| 
0
 | 
     1  | 
(*  Title: 	ZF/sum.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Disjoint sums in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
"Part" primitive for simultaneous recursive type definitions
  | 
| 
 | 
     8  | 
*)
  | 
| 
 | 
     9  | 
  | 
| 
124
 | 
    10  | 
Sum = Bool + "simpdata" +
  | 
| 
0
 | 
    11  | 
consts
  | 
| 
 | 
    12  | 
    "+"    	:: "[i,i]=>i"      		(infixr 65)
  | 
| 
 | 
    13  | 
    Inl,Inr     :: "i=>i"
  | 
| 
 | 
    14  | 
    case        :: "[i=>i, i=>i, i]=>i"
  | 
| 
 | 
    15  | 
    Part        :: "[i,i=>i] => i"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
rules
  | 
| 
 | 
    18  | 
    sum_def     "A+B == {0}*A Un {1}*B"
 | 
| 
 | 
    19  | 
    Inl_def     "Inl(a) == <0,a>"
  | 
| 
 | 
    20  | 
    Inr_def     "Inr(b) == <1,b>"
  | 
| 
 | 
    21  | 
    case_def    "case(c,d) == split(%y z. cond(y, d(z), c(z)))"
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
  (*operator for selecting out the various summands*)
  | 
| 
 | 
    24  | 
    Part_def	"Part(A,h) == {x: A. EX z. x = h(z)}"
 | 
| 
 | 
    25  | 
end
  |