doc-src/TutorialI/Advanced/simp.thy
author wenzelm
Mon, 23 Oct 2000 11:14:00 +0200
changeset 10289 475ea668c67d
parent 10281 9554ce1c2e54
child 10795 9e888d60d3e5
permissions -rw-r--r--
tuned deps;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
theory simp = Main:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     3
(*>*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     5
section{*Simplification*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     6
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     7
text{*\label{sec:simplification-II}\index{simplification|(}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     8
This section discusses some additional nifty features not covered so far and
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     9
gives a short introduction to the simplification process itself. The latter
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    10
is helpful to understand why a particular rule does or does not apply in some
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    11
situation.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    12
*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    13
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    14
subsection{*Advanced features*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    15
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    16
subsubsection{*Congruence rules*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    17
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    18
text{*\label{sec:simp-cong}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    19
It is hardwired into the simplifier that while simplifying the conclusion $Q$
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    20
of $P \isasymImp Q$ it is legal to make uses of the assumptions $P$. This
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    21
kind of contextual information can also be made available for other
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    22
operators. For example, @{prop"xs = [] --> xs@xs = xs"} simplifies to @{term
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    23
True} because we may use @{prop"xs = []"} when simplifying @{prop"xs@xs =
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    24
xs"}. The generation of contextual information during simplification is
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    25
controlled by so-called \bfindex{congruence rules}. This is the one for
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    26
@{text"\<longrightarrow>"}:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    27
@{thm[display]imp_cong[no_vars]}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    28
It should be read as follows:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    29
In order to simplify @{prop"P-->Q"} to @{prop"P'-->Q'"},
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    30
simplify @{prop P} to @{prop P'}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    31
and assume @{prop"P'"} when simplifying @{prop Q} to @{prop"Q'"}.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    32
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    33
Here are some more examples.  The congruence rules for bounded
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    34
quantifiers supply contextual information about the bound variable:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    35
@{thm[display,eta_contract=false,margin=60]ball_cong[no_vars]}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
The congruence rule for conditional expressions supply contextual
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    37
information for simplifying the arms:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    38
@{thm[display]if_cong[no_vars]}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    39
A congruence rule can also \emph{prevent} simplification of some arguments.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
Here is an alternative congruence rule for conditional expressions:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    41
@{thm[display]if_weak_cong[no_vars]}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
Only the first argument is simplified; the others remain unchanged.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    43
This makes simplification much faster and is faithful to the evaluation
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    44
strategy in programming languages, which is why this is the default
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    45
congruence rule for @{text if}. Analogous rules control the evaluaton of
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    46
@{text case} expressions.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    47
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    48
You can delare your own congruence rules with the attribute @{text cong},
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    49
either globally, in the usual manner,
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    50
\begin{quote}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    51
\isacommand{declare} \textit{theorem-name} @{text"[cong]"}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    52
\end{quote}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    53
or locally in a @{text"simp"} call by adding the modifier
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    54
\begin{quote}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    55
@{text"cong:"} \textit{list of theorem names}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    56
\end{quote}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    57
The effect is reversed by @{text"cong del"} instead of @{text cong}.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    58
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    59
\begin{warn}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    60
The congruence rule @{thm[source]conj_cong}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    61
@{thm[display]conj_cong[no_vars]}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    62
is occasionally useful but not a default rule; you have to use it explicitly.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    63
\end{warn}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    64
*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    65
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    66
subsubsection{*Permutative rewrite rules*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    67
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    68
text{*
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    69
\index{rewrite rule!permutative|bold}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    70
\index{rewriting!ordered|bold}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    71
\index{ordered rewriting|bold}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    72
\index{simplification!ordered|bold}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    73
An equation is a \bfindex{permutative rewrite rule} if the left-hand
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    74
side and right-hand side are the same up to renaming of variables.  The most
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    75
common permutative rule is commutativity: @{prop"x+y = y+x"}.  Other examples
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    76
include @{prop"(x-y)-z = (x-z)-y"} in arithmetic and @{prop"insert x (insert
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    77
y A) = insert y (insert x A)"} for sets. Such rules are problematic because
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    78
once they apply, they can be used forever. The simplifier is aware of this
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    79
danger and treats permutative rules by means of a special strategy, called
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    80
\bfindex{ordered rewriting}: a permutative rewrite
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    81
rule is only applied if the term becomes ``smaller'' (w.r.t.\ some fixed
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    82
lexicographic ordering on terms). For example, commutativity rewrites
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    83
@{term"b+a"} to @{term"a+b"}, but then stops because @{term"a+b"} is strictly
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    84
smaller than @{term"b+a"}.  Permutative rewrite rules can be turned into
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    85
simplification rules in the usual manner via the @{text simp} attribute; the
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    86
simplifier recognizes their special status automatically.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    87
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    88
Permutative rewrite rules are most effective in the case of
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10186
diff changeset
    89
associative-commutative functions.  (Associativity by itself is not
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10186
diff changeset
    90
permutative.)  When dealing with an AC-function~$f$, keep the
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    91
following points in mind:
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10186
diff changeset
    92
\begin{itemize}\index{associative-commutative function}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    93
  
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    94
\item The associative law must always be oriented from left to right,
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    95
  namely $f(f(x,y),z) = f(x,f(y,z))$.  The opposite orientation, if
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    96
  used with commutativity, can lead to nontermination.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    97
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    98
\item To complete your set of rewrite rules, you must add not just
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    99
  associativity~(A) and commutativity~(C) but also a derived rule, {\bf
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   100
    left-com\-mut\-ativ\-ity} (LC): $f(x,f(y,z)) = f(y,f(x,z))$.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   101
\end{itemize}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   102
Ordered rewriting with the combination of A, C, and LC sorts a term
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   103
lexicographically:
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   104
\[\def\maps#1{~\stackrel{#1}{\leadsto}~}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   105
 f(f(b,c),a) \maps{A} f(b,f(c,a)) \maps{C} f(b,f(a,c)) \maps{LC} f(a,f(b,c)) \]
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   106
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   107
Note that ordered rewriting for @{text"+"} and @{text"*"} on numbers is rarely
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   108
necessary because the builtin arithmetic capabilities often take care of
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   109
this.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   110
*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   111
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   112
subsection{*How it works*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   113
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   114
text{*\label{sec:SimpHow}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   115
Roughly speaking, the simplifier proceeds bottom-up (subterms are simplified
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   116
first) and a conditional equation is only applied if its condition could be
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   117
proved (again by simplification). Below we explain some special features of the rewriting process.
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   118
*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   119
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   120
subsubsection{*Higher-order patterns*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   121
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   122
text{*\index{simplification rule|(}
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   123
So far we have pretended the simplifier can deal with arbitrary
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   124
rewrite rules. This is not quite true.  Due to efficiency (and
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   125
potentially also computability) reasons, the simplifier expects the
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   126
left-hand side of each rule to be a so-called \emph{higher-order
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   127
pattern}~\cite{nipkow-patterns}\indexbold{higher-order
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   128
pattern}\indexbold{pattern, higher-order}. This restricts where
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   129
unknowns may occur.  Higher-order patterns are terms in $\beta$-normal
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   130
form (this will always be the case unless you have done something
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   131
strange) where each occurrence of an unknown is of the form
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   132
$\Var{f}~x@1~\dots~x@n$, where the $x@i$ are distinct bound
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   133
variables. Thus all ``standard'' rewrite rules, where all unknowns are
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   134
of base type, for example @{thm add_assoc}, are OK: if an unknown is
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   135
of base type, it cannot have any arguments. Additionally, the rule
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   136
@{text"(\<forall>x. ?P x \<and> ?Q x) = ((\<forall>x. ?P x) \<and> (\<forall>x. ?Q x))"} is also OK, in
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   137
both directions: all arguments of the unknowns @{text"?P"} and
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   138
@{text"?Q"} are distinct bound variables.
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   139
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   140
If the left-hand side is not a higher-order pattern, not all is lost
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   141
and the simplifier will still try to apply the rule, but only if it
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   142
matches ``directly'', i.e.\ without much $\lambda$-calculus hocus
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   143
pocus. For example, @{text"?f ?x \<in> range ?f = True"} rewrites
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   144
@{term"g a \<in> range g"} to @{term True}, but will fail to match
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   145
@{text"g(h b) \<in> range(\<lambda>x. g(h x))"}.  However, you can
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   146
replace the offending subterms (in our case @{text"?f ?x"}, which
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   147
is not a pattern) by adding new variables and conditions: @{text"?y =
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   148
?f ?x \<Longrightarrow> ?y \<in> range ?f = True"} is fine
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   149
as a conditional rewrite rule since conditions can be arbitrary
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   150
terms. However, this trick is not a panacea because the newly
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   151
introduced conditions may be hard to prove, which has to take place
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   152
before the rule can actually be applied.
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   153
  
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   154
There is basically no restriction on the form of the right-hand
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   155
sides.  They may not contain extraneous term or type variables, though.
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   156
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   157
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   158
subsubsection{*The preprocessor*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   159
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   160
text{*
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   161
When some theorem is declared a simplification rule, it need not be a
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   162
conditional equation already.  The simplifier will turn it into a set of
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   163
conditional equations automatically.  For example, given @{prop"f x =
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   164
g x & h x = k x"} the simplifier will turn this into the two separate
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   165
simplifiction rules @{prop"f x = g x"} and @{prop"h x = k x"}. In
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   166
general, the input theorem is converted as follows:
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   167
\begin{eqnarray}
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   168
\neg P &\mapsto& P = False \nonumber\\
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   169
P \longrightarrow Q &\mapsto& P \Longrightarrow Q \nonumber\\
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   170
P \land Q &\mapsto& P,\ Q \nonumber\\
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   171
\forall x.~P~x &\mapsto& P~\Var{x}\nonumber\\
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   172
\forall x \in A.\ P~x &\mapsto& \Var{x} \in A \Longrightarrow P~\Var{x} \nonumber\\
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   173
@{text if}\ P\ @{text then}\ Q\ @{text else}\ R &\mapsto&
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   174
 P \Longrightarrow Q,\ \neg P \Longrightarrow R \nonumber
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   175
\end{eqnarray}
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   176
Once this conversion process is finished, all remaining non-equations
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   177
$P$ are turned into trivial equations $P = True$.
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   178
For example, the formula @{prop"(p \<longrightarrow> q \<and> r) \<and> s"} is converted into the three rules
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   179
\begin{center}
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   180
@{prop"p \<Longrightarrow> q = True"},\quad  @{prop"p \<Longrightarrow> r = True"},\quad  @{prop"s = True"}.
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   181
\end{center}
499637e8f2c6 *** empty log message ***
nipkow
parents: 9958
diff changeset
   182
\index{simplification rule|)}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   183
\index{simplification|)}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   184
*}
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   185
(*<*)
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   186
end
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   187
(*>*)