 |
lemma cyclic_reduced_homology_group_nsphere:
|
|
1243 |
"cyclic_group(reduced_homology_group p (nsphere n))"
|
|
1244 |
by (metis reduced_homology_group_nsphere trivial_imp_cyclic_group cyclic_integer_group
|
|
1245 |
group_integer_group group_reduced_homology_group isomorphic_group_cyclicity)
|
|
1246 |
|
|
1247 |
lemma trivial_reduced_homology_group_nsphere:
|
|
1248 |
"trivial_group(reduced_homology_group p (nsphere n)) \<longleftrightarrow> (p \<noteq> n)"
|
|
1249 |
using group_integer_group isomorphic_group_triviality nontrivial_integer_group reduced_homology_group_nsphere(1) reduced_homology_group_nsphere(2) trivial_group_def by blast
|
|
1250 |
|
|
1251 |
lemma non_contractible_space_nsphere: "\<not> (contractible_space(nsphere n))"
|
|
1252 |
proof (clarsimp simp add: contractible_eq_homotopy_equivalent_singleton_subtopology)
|
|
1253 |
fix a :: "nat \<Rightarrow> real"
|
|
1254 |
assume a: "a \<in> topspace (nsphere n)"
|
|
1255 |
and he: "nsphere n homotopy_equivalent_space subtopology (nsphere n) {a}"
|
|
1256 |
have "trivial_group (reduced_homology_group (int n) (subtopology (nsphere n) {a}))"
|
|
1257 |
by (simp add: a homology_dimension_reduced [where a=a])
|
|
1258 |
then show "False"
|
|
1259 |
using isomorphic_group_triviality [OF homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups [OF he, of n]]
|
|
1260 |
by (simp add: trivial_reduced_homology_group_nsphere)
|
|
1261 |
qed
|
|
1262 |
|
|
1263 |
|
|
1264 |
subsection\<open>Brouwer degree of a Map\<close>
|
|
1265 |
|
|
1266 |
definition Brouwer_degree2 :: "nat \<Rightarrow> ((nat \<Rightarrow> real) \<Rightarrow> nat \<Rightarrow> real) \<Rightarrow> int"
|
|
1267 |
where
|
|
1268 |
"Brouwer_degree2 p f \<equiv>
|
|
1269 |
@d::int. \<forall>x \<in> carrier(reduced_homology_group p (nsphere p)).
|
|
1270 |
hom_induced p (nsphere p) {} (nsphere p) {} f x = pow (reduced_homology_group p (nsphere p)) x d"
|
|
1271 |
|
|
1272 |
lemma Brouwer_degree2_eq:
|
|
1273 |
"(\<And>x. x \<in> topspace(nsphere p) \<Longrightarrow> f x = g x) \<Longrightarrow> Brouwer_degree2 p f = Brouwer_degree2 p g"
|
|
1274 |
unfolding Brouwer_degree2_def Ball_def
|
|
1275 |
apply (intro Eps_cong all_cong)
|
|
1276 |
by (metis (mono_tags, lifting) hom_induced_eq)
|
|
1277 |
|
|
1278 |
lemma Brouwer_degree2:
|
|
1279 |
assumes "x \<in> carrier(reduced_homology_group p (nsphere p))"
|
|
1280 |
shows "hom_induced p (nsphere p) {} (nsphere p) {} f x
|
|
1281 |
= pow (reduced_homology_group p (nsphere p)) x (Brouwer_degree2 p f)"
|
|
1282 |
(is "?h x = pow ?G x _")
|
|
1283 |
proof (cases "continuous_map(nsphere p) (nsphere p) f")
|
|
1284 |
case True
|
|
1285 |
interpret group ?G
|
|
1286 |
by simp
|
|
1287 |
interpret group_hom ?G ?G ?h
|
|
1288 |
using hom_induced_reduced_hom group_hom_axioms_def group_hom_def is_group by blast
|
|
1289 |
obtain a where a: "a \<in> carrier ?G"
|
|
1290 |
and aeq: "subgroup_generated ?G {a} = ?G"
|
|
1291 |
using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def)
|
|
1292 |
then have carra: "carrier (subgroup_generated ?G {a}) = range (\<lambda>n::int. pow ?G a n)"
|
|
1293 |
using carrier_subgroup_generated_by_singleton by blast
|
|
1294 |
moreover have "?h a \<in> carrier (subgroup_generated ?G {a})"
|
|
1295 |
by (simp add: a aeq hom_induced_reduced)
|
|
1296 |
ultimately obtain d::int where d: "?h a = pow ?G a d"
|
|
1297 |
by auto
|
|
1298 |
have *: "hom_induced (int p) (nsphere p) {} (nsphere p) {} f x = x [^]\<^bsub>?G\<^esub> d"
|
|
1299 |
if x: "x \<in> carrier ?G" for x
|
|
1300 |
proof -
|
|
1301 |
obtain n::int where xeq: "x = pow ?G a n"
|
|
1302 |
using carra x aeq by moura
|
|
1303 |
show ?thesis
|
|
1304 |
by (simp add: xeq a d hom_int_pow int_pow_pow mult.commute)
|
|
1305 |
qed
|
|
1306 |
show ?thesis
|
|
1307 |
unfolding Brouwer_degree2_def
|
|
1308 |
apply (rule someI2 [where a=d])
|
|
1309 |
using assms * apply blast+
|
|
1310 |
done
|
|
1311 |
next
|
|
1312 |
case False
|
|
1313 |
show ?thesis
|
|
1314 |
unfolding Brouwer_degree2_def
|
|
1315 |
by (rule someI2 [where a=0]) (simp_all add: hom_induced_default False one_reduced_homology_group assms)
|
|
1316 |
qed
|
|
1317 |
|
|
1318 |
|
|
1319 |
|
|
1320 |
lemma Brouwer_degree2_iff:
|
|
1321 |
assumes f: "continuous_map (nsphere p) (nsphere p) f"
|
|
1322 |
and x: "x \<in> carrier(reduced_homology_group p (nsphere p))"
|
|
1323 |
shows "(hom_induced (int p) (nsphere p) {} (nsphere p) {} f x =
|
|
1324 |
x [^]\<^bsub>reduced_homology_group (int p) (nsphere p)\<^esub> d)
|
|
1325 |
\<longleftrightarrow> (x = \<one>\<^bsub>reduced_homology_group (int p) (nsphere p)\<^esub> \<or> Brouwer_degree2 p f = d)"
|
|
1326 |
(is "(?h x = x [^]\<^bsub>?G\<^esub> d) \<longleftrightarrow> _")
|
|
1327 |
proof -
|
|
1328 |
interpret group "?G"
|
|
1329 |
by simp
|
|
1330 |
obtain a where a: "a \<in> carrier ?G"
|
|
1331 |
and aeq: "subgroup_generated ?G {a} = ?G"
|
|
1332 |
using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def)
|
|
1333 |
then obtain i::int where i: "x = (a [^]\<^bsub>?G\<^esub> i)"
|
|
1334 |
using carrier_subgroup_generated_by_singleton x by fastforce
|
|
1335 |
then have "a [^]\<^bsub>?G\<^esub> i \<in> carrier ?G"
|
|
1336 |
using x by blast
|
|
1337 |
have [simp]: "ord a = 0"
|
|
1338 |
by (simp add: a aeq iso_finite [OF reduced_homology_group_nsphere(1)] flip: infinite_cyclic_subgroup_order)
|
|
1339 |
show ?thesis
|
|
1340 |
by (auto simp: Brouwer_degree2 int_pow_eq_id x i a int_pow_pow int_pow_eq)
|
|
1341 |
qed
|
|
1342 |
|
|
1343 |
|
|
1344 |
lemma Brouwer_degree2_unique:
|
|
1345 |
assumes f: "continuous_map (nsphere p) (nsphere p) f"
|
|
1346 |
and hi: "\<And>x. x \<in> carrier(reduced_homology_group p (nsphere p))
|
|
1347 |
\<Longrightarrow> hom_induced p (nsphere p) {} (nsphere p) {} f x = pow (reduced_homology_group p (nsphere p)) x d"
|
|
1348 |
(is "\<And>x. x \<in> carrier ?G \<Longrightarrow> ?h x = _")
|
|
1349 |
shows "Brouwer_degree2 p f = d"
|
|
1350 |
proof -
|
|
1351 |
obtain a where a: "a \<in> carrier ?G"
|
|
1352 |
and aeq: "subgroup_generated ?G {a} = ?G"
|
|
1353 |
using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def)
|
|
1354 |
show ?thesis
|
|
1355 |
using hi [OF a]
|
|
1356 |
apply (simp add: Brouwer_degree2 a)
|
|
1357 |
by (metis Brouwer_degree2_iff a aeq f group.trivial_group_subgroup_generated group_reduced_homology_group subsetI trivial_reduced_homology_group_nsphere)
|
|
1358 |
qed
|
|
1359 |
|
|
1360 |
lemma Brouwer_degree2_unique_generator:
|
|
1361 |
assumes f: "continuous_map (nsphere p) (nsphere p) f"
|
|
1362 |
and eq: "subgroup_generated (reduced_homology_group p (nsphere p)) {a}
|
|
1363 |
= reduced_homology_group p (nsphere p)"
|
|
1364 |
and hi: "hom_induced p (nsphere p) {} (nsphere p) {} f a = pow (reduced_homology_group p (nsphere p)) a d"
|
|
1365 |
(is "?h a = pow ?G a _")
|
|
1366 |
shows "Brouwer_degree2 p f = d"
|
|
1367 |
proof (cases "a \<in> carrier ?G")
|
|
1368 |
case True
|
|
1369 |
then show ?thesis
|
|
1370 |
by (metis Brouwer_degree2_iff hi eq f group.trivial_group_subgroup_generated group_reduced_homology_group
|
|
1371 |
subset_singleton_iff trivial_reduced_homology_group_nsphere)
|
|
1372 |
next
|
|
1373 |
case False
|
|
1374 |
then show ?thesis
|
|
1375 |
using trivial_reduced_homology_group_nsphere [of p p]
|
|
1376 |
by (metis group.trivial_group_subgroup_generated_eq disjoint_insert(1) eq group_reduced_homology_group inf_bot_right subset_singleton_iff)
|
|
1377 |
qed
|
|
1378 |
|
|
1379 |
lemma Brouwer_degree2_homotopic:
|
|
1380 |
assumes "homotopic_with (\<lambda>x. True) (nsphere p) (nsphere p) f g"
|
|
1381 |
shows "Brouwer_degree2 p f = Brouwer_degree2 p g"
|
|
1382 |
proof -
|
|
1383 |
have "continuous_map (nsphere p) (nsphere p) f"
|
|
1384 |
using homotopic_with_imp_continuous_maps [OF assms] by auto
|
|
1385 |
show ?thesis
|
|
1386 |
using Brouwer_degree2_def assms homology_homotopy_empty by fastforce
|
|
1387 |
qed
|
|
1388 |
|
|
1389 |
lemma Brouwer_degree2_id [simp]: "Brouwer_degree2 p id = 1"
|
|
1390 |
proof (rule Brouwer_degree2_unique)
|
|
1391 |
fix x
|
|
1392 |
assume x: "x \<in> carrier (reduced_homology_group (int p) (nsphere p))"
|
|
1393 |
then have "x \<in> carrier (homology_group (int p) (nsphere p))"
|
|
1394 |
using carrier_reduced_homology_group_subset by blast
|
|
1395 |
then show "hom_induced (int p) (nsphere p) {} (nsphere p) {} id x =
|
|
1396 |
x [^]\<^bsub>reduced_homology_group (int p) (nsphere p)\<^esub> (1::int)"
|
|
1397 |
by (simp add: hom_induced_id group.int_pow_1 x)
|
|
1398 |
qed auto
|
|
1399 |
|
|
1400 |
lemma Brouwer_degree2_compose:
|
|
1401 |
assumes f: "continuous_map (nsphere p) (nsphere p) f" and g: "continuous_map (nsphere p) (nsphere p) g"
|
|
1402 |
shows "Brouwer_degree2 p (g \<circ> f) = Brouwer_degree2 p g * Brouwer_degree2 p f"
|
|
1403 |
proof (rule Brouwer_degree2_unique)
|
|
1404 |
show "continuous_map (nsphere p) (nsphere p) (g \<circ> f)"
|
|
1405 |
by (meson continuous_map_compose f g)
|
|
1406 |
next
|
|
1407 |
fix x
|
|
1408 |
assume x: "x \<in> carrier (reduced_homology_group (int p) (nsphere p))"
|
|
1409 |
have "hom_induced (int p) (nsphere p) {} (nsphere p) {} (g \<circ> f) =
|
|
1410 |
hom_induced (int p) (nsphere p) {} (nsphere p) {} g \<circ>
|
|
1411 |
hom_induced (int p) (nsphere p) {} (nsphere p) {} f"
|
|
1412 |
by (blast intro: hom_induced_compose [OF f _ g])
|
|
1413 |
with x show "hom_induced (int p) (nsphere p) {} (nsphere p) {} (g \<circ> f) x =
|
|
1414 |
x [^]\<^bsub>reduced_homology_group (int p) (nsphere p)\<^esub> (Brouwer_degree2 p g * Brouwer_degree2 p f)"
|
|
1415 |
by (simp add: mult.commute hom_induced_reduced flip: Brouwer_degree2 group.int_pow_pow)
|
|
1416 |
qed
|
|
1417 |
|
|
1418 |
lemma Brouwer_degree2_homotopy_equivalence:
|
|
1419 |
assumes f: "continuous_map (nsphere p) (nsphere p) f" and g: "continuous_map (nsphere p) (nsphere p) g"
|
|
1420 |
and hom: "homotopic_with (\<lambda>x. True) (nsphere p) (nsphere p) (f \<circ> g) id"
|
|
1421 |
obtains "\<bar>Brouwer_degree2 p f\<bar> = 1" "\<bar>Brouwer_degree2 p g\<bar> = 1" "Brouwer_degree2 p g = Brouwer_degree2 p f"
|
|
1422 |
using Brouwer_degree2_homotopic [OF hom] Brouwer_degree2_compose f g zmult_eq_1_iff by auto
|
|
1423 |
|
|
1424 |
lemma Brouwer_degree2_homeomorphic_maps:
|
|
1425 |
assumes "homeomorphic_maps (nsphere p) (nsphere p) f g"
|
|
1426 |
obtains "\<bar>Brouwer_degree2 p f\<bar> = 1" "\<bar>Brouwer_degree2 p g\<bar> = 1" "Brouwer_degree2 p g = Brouwer_degree2 p f"
|
|
1427 |
using assms
|
|
1428 |
by (auto simp: homeomorphic_maps_def homotopic_with_equal continuous_map_compose intro: Brouwer_degree2_homotopy_equivalence)
|
|
1429 |
|
|
1430 |
|
|
1431 |
lemma Brouwer_degree2_retraction_map:
|
|
1432 |
assumes "retraction_map (nsphere p) (nsphere p) f"
|
|
1433 |
shows "\<bar>Brouwer_degree2 p f\<bar> = 1"
|
|
1434 |
proof -
|
|
1435 |
obtain g where g: "retraction_maps (nsphere p) (nsphere p) f g"
|
|
1436 |
using assms by (auto simp: retraction_map_def)
|
|
1437 |
show ?thesis
|
|
1438 |
proof (rule Brouwer_degree2_homotopy_equivalence)
|
|
1439 |
show "homotopic_with (\<lambda>x. True) (nsphere p) (nsphere p) (f \<circ> g) id"
|
|
1440 |
using g apply (auto simp: retraction_maps_def)
|
|
1441 |
by (simp add: homotopic_with_equal continuous_map_compose)
|
|
1442 |
show "continuous_map (nsphere p) (nsphere p) f" "continuous_map (nsphere p) (nsphere p) g"
|
|
1443 |
using g retraction_maps_def by blast+
|
|
1444 |
qed
|
|
1445 |
qed
|
|
1446 |
|
|
1447 |
lemma Brouwer_degree2_section_map:
|
|
1448 |
assumes "section_map (nsphere p) (nsphere p) f"
|
|
1449 |
shows "\<bar>Brouwer_degree2 p f\<bar> = 1"
|
|
1450 |
proof -
|
|
1451 |
obtain g where g: "retraction_maps (nsphere p) (nsphere p) g f"
|
|
1452 |
using assms by (auto simp: section_map_def)
|
|
1453 |
show ?thesis
|
|
1454 |
proof (rule Brouwer_degree2_homotopy_equivalence)
|
|
1455 |
show "homotopic_with (\<lambda>x. True) (nsphere p) (nsphere p) (g \<circ> f) id"
|
|
1456 |
using g apply (auto simp: retraction_maps_def)
|
|
1457 |
by (simp add: homotopic_with_equal continuous_map_compose)
|
|
1458 |
show "continuous_map (nsphere p) (nsphere p) g" "continuous_map (nsphere p) (nsphere p) f"
|
|
1459 |
using g retraction_maps_def by blast+
|
|
1460 |
qed
|
|
1461 |
qed
|
|
1462 |
|
|
1463 |
lemma Brouwer_degree2_homeomorphic_map:
|
|
1464 |
"homeomorphic_map (nsphere p) (nsphere p) f \<Longrightarrow> \<bar>Brouwer_degree2 p f\<bar> = 1"
|
|
1465 |
using Brouwer_degree2_retraction_map section_and_retraction_eq_homeomorphic_map by blast
|
|
1466 |
|
|
1467 |
|
|
1468 |
lemma Brouwer_degree2_nullhomotopic:
|
|
1469 |
assumes "homotopic_with (\<lambda>x. True) (nsphere p) (nsphere p) f (\<lambda>x. a)"
|
|
1470 |
shows "Brouwer_degree2 p f = 0"
|
|
1471 |
proof -
|
|
1472 |
have contf: "continuous_map (nsphere p) (nsphere p) f"
|
|
1473 |
and contc: "continuous_map (nsphere p) (nsphere p) (\<lambda>x. a)"
|
|
1474 |
using homotopic_with_imp_continuous_maps [OF assms] by metis+
|
|
1475 |
have "Brouwer_degree2 p f = Brouwer_degree2 p (\<lambda>x. a)"
|
|
1476 |
using Brouwer_degree2_homotopic [OF assms] .
|
|
1477 |
moreover
|
|
1478 |
let ?G = "reduced_homology_group (int p) (nsphere p)"
|
|
1479 |
interpret group ?G
|
|
1480 |
by simp
|
|
1481 |
have "Brouwer_degree2 p (\<lambda>x. a) = 0"
|
|
1482 |
proof (rule Brouwer_degree2_unique [OF contc])
|
|
1483 |
fix c
|
|
1484 |
assume c: "c \<in> carrier ?G"
|
|
1485 |
have "continuous_map (nsphere p) (subtopology (nsphere p) {a}) (\<lambda>f. a)"
|
|
1486 |
using contc continuous_map_in_subtopology by blast
|
|
1487 |
then have he: "hom_induced p (nsphere p) {} (nsphere p) {} (\<lambda>x. a)
|
|
1488 |
= hom_induced p (subtopology (nsphere p) {a}) {} (nsphere p) {} id \<circ>
|
|
1489 |
hom_induced p (nsphere p) {} (subtopology (nsphere p) {a}) {} (\<lambda>x. a)"
|
|
1490 |
by (metis continuous_map_id_subt hom_induced_compose id_comp image_empty order_refl)
|
|
1491 |
have 1: "hom_induced p (nsphere p) {} (subtopology (nsphere p) {a}) {} (\<lambda>x. a) c =
|
|
1492 |
\<one>\<^bsub>reduced_homology_group (int p) (subtopology (nsphere p) {a})\<^esub>"
|
|
1493 |
using c trivial_reduced_homology_group_contractible_space [of "subtopology (nsphere p) {a}" p]
|
|
1494 |
by (simp add: hom_induced_reduced contractible_space_subtopology_singleton trivial_group_subset group.trivial_group_subset subset_iff)
|
|
1495 |
show "hom_induced (int p) (nsphere p) {} (nsphere p) {} (\<lambda>x. a) c =
|
|
1496 |
c [^]\<^bsub>?G\<^esub> (0::int)"
|
|
1497 |
apply (simp add: he 1)
|
|
1498 |
using hom_induced_reduced_hom group_hom.hom_one group_hom_axioms_def group_hom_def group_reduced_homology_group by blast
|
|
1499 |
qed
|
|
1500 |
ultimately show ?thesis
|
|
1501 |
by metis
|
|
1502 |
qed
|
|
1503 |
|
|
1504 |
|
|
1505 |
lemma Brouwer_degree2_const: "Brouwer_degree2 p (\<lambda>x. a) = 0"
|
|
1506 |
proof (cases "continuous_map(nsphere p) (nsphere p) (\<lambda>x. a)")
|
|
1507 |
case True
|
|
1508 |
then show ?thesis
|
|
1509 |
by (auto intro: Brouwer_degree2_nullhomotopic [where a=a])
|
|
1510 |
next
|
|
1511 |
case False
|
|
1512 |
let ?G = "reduced_homology_group (int p) (nsphere p)"
|
|
1513 |
let ?H = "homology_group (int p) (nsphere p)"
|
|
1514 |
interpret group ?G
|
|
1515 |
by simp
|
|
1516 |
have eq1: "\<one>\<^bsub>?H\<^esub> = \<one>\<^bsub>?G\<^esub>"
|
|
1517 |
by (simp add: one_reduced_homology_group)
|
|
1518 |
have *: "\<forall>x\<in>carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {} (\<lambda>x. a) x = \<one>\<^bsub>?H\<^esub>"
|
|
1519 |
by (metis False hom_induced_default one_relative_homology_group)
|
|
1520 |
obtain c where c: "c \<in> carrier ?G" and ceq: "subgroup_generated ?G {c} = ?G"
|
|
1521 |
using cyclic_reduced_homology_group_nsphere [of p p] by (force simp: cyclic_group_def)
|
|
1522 |
have [simp]: "ord c = 0"
|
|
1523 |
by (simp add: c ceq iso_finite [OF reduced_homology_group_nsphere(1)] flip: infinite_cyclic_subgroup_order)
|
|
1524 |
show ?thesis
|
|
1525 |
unfolding Brouwer_degree2_def
|
|
1526 |
proof (rule some_equality)
|
|
1527 |
fix d :: "int"
|
|
1528 |
assume "\<forall>x\<in>carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {} (\<lambda>x. a) x = x [^]\<^bsub>?G\<^esub> d"
|
|
1529 |
then have "c [^]\<^bsub>?G\<^esub> d = \<one>\<^bsub>?H\<^esub>"
|
|
1530 |
using "*" c by blast
|
|
1531 |
then have "int (ord c) dvd d"
|
|
1532 |
using c eq1 int_pow_eq_id by auto
|
|
1533 |
then show "d = 0"
|
|
1534 |
by (simp add: * del: one_relative_homology_group)
|
|
1535 |
qed (use "*" eq1 in force)
|
|
1536 |
qed
|
|
1537 |
|
|
1538 |
|
|
1539 |
corollary Brouwer_degree2_nonsurjective:
|
|
1540 |
"\<lbrakk>continuous_map(nsphere p) (nsphere p) f; f ` topspace (nsphere p) \<noteq> topspace (nsphere p)\<rbrakk>
|
|
1541 |
\<Longrightarrow> Brouwer_degree2 p f = 0"
|
|
1542 |
by (meson Brouwer_degree2_nullhomotopic nullhomotopic_nonsurjective_sphere_map)
|
|
1543 |
|
|
1544 |
|
|
1545 |
proposition Brouwer_degree2_reflection:
|
|
1546 |
"Brouwer_degree2 p (\<lambda>x i. if i = 0 then -x i else x i) = -1" (is "Brouwer_degree2 _ ?r = -1")
|
|
1547 |
proof (induction p)
|
|
1548 |
case 0
|
|
1549 |
let ?G = "homology_group 0 (nsphere 0)"
|
|
1550 |
let ?D = "homology_group 0 (discrete_topology {()})"
|
|
1551 |
interpret group ?G
|
|
1552 |
by simp
|
|
1553 |
define r where "r \<equiv> \<lambda>x::nat\<Rightarrow>real. \<lambda>i. if i = 0 then -x i else x i"
|
|
1554 |
then have [simp]: "r \<circ> r = id"
|
|
1555 |
by force
|
|
1556 |
have cmr: "continuous_map (nsphere 0) (nsphere 0) r"
|
|
1557 |
by (simp add: r_def continuous_map_nsphere_reflection)
|
|
1558 |
have *: "hom_induced 0 (nsphere 0) {} (nsphere 0) {} r c = inv\<^bsub>?G\<^esub> c"
|
|
1559 |
if "c \<in> carrier(reduced_homology_group 0 (nsphere 0))" for c
|
|
1560 |
proof -
|
|
1561 |
have c: "c \<in> carrier ?G"
|
|
1562 |
and ceq: "hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (\<lambda>x. ()) c = \<one>\<^bsub>?D\<^esub>"
|
|
1563 |
using that by (auto simp: carrier_reduced_homology_group kernel_def)
|
|
1564 |
define pp::"nat\<Rightarrow>real" where "pp \<equiv> \<lambda>i. if i = 0 then 1 else 0"
|
|
1565 |
define nn::"nat\<Rightarrow>real" where "nn \<equiv> \<lambda>i. if i = 0 then -1 else 0"
|
|
1566 |
have topn0: "topspace(nsphere 0) = {pp,nn}"
|
|
1567 |
by (auto simp: nsphere pp_def nn_def fun_eq_iff power2_eq_1_iff split: if_split_asm)
|
|
1568 |
have "t1_space (nsphere 0)"
|
|
1569 |
unfolding nsphere
|
|
1570 |
apply (rule t1_space_subtopology)
|
|
1571 |
by (metis (full_types) open_fun_def t1_space t1_space_def)
|
|
1572 |
then have dtn0: "discrete_topology {pp,nn} = nsphere 0"
|
|
1573 |
using finite_t1_space_imp_discrete_topology [OF topn0] by auto
|
|
1574 |
have "pp \<noteq> nn"
|
|
1575 |
by (auto simp: pp_def nn_def fun_eq_iff)
|
|
1576 |
have [simp]: "r pp = nn" "r nn = pp"
|
|
1577 |
by (auto simp: r_def pp_def nn_def fun_eq_iff)
|
|
1578 |
have iso: "(\<lambda>(a,b). hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id a
|
|
1579 |
\<otimes>\<^bsub>?G\<^esub> hom_induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {} id b)
|
|
1580 |
\<in> iso (homology_group 0 (subtopology (nsphere 0) {pp}) \<times>\<times> homology_group 0 (subtopology (nsphere 0) {nn}))
|
|
1581 |
?G" (is "?f \<in> iso (?P \<times>\<times> ?N) ?G")
|
|
1582 |
apply (rule homology_additivity_explicit)
|
|
1583 |
using dtn0 \<open>pp \<noteq> nn\<close> by (auto simp: discrete_topology_unique)
|
|
1584 |
then have fim: "?f ` carrier(?P \<times>\<times> ?N) = carrier ?G"
|
|
1585 |
by (simp add: iso_def bij_betw_def)
|
|
1586 |
obtain d d' where d: "d \<in> carrier ?P" and d': "d' \<in> carrier ?N" and eqc: "?f(d,d') = c"
|
|
1587 |
using c by (force simp flip: fim)
|
|
1588 |
let ?h = "\<lambda>xx. hom_induced 0 (subtopology (nsphere 0) {xx}) {} (discrete_topology {()}) {} (\<lambda>x. ())"
|
|
1589 |
have "retraction_map (subtopology (nsphere 0) {pp}) (subtopology (nsphere 0) {nn}) r"
|
|
1590 |
apply (simp add: retraction_map_def retraction_maps_def continuous_map_in_subtopology continuous_map_from_subtopology cmr image_subset_iff)
|
|
1591 |
apply (rule_tac x=r in exI)
|
|
1592 |
apply (force simp: retraction_map_def retraction_maps_def continuous_map_in_subtopology continuous_map_from_subtopology cmr)
|
|
1593 |
done
|
|
1594 |
then have "carrier ?N = (hom_induced 0 (subtopology (nsphere 0) {pp}) {} (subtopology (nsphere 0) {nn}) {} r) ` carrier ?P"
|
|
1595 |
by (rule surj_hom_induced_retraction_map)
|
|
1596 |
then obtain e where e: "e \<in> carrier ?P" and eqd': "hom_induced 0 (subtopology (nsphere 0) {pp}) {} (subtopology (nsphere 0) {nn}) {} r e = d'"
|
|
1597 |
using d' by auto
|
|
1598 |
have "section_map (subtopology (nsphere 0) {pp}) (discrete_topology {()}) (\<lambda>x. ())"
|
|
1599 |
by (force simp: section_map_def retraction_maps_def topn0)
|
|
1600 |
then have "?h pp \<in> mon ?P ?D"
|
|
1601 |
by (rule mon_hom_induced_section_map)
|
|
1602 |
then have one: "x = one ?P"
|
|
1603 |
if "?h pp x = \<one>\<^bsub>?D\<^esub>" "x \<in> carrier ?P" for x
|
|
1604 |
using that by (simp add: mon_iff_hom_one)
|
|
1605 |
interpret hpd: group_hom ?P ?D "?h pp"
|
|
1606 |
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def)
|
|
1607 |
interpret hgd: group_hom ?G ?D "hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (\<lambda>x. ())"
|
|
1608 |
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def)
|
|
1609 |
interpret hpg: group_hom ?P ?G "hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r"
|
|
1610 |
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def)
|
|
1611 |
interpret hgg: group_hom ?G ?G "hom_induced 0 (nsphere 0) {} (nsphere 0) {} r"
|
|
1612 |
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def)
|
|
1613 |
have "?h pp d =
|
|
1614 |
(hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (\<lambda>x. ())
|
|
1615 |
\<circ> hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id) d"
|
|
1616 |
by (simp flip: hom_induced_compose_empty)
|
|
1617 |
moreover
|
|
1618 |
have "?h pp = ?h nn \<circ> hom_induced 0 (subtopology (nsphere 0) {pp}) {} (subtopology (nsphere 0) {nn}) {} r"
|
|
1619 |
by (simp add: cmr continuous_map_from_subtopology continuous_map_in_subtopology image_subset_iff flip: hom_induced_compose_empty)
|
|
1620 |
then have "?h pp e =
|
|
1621 |
(hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (\<lambda>x. ())
|
|
1622 |
\<circ> hom_induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {} id) d'"
|
|
1623 |
by (simp flip: hom_induced_compose_empty eqd')
|
|
1624 |
ultimately have "?h pp (d \<otimes>\<^bsub>?P\<^esub> e) = hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (\<lambda>x. ()) (?f(d,d'))"
|
|
1625 |
by (simp add: d e hom_induced_carrier)
|
|
1626 |
then have "?h pp (d \<otimes>\<^bsub>?P\<^esub> e) = \<one>\<^bsub>?D\<^esub>"
|
|
1627 |
using ceq eqc by simp
|
|
1628 |
then have inv_p: "inv\<^bsub>?P\<^esub> d = e"
|
|
1629 |
by (metis (no_types, lifting) Group.group_def d e group.inv_equality group.r_inv group_relative_homology_group one monoid.m_closed)
|
|
1630 |
have cmr_pn: "continuous_map (subtopology (nsphere 0) {pp}) (subtopology (nsphere 0) {nn}) r"
|
|
1631 |
by (simp add: cmr continuous_map_from_subtopology continuous_map_in_subtopology image_subset_iff)
|
|
1632 |
then have "hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} (id \<circ> r) =
|
|
1633 |
hom_induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {} id \<circ>
|
|
1634 |
hom_induced 0 (subtopology (nsphere 0) {pp}) {} (subtopology (nsphere 0) {nn}) {} r"
|
|
1635 |
using hom_induced_compose_empty continuous_map_id_subt by blast
|
|
1636 |
then have "inv\<^bsub>?G\<^esub> hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r d =
|
|
1637 |
hom_induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {} id d'"
|
|
1638 |
apply (simp add: flip: inv_p eqd')
|
|
1639 |
using d hpg.hom_inv by auto
|
|
1640 |
then have c: "c = (hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id d)
|
|
1641 |
\<otimes>\<^bsub>?G\<^esub> inv\<^bsub>?G\<^esub> (hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r d)"
|
|
1642 |
by (simp flip: eqc)
|
|
1643 |
have "hom_induced 0 (nsphere 0) {} (nsphere 0) {} r \<circ>
|
|
1644 |
hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id =
|
|
1645 |
hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r"
|
|
1646 |
by (metis cmr comp_id continuous_map_id_subt hom_induced_compose_empty)
|
|
1647 |
moreover
|
|
1648 |
have "hom_induced 0 (nsphere 0) {} (nsphere 0) {} r \<circ>
|
|
1649 |
hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r =
|
|
1650 |
hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id"
|
|
1651 |
by (metis \<open>r \<circ> r = id\<close> cmr continuous_map_from_subtopology hom_induced_compose_empty)
|
|
1652 |
ultimately show ?thesis
|
|
1653 |
by (metis inv_p c comp_def d e hgg.hom_inv hgg.hom_mult hom_induced_carrier hpd.G.inv_inv hpg.hom_inv inv_mult_group)
|
|
1654 |
qed
|
|
1655 |
show ?case
|
|
1656 |
unfolding r_def [symmetric]
|
|
1657 |
using Brouwer_degree2_unique [OF cmr]
|
|
1658 |
by (auto simp: * group.int_pow_neg group.int_pow_1 reduced_homology_group_def intro!: Brouwer_degree2_unique [OF cmr])
|
|
1659 |
next
|
|
1660 |
case (Suc p)
|
|
1661 |
let ?G = "reduced_homology_group (int p) (nsphere p)"
|
|
1662 |
let ?G1 = "reduced_homology_group (1 + int p) (nsphere (Suc p))"
|
|
1663 |
obtain f g where fg: "group_isomorphisms ?G ?G1 f g"
|
|
1664 |
and *: "\<forall>c\<in>carrier ?G.
|
|
1665 |
hom_induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} ?r (f c) =
|
|
1666 |
f (hom_induced p (nsphere p) {} (nsphere p) {} ?r c)"
|
|
1667 |
using reduced_homology_group_nsphere_step
|
|
1668 |
by (meson group.iso_iff_group_isomorphisms group_reduced_homology_group)
|
|
1669 |
then have eq: "carrier ?G1 = f ` carrier ?G"
|
|
1670 |
by (fastforce simp add: iso_iff dest: group_isomorphisms_imp_iso)
|
|
1671 |
interpret group_hom ?G ?G1 f
|
|
1672 |
by (meson fg group_hom_axioms_def group_hom_def group_isomorphisms_def group_reduced_homology_group)
|
|
1673 |
have homf: "f \<in> hom ?G ?G1"
|
|
1674 |
using fg group_isomorphisms_def by blast
|
|
1675 |
have "hom_induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} ?r (f y) = f y [^]\<^bsub>?G1\<^esub> (-1::int)"
|
|
1676 |
if "y \<in> carrier ?G" for y
|
|
1677 |
by (simp add: that * Brouwer_degree2 Suc hom_int_pow)
|
|
1678 |
then show ?case
|
|
1679 |
by (fastforce simp: eq intro: Brouwer_degree2_unique [OF continuous_map_nsphere_reflection])
|
|
1680 |
qed
|
|
1681 |
|
|
1682 |
end
|